CÁLCULO ELÉCTRICO DE LAS LINEAS DE TRANSMISIÓN

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CÁLCULO ELÉCTRICO DE LAS LINEAS DE TRANSMISIÓN"

Transcripción

1 U.T.O. F.N.. - LNEAS DE TANSMSON ng. ustavo Adolfo Nava Bustillo APTULO 7 ÁLULO ELÉTO DE LAS LNEAS DE TANSMSÓN 7.. EFETO OONA. Si los conductores de una línea de transmisión se someten a un voltaje creciente, hasta que el gradiente de potencial (campo eléctrico) en la superficie del conductor llegue a un valor mayor que la rigidez dieléctrica del aire (gradiente disruptivo del aire), entonces se producen pérdidas de energía debido a la corriente que se forma a través del medio, es decir se ioniza el aire que rodea al conductor. Es decir, que todo sucede como si el aire se hiciera conductor, dando lugar a una corriente de fuga. En los conductores aéreos, el efecto es visible en la oscuridad, pudiéndose apreciar cómo quedan envueltos por un halo luminoso, azulado, de sección transversal circular, es decir, en forma de corona, por lo que al fenómeno se le dio el nombre de efecto corona. En las líneas de transmisión, el efecto corona origina pérdidas de energía y, si alcanza ciertos valores, puede producir corrosiones en los conductores a causa del ácido que se forma. Este efecto, depende de varios factores como: El nivel de tensión El diámetro del conductor Temperatura del medio ambiente Densidad relativa del aire Humedad del aire El efecto corona tiene las siguientes consecuencias: ) Pérdidas de energía que se manifiestan en forma de calor ) Oscilaciones electromagnéticas de alta frecuencia que se transmiten en toda la línea y provocan perturbaciones en las señales de radio y televisión La consecuencia práctica del Efecto orona es una corriente de fuga análoga a la debida a la conductancia del aislamiento La tensión a la cual empiezan las pérdidas a través del aire se llama Tensión rítica Disruptiva y para ella el fenómeno aún no es visible. uando se alcanza la Tensión rítica isual, los efluvios se hacen luminosos o sea: Tensión rítica Disruptiva < Tensión rítica isual 04

2 U.T.O. F.N.. - LNEAS DE TANSMSON ng. ustavo Adolfo Nava Bustillo Las pérdidas empiezan a producirse desde el momento en que la tensión de la línea se hace mayor que la tensión crítica disruptiva. Algunos fenómenos atmosféricos modifican la tensión disruptiva, por ejemplo la niebla y el granizo rebajan el valor de dicha tensión y lo mismo sucede con los humos de las fábricas. Es beneficioso que la tensión crítica c sea ligeramente menor que la tensión de funcionamiento normal de la línea, ya que en caso de sobretensiones el efecto corona hace el papel de autoválvula de descarga 7.. TENSÓN ÍTA DSUPTA. De acuerdo a la fórmula de Peek DM U, mc mt Mn ln M Donde U = Tensión eficaz simple (fase-neutro) de la tensión crítica disruptiva (k), = 9,8/ =alor eficaz de la rigidez dieléctrica del aire (k/cm) 9,8 = igidez dieléctrica del aire a 5 º y 760 mm de Hg. omo se trata de corriente alterna (sinusoidal) se divide entre ( l o g ( ( k) 3,96 b δ = Densidad relativa del aire = 73 t b = Presión barométrica (cm de Hg); y y log( b) log( 76) b antilog y = Altura sobre el nivel del mar (m) t = Temperatura (º ) m = oeficiente de irregularidad (de rugosidad) de la superficie del conductor ) m c m t = oeficiente relativo al tiempo m t = con tiempo seco m t = 0,8 con tiempo lluvioso Fuente: Líneas de transporte de energía- heca n = número de conductores del haz de cada fase r = adio del conductor (cm) DM = Distancia media geométrica (cm) TPO DE ONDUTO Hilos de superficie lisa 0,93 0,98 Hilos oxidados y rugosos 0,83 0,87 Para cables n n M = adio ficticio (cm) M n. r. 05

3 U.T.O. F.N.. - LNEAS DE TANSMSON ng. ustavo Adolfo Nava Bustillo Fases simples: n = ; M r Fases dúplex: n = ; M r. 3 Fases tríplex: n = 3 ; M r. 4 3 Fases cuádruplex: n = 4 ; M r.. = separación entre los centros de los conductores (ver inciso 6..4) El coeficiente de seguridad por corona se define como la relación entre el voltaje crítico disruptivo por el voltaje al neutro de operación e la línea: U U 7.3. TENSÓN ÍTA SUAL. U v 0, 30,.. r 3. m f m s DM r. n. ln M Donde m f = oeficiente que toma en cuenta la forma de la sección del cable m s = oeficiente que toma en cuenta el estado de la superficie m f ONDUTO Para una superficie perfectamente circular 0,85 Para un cable con 6 hilos en la capa exterior 0,90 Para un cable con a 30 hilos en la capa exterior m s ONDUTO 0,90 Para cables limpios o envejecidos 0,80 Para cables nuevos 0,70 Para cables sucios o engrasados 0,50 a 0,30 Para cables recubiertos de gotas de agua Fuente:edes Eléctricas(T-) - J.iqueira 7.4. PÉDDAS PO EFETO OONA. Las pérdidas en una línea se originan si el voltaje de servicio es superior a la tensión crítica y aumentan rápidamente con la diferencia entre ambas. Las pérdidas, expresadas en kw/km-fase, pueden calcularse mediante la fórmula también debida a Peek: 06

4 U.T.O. F.N.. - LNEAS DE TANSMSON ng. ustavo Adolfo Nava Bustillo r DM on buen tiempo: P f 5. U U. ( kw / km fase) K 4 r DM on mal tiempo: P f 5 U 0, 8U. ( kw / km fase) K Donde U es la tensión simple (tensión fase-tierra) de la línea en k En Bolivia la frecuencia es de 50 Hz, entonces las expresiones quedan: 0807, r DM on buen tiempo: P U U ( kw / km fase) K 0807, r DM on mal tiempo: P U 0, 8U ( kw / km fase) K Ejemplo: Hallar la tensión crítica disruptiva, el coeficiente de seguridad por corona y las pérdidas por efecto corona, de una línea de 95 km de longitud, voltaje de 0 k, frecuencia 50 Hz, situada a 800 m.s.n.m. y temperatura media de 8 º. La línea es un circuito trifásico simple con disposición coplanar horizontal. El conductor es AS Nº MM (Partridge) 5 De tablas d = 6,8 mm; r = 8,4 mm DM 3 4, 4 4, 4 8, 8 5, 544 m 5544 mm m t = (tiempo seco) m c = 0,85 (para cables) δ= 0,7 (b=53,47 mm Hg) Luego: 5544 U, 0, 7 0, 85 0, 84 ln 68, 67( k ) 84, 0 U 69, 8( k ) Tensión de fase 3 omo U es mayor que U entonces existirán pérdidas por efecto corona 07

5 U.T.O. F.N.. - LNEAS DE TANSMSON ng. ustavo Adolfo Nava Bustillo 68, 67 El factor de seguridad por corona será: , 8 Las pérdidas serán: P K 0, 807 r 0807, 84, DM 0, Las pérdidas totales serán U U 69, 8 68, 67 0, 00357( kw / km fase) P 3 P l 3 0, , ( kw ) K La energía perdida durante un año será 893 (kwh) El voltaje crítico disruptivo con lluvia será: 68,67 x 0,80 = 54,94 (k) la pérdida de potencia será: P K 0, 807 r 0807, 84, DM 0, U 0, 8U 69, 8 0, 8 68, ( kw / km fase) Las pérdidas totales serán P 3P l 3975, , ( kw ) K 7.5. UTO EQUALENTE MONOFÁSO En un circuito eléctrico, los generadores, cualquiera sea su conexión, pueden representarse por una conexión estrella equivalente, para lo cual se puede definir una f.e.m. al neutro para cada fase. gualmente las cargas equilibradas cualquiera sea su conexión, pueden representarse por una carga equivalente conectada en estrella. Por tanto un sistema trifásico equilibrado puede reducirse al estudio de un sistema monofásico formado por cualquiera de las fases y por un conductor neutro sin impedancia. En general cada fase de una línea de transmisión comprende resistencia efectiva y reactancia inductiva en serie y resistencia de aislamiento y reactancia capacitiva al neutro en paralelo; estos parámetros están distribuidos a lo largo de la línea 08

6 U.T.O. F.N.. - LNEAS DE TANSMSON ng. ustavo Adolfo Nava Bustillo En las líneas de transmisión aéreas la resistencia de aislamiento generalmente se considera de valor infinito, por tanto no se la considera en los cálculos eléctricos porque no tiene mayor incidencia LASFAÓN DE LAS LÍNEAS DE TANSMSÓN La importancia de la corriente capacitiva de una línea de transmisión en relación con la corriente que toma la carga conectada, depende de la longitud de la línea y del voltaje de transmisión. En las líneas de no más de 80 kms de longitud y voltajes no mayores a 40 k, la capacitancia puede generalmente despreciarse. Estas líneas de las clasifica como LNEAS OTAS En las líneas de longitud comprendida entre 80 y 50 kms y de voltajes no mayores a 0 k aproximadamente, la capacitancia puede considerarse concentrada en uno o dos puntos de la línea. Estas líneas se las clasifica como LNEAS MEDAS. En las líneas de más de 50 kms y voltajes mayores a 0 k, es necesario considerar las constantes distribuidas a lo largo de la línea. Estas líneas están clasificadas como LNEAS LAAS Esta clasificación simplemente nos permite tener un elemento de juicio para poder modelar a una línea de transmisión LNEAS DE TANSMSÓN OTAS Suponiendo una línea de transmisión trifásica simétrica en la que se desprecia la capacitancia. 09

7 U.T.O. F.N.. - LNEAS DE TANSMSON ng. ustavo Adolfo Nava Bustillo ada fase puede resolverse independientemente y la simetría de la red hace que las magnitudes de todos los voltajes y corrientes sean iguales a todas las fases. El circuito trifásico equilibrado puede representarse mediante un circuito monofásico de fase a neutro. = oltaje de fase en el extremo generador (al inicio de la línea) = oltaje de fase en el extremo receptor (al final de la línea) = orriente de línea en el extremo generador = orriente de línea en el extremo receptor En este caso = La tensión en el extremo transmisor será: Donde: j XL Luego: jx L 0

8 U.T.O. F.N.. - LNEAS DE TANSMSON ng. ustavo Adolfo Nava Bustillo jx L. Problema: Una línea de 30 kms alimenta a a una carga balanceada de 00 kw. Encontrar el voltaje en el extremo emisor cuando el factor de potencia es de a) 0,8 (-) b),0. La línea trifásica de 50 Hz de un solo circuito está formado por conductores AS Nº /0 AW, dispuestos en un triángulo equilátero de,0 m entre centros LNEAS DE TANSMSÓN MEDAS En los cálculos de Líneas Medias, por lo general se incluye en el análisis la capacitancia pura al neutro. Se tiene una buena aproximación si se representa la línea mediante un circuito equivalente monofásico en el que la capacitancia al neutro de una fase se considera concentrada en uno o dos puntos. Si la capacitancia se supone concentrada en el punto medio del circuito que representa a la línea se dice que es un circuito T nominal Si se supone que la capacitancia está dividida en dos partes iguales en los extremos de la línea se dice que el circuito es π nominal

9 U.T.O. F.N.. - LNEAS DE TANSMSON ng. ustavo Adolfo Nava Bustillo UTO T NOMNAL LK: pero ; LK: 4 4 / + j X L / = / -jx = UTO T NOMNAL / + j X L / = /

10 U.T.O. F.N.. - LNEAS DE TANSMSON ng. ustavo Adolfo Nava Bustillo 3 UTO π NOMNAL LK: S pero S " LK: S ' pero ' 4 Donde P cos LNEAS DE TANSMSÓN LAAS Para una mejor representación de una línea de transmisión larga, se debe considerar la longitud incremental de la línea y tomar en cuenta el efecto exacto de la capacitancia distribuida y su relación con la impedancia de la línea. -jx = / UTO π NOMNAL + j X L = S -jx = /

11 U.T.O. F.N.. - LNEAS DE TANSMSON ng. ustavo Adolfo Nava Bustillo Para mayor exactitud, se debe tomar teóricamente un número infinito de segmentos de línea para lo cual se requiere de una solución de ecuaciones diferenciales. Una representación infinitesimal de una sección de una línea de transmisión es: + d r dl j x L dl d r a /dl -j x c /dl d r = esistencia efectiva por unidad de longitud (Ω/km) x L = eactancia inductiva por unidad de longitud (Ω/km) z = r + j x L = mpedancia en serie por unidad de longitud (Ω/km) r a = esistencia de aislamiento por unidad de longitud (Ω-km) x = eactancia capacitiva por unidad de longitud (Ω-km) z = /y = mpedancia en paralelo por unidad de longitud (Ω-km) y = Admitancia en paralelo por unidad de longitud (S/km) dl = Longitud del tramo diferencial de línea z dl = mpedancia en serie del tramo de línea de longitud dl (Ω) y dl = Admitancia en paralelo del tramo de línea de longitud dl (S) + + d d + z dl d - + y dl - d - - 4

12 U.T.O. F.N.. - LNEAS DE TANSMSON ng. ustavo Adolfo Nava Bustillo Del circuito: d d zdl z dl d d y dl y dl Derivando (A) y (B) respecto a l d d z dl dl d d y dl dl Sustituyendo (B) en () y (A) en (D) ( ) ( D) ( A) ( B) d z y dl d z y dl ( E) ( F ) Ec. Diferenciales lineales homogéneas De la ecuación (E) se nota que la derivada segunda de la función es igual a la misma función multiplicada por una constante (zy), y la función que tiene esa propiedad es la exponencial Entonces Sustituyendo en (E) ml k e donde k y m son constantes d dl d dl k me k m ml e m ml m m z y de donde m z y Entonces zy l ke k e Según las relaciones de Euler e e zy l x x e e x x ( ) cosh x senh x 5

13 U.T.O. F.N.. - LNEAS DE TANSMSON ng. ustavo Adolfo Nava Bustillo Sumando estando e x e x cosh x senh x cosh x senh x Sustituyendo en la ecuación () k Ordenando y factorizando zy l senh zy l k cosh zy l senh zy l cosh ( k )cosh zy l ( k k ) senh zy l ( H ) k Derivando respecto a l d dl ( k k ) zy senh zy l ( k k ) zy cosh zy l Pero de (A) d d z por tanto dl z dl z k k zy senh zy l k k zy cosh zy l y z k k senh zy l k k cosh zy l ( J) Las constantes k y k se pueden obtener con las siguientes condiciones: Si l = 0 entonces = y senh(0) = 0 = cosh(0) = Sustituyendo en (H) y (J) y z k k y ( k k ) es decir z ( k k ) z y Sustituyendo a su vez en las ecuaciones (H) y (J) 6

14 U.T.O. F.N.. - LNEAS DE TANSMSON ng. ustavo Adolfo Nava Bustillo cosh y z senh zy l zy l z y senh cosh zy l zy l (M) Estas ecuaciones nos permiten obtener el voltaje y la corriente en un punto cualquiera de la línea a una distancia l del extremo receptor. Si l = L = Longitud total de la línea = = Además = z L = mpedancia total de la línea en serie = y L = Admitancia total de la línea en paralelo z. y L z. y. L z. L. y. L. z y z. L y. L El término se llama onstante de Propagación (es adimensional y en general un número complejo) j α = onstante de atenuación β = onstante de fase α afecta únicamente a la magnitud del voltaje y de la corriente β produce una variación del ángulo de fase Por otro lado el término se llama mpedancia aracterística o Natural de la línea. La mpedancia característica es la relación entre el voltaje y corriente en 7

15 U.T.O. F.N.. - LNEAS DE TANSMSON ng. ustavo Adolfo Nava Bustillo todos los puntos de una línea de longitud infinita, relación que tiene un valor constante a lo largo de la transmisión. uando una línea trabaja sobre su impedancia característica, la relación entre el voltaje y la corriente es constante e igual a en todos los puntos de aquella. En una línea aérea la impedancia característica toma valores alrededor de 400 Ω, y en una línea subterránea es una décima parte. Si se desprecia la resistencia en serie de la línea (lo que es cierto para líneas de alto voltaje) y se considera infinita la resistencia de aislamiento jxl jx j X L L X. f. L.. f. Se llama Potencia aracterística o natural de una línea P, a la potencia que corresponde a la impedancia característica U P (MW ) donde U es la tensión de servicio en el extremo receptor y medido en k. Una línea que transmita su potencia natural, supone las condiciones óptimas de trabajo en el transporte; la línea trabajará con factor de potencia constante en todos sus puntos. Las potencias características aproximadas para distintos voltajes serían (tomando = 400 Ω) OLTAJE DE SEO (k) 6,9 0 4,9 34, POTENA AATEÍSTA P (MW) 0, 0,5,55,97 4,84,90 33,06 3,5 36,00 * 400,00 * 65,00 * * Tensiones que no existen en Bolivia 8

16 U.T.O. F.N.. - LNEAS DE TANSMSON ng. ustavo Adolfo Nava Bustillo Las ecuaciones (M) pueden entonces escribirse cosh senh senh cosh (N) Si se utiliza las relaciones de series de funciones hiperbólicas (fórmula de Mac- Laurin). x x x cosh( x)...! 4! 6! 3 x x x senh( x) x... 3! 5! 7! Estas series son rápidamente convergentes, por tanto se pueden tomar solo algunos términos, que según la longitud de la línea pueden ser: LONTUD DE LA LNEA (km) Hasta 60 Hasta 50 Hasta 400 TEMNOS DE LA SEE Basta con el primero Basta con los dos primeros Basta con los tres primeros Si se toman dos términos, se tendría: cosh 3 senh 3! 6 3 senh 3! 6 Sustituyendo en las ecuaciones (N) 6 6 (P) Estas dos ecuaciones son muy parecidas a las que corresponden a los modelos π y T, que corresponden a una línea Media, y pueden ser utilizadas para líneas no muy largas 9

17 U.T.O. F.N.. - LNEAS DE TANSMSON ng. ustavo Adolfo Nava Bustillo Si el valor real de (constante de propagación) es: alor eal de constante de propagación Términos a considerar senh cosh Tipo de línea Menor a 0, orta Entre 0, y 0,5 3 6 Mayor a 0, Media Larga Un resumen de las expresiones que corresponden a los parámetros de un cuadripolo en los distintos modelos es: A B D LNEA PAAMETO A OTA MEDA LAA T P B D 4 6 0

18 U.T.O. F.N.. - LNEAS DE TANSMSON ng. ustavo Adolfo Nava Bustillo Ejercicio Una línea de transmisión de 30 k de un circuito trifásico de un circuito de 380 km de longitud y frecuencia de 50 Hz. Si la línea tiene los siguientes parámetros eléctricos esistencia efectiva por fase a 50 º... r = 0,0435 Ω/km eactancia inductiva por fase... x L = 0,435 Ω/km eactancia capacitiva por fase x = 0,68 MΩ-km Determinar la constante de propagación, la impedancia y potencia característica, y las ecuaciones de la línea. Solución: r. L 0, , 53 ( ) X x. L 0, , 3 ( ) L L 6 x 0, 68 0 X 705, 6 ( ) L 380 jxl 6, 53 j653, 66, 84, 3º ( ) j j j 0, X 705, 6 6 0, 043 j0, , 84, 3º 48x0 6 90º 90º ( S) 0, , 3º 0, , º 66, 84, 5º 34, 7, 75º º ( ) U 30 P 54, 56 ( MW ) 34, 7 onsideramos las ecuaciones (P), en las cuales hallamos sus coeficientes ADA DE OLTAJE EULAÓN Si = oltaje de fase en el extremo transmisor (generador) =oltaje de fase en el extremo receptor (carga) 0 =oltaje de fase en el extremo receptor en vacío (sin carga)

19 U.T.O. F.N.. - LNEAS DE TANSMSON ng. ustavo Adolfo Nava Bustillo % 00 (%) aída de voltaje abe aclarar que la caída de voltaje se determina por la diferencia de los módulos de los voltajes de generación y recepción. =0 0 O = oltaje al final de la línea en vacío O e g% 00 (%) egulación En una línea corta, no existe el efecto capacitivo entonces O = e g% 00 (%)

ANEXO B1 CALCULO ELECTRICO DE CONDUCTORES

ANEXO B1 CALCULO ELECTRICO DE CONDUCTORES ANEXO B1 CALCULO ELECTRICO DE CONDUCTORES Pág. 1 B1.1 RESISTENCIA El valor de la resistencia por unidad de longitud, en corriente continua y a la temperatura, vendrá dada por la siguiente expresión: Siendo:

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS MATERIA: ELECTROTECNIA OFICIALES DE GRADO (MODELO DE EXAMEN) Curso 2013-2014 INSTRUCCIONES GENERALES Y

Más detalles

SOBRETENSIONES DE BAJA FRECUENCIA TEMPORALES PRODUCIDOS POR FALLAS

SOBRETENSIONES DE BAJA FRECUENCIA TEMPORALES PRODUCIDOS POR FALLAS SOBRETENSIONES DE BAJA FRECUENCIA TEMPORALES PRODUCIDOS POR FALLAS Cuando se presenta una falla en un sistema eléctrico de potencia se presenta una condición transitoria que se amortigua rápidamente, quedando

Más detalles

EXAMENES ELECTROTECNIA TEORIA

EXAMENES ELECTROTECNIA TEORIA EXAMENES En este archivo presento el tipo de exámenes propuesto en la asignatura de Electrotecnia en la fecha indicada, con las puntuaciones indicadas sobre un total de diez puntos. Según la guía académica

Más detalles

7. CARACTERIZACIÓN DE SOBREVOLTAJES DE BAJA FRECUENCIA TEMPORALES PRODUCIDOS POR FALLAS

7. CARACTERIZACIÓN DE SOBREVOLTAJES DE BAJA FRECUENCIA TEMPORALES PRODUCIDOS POR FALLAS 64 7. CARACTERIZACIÓN DE SOBREVOLTAJES DE BAJA FRECUENCIA TEMPORALES PRODUCIDOS POR FALLAS Otro tipo de sobrevoltajes que se presentan en un sistema eléctrico son los llamados temporales, que se caracterizan

Más detalles

UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 9 IMPEDANCIA EN SERIE DE LINEAS DE TRANSMISION : RESISTENCIA

UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 9 IMPEDANCIA EN SERIE DE LINEAS DE TRANSMISION : RESISTENCIA UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 9 CURSO: SISTEMAS ELECTRICOS DE POTENCIA PROFESOR : MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA INGENIERO MECANICO ELECTRICISTA

Más detalles

Por definición: La capacitancia (o capacidad) se define a la relación: F C =

Por definición: La capacitancia (o capacidad) se define a la relación: F C = APATORES Un capacitor: onsiste, esencialmente, en dos conductores separados por un dieléctrico. Por definición: La capacitancia (o capacidad) se define a la relación: [ ] [ ] Q oul [ F] = olts Dieléctrico

Más detalles

Estudio de fallas asimétricas

Estudio de fallas asimétricas Departamento de Ingeniería Eléctrica Universidad Nacional de Mar del Plata Área Electrotecnia Estudio de fallas asimétricas Autor: Ingeniero Gustavo L. Ferro Prof. Adjunto Electrotecnia EDICION 2012 1.

Más detalles

UIT-T G.622 SECTOR DE NORMALIZACIÓN DE LAS TELECOMUNICACIONES DE LA UIT

UIT-T G.622 SECTOR DE NORMALIZACIÓN DE LAS TELECOMUNICACIONES DE LA UIT UNIÓN INTERNACIONAL DE TELECOMUNICACIONES UIT-T G.622 SECTOR DE NORMALIZACIÓN DE LAS TELECOMUNICACIONES DE LA UIT CARACTERÍSTICAS DE LOS MEDIOS DE TRANSMISIÓN CARACTERÍSTICAS DE LOS CABLES DE PARES COAXIALES

Más detalles

ÍNDICE 1. ANILLO DE DISTRIBUCIÓN DATOS DEL CABLE RED DE BAJA TENSIÓN... 3

ÍNDICE 1. ANILLO DE DISTRIBUCIÓN DATOS DEL CABLE RED DE BAJA TENSIÓN... 3 ÍNDICE 1. ANILLO DE DISTRIBUCIÓN... 2 1.1. DATOS DEL CABLE...2 2. RED DE BAJA TENSIÓN.... 3 2.1. JUSTIFICACIÓN DE CÁLCULOS...3 2.2. MÉTODOS DE INSTALACIÓN EMPLEADOS....7 2.3. LÍNEAS CUADRO DE DISTRIBUCIÓN

Más detalles

9. En la siguiente conexión: a) V L = V f b) V f = V L / 3 c) I L = I f / 3 d) ninguna de las anteriores es cierta. b) V f 3= V L c) I f = I L / 3

9. En la siguiente conexión: a) V L = V f b) V f = V L / 3 c) I L = I f / 3 d) ninguna de las anteriores es cierta. b) V f 3= V L c) I f = I L / 3 1. Un alternador a) es una maquina rotativa de corriente continua b) es una máquina estática de corriente alterna c) es una máquina rotativa de corriente alterna d) ninguna de las anteriores es correcta

Más detalles

coaxial multiplicada por su factor de velocidad y un largo total de extremo a

coaxial multiplicada por su factor de velocidad y un largo total de extremo a Dimensiones para construir Antenas bazooka en frecuencias de radio aficionados Tabla para construir la antena doble bazooka para bandas de radio aficionados. Una antena doble bazooka es una combinación

Más detalles

RETIE: REGULACIÓN DE TENSIÓN EN INSTALACIONES ELÉCTRICAS

RETIE: REGULACIÓN DE TENSIÓN EN INSTALACIONES ELÉCTRICAS Boletín Técnico - Marzo 2005 CONTENIDO Caida de Tensión 2 Impedancia Eficaz 2 Regulación 8 Ejemplos 9 Conclusiones y comentarios 16 Dirección y Coordinación: Departamento de Mercadeo CENTELSA Información

Más detalles

UNIVERSIDAD NACIONAL DE TUCUMÁN

UNIVERSIDAD NACIONAL DE TUCUMÁN UNIVERSIDAD NACIONAL DE TUCUMÁN Facultad de Ciencias Exactas y Tecnología SISTEMAS DE POTENCIA TRABAJO PRÁCTICO Nº 4 Cálculo de Cortocircuito ALUMNO: AÑO 2015 INTRODUCCIÓN El Cortocircuito es una conexión

Más detalles

CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA

CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA www.ceduvirt.com CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA EJEMPLO 1: Cinco ciclos de una señal ocurren en un tiempo de 25 msg. Hallar el periodo y la frecuencia. Solución Si

Más detalles

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO PROBLEMAS PROPUESTOS 1:.Se coloca una bobina de 200 vueltas y 0,1 m de radio perpendicular a un campo magnético uniforme de 0,2 T. Encontrar la fem inducida

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica 1(9) Ejercicio nº 1 Una partícula alfa se introduce en un campo cuya inducción magnética es 1200 T con una velocidad de 200 Km/s en dirección perpendicular al campo. Calcular la fuerza qué actúa sobre

Más detalles

Calidad en el Servicio Eléctrico

Calidad en el Servicio Eléctrico magnitud de -Cargas y no David Llanos Rodríguez dllanosr@eia.udg.es Girona, Febrero 18 de 2003 magnitud de -Cargas y no Introducción: Uso racional de la energía eléctrica quiere decir obtener el máximo

Más detalles

3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2

3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2 3. TRANSFORMADORES Un transformador son dos arrollamientos (bobina) de hilo conductor, magnéticamente acoplados a través de un núcleo de hierro común (dulce). Un arrollamiento (primario) está unido a una

Más detalles

INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2

INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2 INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN 13384-1.... 2 1.1.- DATOS DE PARTIDA.... 2 1.2.- CAUDAL DE LOS PRODUCTOS DE COMBUSTIÓN.... 2 1.3.- DENSIDAD MEDIA DE LOS HUMOS...

Más detalles

MEDIDA DE POTENCIA EN TRIFÁSICA MÉTODO DE LOS DOS VATÍMETROS

MEDIDA DE POTENCIA EN TRIFÁSICA MÉTODO DE LOS DOS VATÍMETROS Práctica Nº 6 MEDID DE POTENI EN TRIFÁSI MÉTODO DE OS DOS VTÍMETROS 1. Objetivos a) Medida de la potencia activa, reactiva y el factor de potencia, en una red trifásica a tres hilos (sin neutro), utilizando

Más detalles

Aplicando la identidad trigonometrica en la expresión anterior:

Aplicando la identidad trigonometrica en la expresión anterior: UNIDAD 1: Fundamentos de los Sistemas Electicos de Potencia 1. Potencia en Circuitos de Corriente Alterna (C.A): La potencia es la rapidez con la cual se transforma la energía electrica en cualquier otro

Más detalles

Item Cantidad Descripción. 1 1 Fuente de energía ST S. 2 1 Amplificador de separación LM Osciloscopio con puntas de medición

Item Cantidad Descripción. 1 1 Fuente de energía ST S. 2 1 Amplificador de separación LM Osciloscopio con puntas de medición Facultad: Ingeniería Escuela: Ingeniería Eléctrica Asignatura: Sistemas eléctricos lineales II Tema: Sistemas Polifásicos y Medición de Potencia Contenidos ❿ Voltaje RMS. ❿ Voltaje máximo. ❿ Desfase de

Más detalles

RADIOCOMUNICACIÓN. PROBLEMAS TEMA 2 Ruido e interferencias en los sistemas radioeléctricos

RADIOCOMUNICACIÓN. PROBLEMAS TEMA 2 Ruido e interferencias en los sistemas radioeléctricos RADIOCOMUNICACIÓN PROBLEMAS TEMA 2 Ruido e interferencias en los sistemas radioeléctricos P1.- Un sistema consiste en un cable cuyas pérdidas son 2 db/km seguido de un amplificador cuya figura de ruido

Más detalles

SISTEMAS ELÉCTRICOS PROBLEMAS DE TRANSFORMADORES

SISTEMAS ELÉCTRICOS PROBLEMAS DE TRANSFORMADORES SISTEMAS ELÉCTRICOS PROBLEMAS DE TRANSFORMADORES TR_1 Del circuito equivalente de un transformador se conocen todos los parámetros que lo forman. Determínense todas las magnitudes eléctricas que aparecen

Más detalles

1.7 LA SERIE DE FOURIER Y LAS REDES ELECTRICAS

1.7 LA SERIE DE FOURIER Y LAS REDES ELECTRICAS ARMONICAS 1.6 DEFINICIONES Elemento lineal: es aquel elemento de redes eléctricas cuyo valor permanece constante independientemente del valor de la corriente que circula por él o del voltaje que se le

Más detalles

LINEAS DE TRANSMISIÓN CAPACITANCIA SUSANIBAR CELEDONIO, GENARO

LINEAS DE TRANSMISIÓN CAPACITANCIA SUSANIBAR CELEDONIO, GENARO LINEAS DE TRANSMISIÓN CAPACITANCIA SUSANIBAR CELEDONIO, GENARO Introducción La capacitancia es el resultado de la diferencia de potencial entre los conductores y origina que ellos se carguen de la misma

Más detalles

CURSO VIII CICLO SISTEMAS ELECTRICOS DE POTENCIA SEMANA 4. Análisis de Sistemas de Potencia Grainger-Stevenson. Capítulo 1

CURSO VIII CICLO SISTEMAS ELECTRICOS DE POTENCIA SEMANA 4. Análisis de Sistemas de Potencia Grainger-Stevenson. Capítulo 1 UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA CURSO VIII CICLO SISTEMAS ELECTRICOS DE POTENCIA SEMANA 4 OBJETIVO Representar y analizar un SEP BIBLIOGRAFIA Análisis de Sistemas de Potencia

Más detalles

FISICA II HOJA 3 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 3. ELECTRODINÁMICA FORMULARIO

FISICA II HOJA 3 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 3. ELECTRODINÁMICA FORMULARIO FISIC II HOJ 3 ESCUEL POLITÉCNIC DE INGENIERÍ DE MINS Y ENERGI 3. ELECTRODINÁMIC FORMULRIO FISIC II HOJ 3 ESCUEL POLITÉCNIC DE INGENIERÍ DE MINS Y ENERGI 3.1) Para la calefacción de una habitación se utiliza

Más detalles

Proyecto AQUAMAC MAC 2.3/C58. Paquete de tareas P1.PT1 PROPUESTAS DE ACCIÓN PARA OPTIMIZAR LA AUTOSUFICIENCIA ENERGÉTICA DE LOS CICLOS DEL AGUA

Proyecto AQUAMAC MAC 2.3/C58. Paquete de tareas P1.PT1 PROPUESTAS DE ACCIÓN PARA OPTIMIZAR LA AUTOSUFICIENCIA ENERGÉTICA DE LOS CICLOS DEL AGUA Proyecto AQUAMAC MAC.3/C58 Paquete de tareas P1.PT1 PROPUESTAS DE ACCIÓN PARA OPTIMIZAR LA AUTOSUFICIENCIA ENERGÉTICA DE LOS CICLOS DEL AGUA Tareas PT1-T1 Establecimiento de metodología y especificaciones

Más detalles

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R TEMA PE9 PE.9.1. Los campos magnéticos de los que estamos rodeados continuamente representan un riesgo potencial para la salud, en Europa se han establecido recomendaciones para limitar la exposición,

Más detalles

Introducción a la Física Experimental. Experimento guiado. Abril M. López Quelle

Introducción a la Física Experimental. Experimento guiado. Abril M. López Quelle Introducción a la Física Experimental. Experimento guiado. Abril 2009. M. López Quelle Circuito RC en corriente alterna. Comportamiento de un filtro RC. 1.- Breve introducción teóricateoría previa Utilizamos

Más detalles

MÓDULO 1. Líneas eléctricas de baja tensión en edificios y equipamientos urbanos

MÓDULO 1. Líneas eléctricas de baja tensión en edificios y equipamientos urbanos MÓDULO 1 Líneas eléctricas de baja tensión en edificios y equipamientos urbanos EDICIÓN: TAG FORMACIÓN RESERVADOS TODOS LOS DERECHOS. No está permitida la reproducción total o parcial de este texto, ni

Más detalles

TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción CONSTITUCIÓN DE UNA MÁQUINA DE CORRIENTE CONTINUA.

TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción CONSTITUCIÓN DE UNA MÁQUINA DE CORRIENTE CONTINUA. TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción. CONTENIDO: 7.1.- Constitución de una máquina de corriente continua. 7.2.- Principio de funcionamiento. 7.3.- Tipos de excitación.

Más detalles

CONCEPTOS BÁSICOS PARA LAS INSTALACIONES FOTOVOLTAICAS.

CONCEPTOS BÁSICOS PARA LAS INSTALACIONES FOTOVOLTAICAS. ÍNDICE DEL CURSO. INSTALACIÓN Y DISEÑO ENERGÍA SOLAR FOTOVOLTAICA. ENERGÍA SOLAR. T.0.- FUNDAMENTOS DE ENERGIA SOLAR. T.1.- RADIACIÓN SOLAR. T.2.- SOL Y RAYOS SOLARES SOBRE LA TIERRA. T.3.- INCLINACIÓN

Más detalles

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca.

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Página 1 de 7 TENSION ALTERNA En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Puede definirse un voltaje alterno como el que varía

Más detalles

TEORIA ELECTROMAGNETICA CLASE 10 SOLUCIONES DE LA ECUACION DE ONDA

TEORIA ELECTROMAGNETICA CLASE 10 SOLUCIONES DE LA ECUACION DE ONDA TEORIA ELECTROMAGNETICA CLASE 10 SOLUCIONES DE LA ECUACION DE ONDA Onda Electromagnética ESTA FORMADA POR UN PAR DE CAMPOS (UNO ELECTRICO Y OTRO MAGNETICO) QUE VARIAN CON LA POSICION Y EL TIEMPO ESA ONDA

Más detalles

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería

Más detalles

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA OBJETIVOS: Determinar la potencia activa, aparente y el factor de potencia en circuitos monofásicos. Observe las normas de seguridad al realizar

Más detalles

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que

Más detalles

Sistemas Trifásicos. Departamento de Ingeniería Eléctrica UNEFA Maracay Redes Eléctricas II Chrystian Roa

Sistemas Trifásicos. Departamento de Ingeniería Eléctrica UNEFA Maracay Redes Eléctricas II Chrystian Roa Generador trifásico Secuencia de fases. Conexiones: estrella, delta. Carga trifásica. Estudio y resolución de sistemas en desequilibrio. Modelo equivalente monofásico. Estudio y resolución de sistemas

Más detalles

BLOQUE III CIRCUITOS ELÉCTRICOS EN CA

BLOQUE III CIRCUITOS ELÉCTRICOS EN CA 1.- Una tensión viene dada por la expresión es de: v(t)=240 sen( t+30). Si se aplica la tensión v(t) a un receptor puramente inductivo cuya impedancia es de j2 2 Ω, hallar el valor de la intensidad instantánea

Más detalles

Capítulo 4: DEVANADOS

Capítulo 4: DEVANADOS Capítulo 4: DEVANADOS Universidad Técnica Federico Santa María ELO 281 Sistemas Electromecánicos J. Pontt O. Felipe Leiva Cruz 4.1 Campo magnético producido en máquinas rotatorias 4.1.1 Estructura de las

Más detalles

Practico 1 - Calculo de Cortocircuito Instalaciones Eléctricas

Practico 1 - Calculo de Cortocircuito Instalaciones Eléctricas Practico 1 - Calculo de Cortocircuito Instalaciones Eléctricas - 2005 Ejercicio 1 De un proyecto para la instalación eléctrica de un supermercado, con suministro de energía en media tensión, se ha extraído

Más detalles

2.2 GANANCIA, GANANCIA DIRECTIVA, DIRECTIVIDAD Y EFICIENCIA

2.2 GANANCIA, GANANCIA DIRECTIVA, DIRECTIVIDAD Y EFICIENCIA . GANANCIA, GANANCIA IRECTIVA, IRECTIVIA Y EFICIENCIA GANANCIA Otra medida útil para describir el funcionamiento de una antena es la ganancia. Aunque la ganancia de la antena está íntimamente relacionada

Más detalles

CAPITULO XII PUENTES DE CORRIENTE ALTERNA

CAPITULO XII PUENTES DE CORRIENTE ALTERNA CAPITULO XII PUENTES DE CORRIENTE ALTERNA 2. INTRODUCCION. En el Capítulo IX estudiamos el puente de Wheatstone como instrumento de medición de resistencias por el método de detección de cero. En este

Más detalles

Circuitos de RF y las Comunicaciones Analógicas. Capítulo II: Circuitos resonantes y Redes de acople

Circuitos de RF y las Comunicaciones Analógicas. Capítulo II: Circuitos resonantes y Redes de acople Capítulo II: Circuitos resonantes y Redes de acople 21 22 2. Circuitos Resonantes y Redes de Acople En este capítulo se estudiaran los circuitos resonantes desde el punto de vista del factor de calidad

Más detalles

Análisis de circuitos trifásicos. Primera parte

Análisis de circuitos trifásicos. Primera parte Análisis de circuitos trifásicos. Primera parte Objetivos 1. Mencionar el principio de funcionamiento de los generadores trifásicos. 2. Establecer los tipos básicos de conexiones de circuitos trifásicos

Más detalles

UIT-T G.623 SECTOR DE NORMALIZACIÓN DE LAS TELECOMUNICACIONES DE LA UIT

UIT-T G.623 SECTOR DE NORMALIZACIÓN DE LAS TELECOMUNICACIONES DE LA UIT UNIÓN INTERNACIONAL DE TELECOMUNICACIONES UIT-T G.623 SECTOR DE NORMALIZACIÓN DE LAS TELECOMUNICACIONES DE LA UIT CARACTERÍSTICAS DE LOS MEDIOS DE TRANSMISIÓN CARACTERÍSTICAS DE LOS CABLES DE PARES COAXIALES

Más detalles

MEMORIA DE INSTALACION DE AUTOCONSUMO

MEMORIA DE INSTALACION DE AUTOCONSUMO MEMORIA DE INSTALACION DE AUTOCONSUMO OBJETO Este documento comprende el estudio técnico a realizar en una instalación de AUTOCONSUMO SOLAR. GENERALIDADES. El objetivo principal de la instalación de AUTOCONSUMO

Más detalles

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC:

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC: ÓPTICA GEOMÉTRICA Conceptos generales: Imágenes reales. No se ven a simple vista, pero pueden recogerse sobre una pantalla. Se forman por la intersección de rayos convergentes. Imágenes virtuales. No existen

Más detalles

INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B

INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B INDUCCIÓN MAGNÉTICA 1) Un solenoide posee n vueltas por unidad de longitud, radio 1 y transporta una corriente I. (a) Una bobina circular grande de radio 2 > 1y N vueltas rodea el solenoide en un punto

Más detalles

EXAMEN DE FÍSICA. 24 DE JUNIO DE TEORÍA. GRUPOS 16(B) Y 17(C)

EXAMEN DE FÍSICA. 24 DE JUNIO DE TEORÍA. GRUPOS 16(B) Y 17(C) Página 1 de 8 Índice de exámenes EXAMEN DE FÍSICA. 24 DE JUNIO DE 1999. TEORÍA. GRUPOS 16(B) Y 17(C) C1. Tenemos una superficie cónica de radio r = 0.5 m y altura h 2 m (ver figura), dentro de un campo

Más detalles

3. ANÁLISIS DE REDES ELÉCTRICAS E

3. ANÁLISIS DE REDES ELÉCTRICAS E 3. ANÁLISIS DE REDES ELÉCTRICAS E l funcionamiento anormal de un sistema de energía eléctrica puede deberse a fallas de aislamiento que producen corrientes de cortocircuito equilibradas o desequilibradas,

Más detalles

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano

Más detalles

Capítulo 16. Electricidad

Capítulo 16. Electricidad Capítulo 16 Electricidad 1 Carga eléctrica. Ley de Coulomb La carga se mide en culombios (C). La del electrón vale e = 1.6021 10 19 C. La fuerza eléctrica que una partícula con carga Q ejerce sobre otra

Más detalles

~ :~l' CÁLCULO DE INSTALACIONES SISTEMAS ELÉCTRICOS. . Diego Carmona Fernández - J ~~.~~"' Proyectos a través de supuestos prácticos

~ :~l' CÁLCULO DE INSTALACIONES SISTEMAS ELÉCTRICOS. . Diego Carmona Fernández - J ~~.~~' Proyectos a través de supuestos prácticos SERIE TÉCNICA CÁLCULO DE INSTALACIONES SISTEMAS ELÉCTRICOS "'" Y Proyectos a través de supuestos prácticos " " 1 ~ I} 111r~ [j! - J ~~.~~"' 1li;14lfttl!';""1 J 2a EDICIÓN. Diego Carmona Fernández ACIUALIZADO

Más detalles

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera 1. ey de Fourier ué flujo de calor es necesario hacer pasar a través de una barra circular de madera de 5 cm de diámetro y 10 cm de longitud, cuya temperatura en los extremos es de 50 C y 10 C en sus extremos?

Más detalles

Reticulado 3.5 mm 1 contacto 12 A Montaje en circuito impreso o en zócalo serie 95

Reticulado 3.5 mm 1 contacto 12 A Montaje en circuito impreso o en zócalo serie 95 8-12 - 16 A Características 41.31 41.52 41.61 1 o 2 contactos conmutados Bajo perfil (altura 15.7 mm) 41.31-1 contacto 12 A (reticulado 3.5 mm) 41.52-2 contactos 8 A (reticulado 5 mm) 41.61-1 contacto

Más detalles

Índice general. Pág. N. 1. Magnitudes de la Física y Vectores. Cinemática. Cinemática Movimiento en dos dimensiones

Índice general. Pág. N. 1. Magnitudes de la Física y Vectores. Cinemática. Cinemática Movimiento en dos dimensiones Pág. N. 1 Índice general Magnitudes de la Física y Vectores 1.1. Introducción 1.2. Magnitudes físicas 1.3. Ecuaciones Dimensionales 1.4. Sistema de Unidades de Medida 1.5. Vectores 1.6. Operaciones gráficas

Más detalles

MAQUINAS ELECTRICAS MODULO DE AUTOAPRENDIZAJE V

MAQUINAS ELECTRICAS MODULO DE AUTOAPRENDIZAJE V SESION 1: INTRODUCCION DE A LOS PRINCIPIOS DE LAS MAQUINAS ELECTRICAS 1. DEFINICION DE MAQUINAS ELECTRICAS Las Máquinas Eléctrica son dispositivos empleados en la conversión de la energía mecánica a energía

Más detalles

DEPARTAMENTO DE FÍSICA COLEGIO "LA ASUNCIÓN"

DEPARTAMENTO DE FÍSICA COLEGIO LA ASUNCIÓN COLEGIO "LA ASUNCIÓN" 1(8) Ejercicio nº 1 La ecuación de una onda armónica es: Y = 0 02 sen (4πt πx) Estando x e y expresadas en metros y t en segundos: a) Halla la amplitud, la frecuencia, la longitud

Más detalles

Universidad Nacional Autónoma de Honduras. Escuela de Física. Electricidad y magnetismo II Fs-415. Filtros Eléctricos y sus aplicaciones

Universidad Nacional Autónoma de Honduras. Escuela de Física. Electricidad y magnetismo II Fs-415. Filtros Eléctricos y sus aplicaciones Universidad Nacional Autónoma de Honduras Escuela de Física Electricidad y magnetismo II Fs-415 Filtros Eléctricos y sus aplicaciones Introducción: Todo circuito eléctrico que tenga incluidas capacitancias

Más detalles

Modelos de líneas de transmisión en estado estacionario... 2

Modelos de líneas de transmisión en estado estacionario... 2 Modelos de líneas de transmisión en estado estacionario Prof Ing Raúl ianchi Lastra Cátedra: CONTENIDO Modelos de líneas de transmisión en estado estacionario Introducción Constantes del cuadripolo Modelos

Más detalles

1 Pérdida total (de un enlace radioeléctrico)*** (símbolos: L l o A l )

1 Pérdida total (de un enlace radioeléctrico)*** (símbolos: L l o A l ) Rec. UIT-R P.341-4 1 RECOMENDACIÓN UIT-R P.341-4 * NOCIÓN DE PÉRDIDAS DE TRANSMISIÓN EN LOS ENLACES RADIOELÉCTRICOS ** Rec. UIT-R P.341-4 (1959-1982-1986-1994-1995) La Asamblea de Radiocomunicaciones de

Más detalles

1. Introducción. Causas y Efectos de los cortocircuitos. 2. Protecciones contra cortocircuitos. 3. Corriente de Cortocircuito en red trifásica.

1. Introducción. Causas y Efectos de los cortocircuitos. 2. Protecciones contra cortocircuitos. 3. Corriente de Cortocircuito en red trifásica. TEMA 3: CORRIENTES DE CORTOCIRCUITO EN REDES TRIFÁSICAS. INTRODUCCIÓN. CLASIFICACIÓN DE CORTOCIRCUITOS. CONSECUENCIAS DEL CORTOCIRCUITO. CORTOCIRCUITOS SIMÉTRICOS. 1. Introducción. Causas y Efectos de

Más detalles

Laboratorio de Electricidad PRACTICA - 12 REACTANCIA DE UN CONDENSADOR Y CARACTERÍSTICAS DE UN CIRCUITO SERIE RC

Laboratorio de Electricidad PRACTICA - 12 REACTANCIA DE UN CONDENSADOR Y CARACTERÍSTICAS DE UN CIRCUITO SERIE RC PATA - 12 EATANA DE UN ONDENSADO Y AATEÍSTAS DE UN UTO SEE - Finalidades 1.- Determinar la reactancia capacitiva (X ) de un condensador. 2.- omprobar la fórmula: X? 1?? 3.- Determinar experimentalmente

Más detalles

LA RIOJA / JUNIO 04. LOGSE / FÍSICA / EXAMEN COMPLETO

LA RIOJA / JUNIO 04. LOGSE / FÍSICA / EXAMEN COMPLETO LA RIOJA / JUNIO 0. LOGSE / FÍSICA / EXAMEN COMPLEO EXAMEN COMPLEO El alumno elegirá una sola de las opciones de problemas, así como cuatro de las cinco Cuestiones propuestas. No deben resolverse problemas

Más detalles

Reticulado 3.5 mm 1 contacto 12 A Montaje en circuito impreso o en zócalo serie 95

Reticulado 3.5 mm 1 contacto 12 A Montaje en circuito impreso o en zócalo serie 95 Serie 41 - Mini-relé para circuito impreso 8-12 - 16 A Características 41.31 41.52 41.61 1 o 2 contactos conmutados Bajo perfil (altura 15.7 mm) 41.31-1 contacto 12 A (reticulado 3.5 mm) 41.52-2 contactos

Más detalles

ELECTROTECNIA. PRÁCTICA nº 3 ANÁLISIS DE CIRCUITOS EN CORRIENTE ALTERNA.

ELECTROTECNIA. PRÁCTICA nº 3 ANÁLISIS DE CIRCUITOS EN CORRIENTE ALTERNA. ELECTROTECNIA PRÁCTICA nº 3 ANÁLISIS DE CIRCUITOS EN CORRIENTE ALTERNA. 1 PRACTICA 3 ANÁLISIS DE CIRCUITOS EN CORRIENTE ALTERNA 1.- OBJETO. Esta práctica tiene por objeto en primer lugar conocer y analizar

Más detalles

Electromagnetismo (Todos. Selectividad Andalucía )

Electromagnetismo (Todos. Selectividad Andalucía ) Electromagnetismo (Todos. Selectividad Andalucía 2001-2006) EJERCICIO 3. (2.5 puntos) Un núcleo toroidal tiene arrolladas 500 espiras por las que circulan 2 Amperios. Su circunferencia media tiene una

Más detalles

Determinación de la Secuencia de Fases en un Sistema Trifásico

Determinación de la Secuencia de Fases en un Sistema Trifásico Determinación de la Secuencia de Fases en un Sistema Trifásico En algunos casos es necesario conocer la secuencia de fases de un sistema trifilar antes de conectar una carga, condición a veces necesaria

Más detalles

Asignatura: Teoría de Circuitos

Asignatura: Teoría de Circuitos Asignatura: Teoría de Circuitos Titulación: Ingeniero Técnico Industrial Especialidad: Electrónica Industrial Profesor(es) responsable(s): María Josefa Martínez Lorente Curso:2º Departamento: Ingeniería

Más detalles

PARQUES EÓLICOS CONECTADOS A LA RED. Electricidad es un producto, Requisitos :

PARQUES EÓLICOS CONECTADOS A LA RED. Electricidad es un producto, Requisitos : Electricidad es un producto, Requisitos : Seguridad Calidad : Del servicio y de la onda (V, f, senosoidal pura, equilibrio de fases) Confiabilidad Nivel de Compatibilidad Electromagnética: Con respecto

Más detalles

Bolilla 12: Óptica Geométrica

Bolilla 12: Óptica Geométrica Bolilla 12: Óptica Geométrica 1 Bolilla 12: Óptica Geométrica Los contenidos de esta bolilla están relacionados con los principios primarios que rigen el comportamiento de los instrumentos ópticos. La

Más detalles

5 PREGUNTAS BÁSICAS SOBRE EL

5 PREGUNTAS BÁSICAS SOBRE EL 5 PREGUNTAS BÁSICAS SOBRE EL NUEVO REGLAMENTO: CUÁNDO, DÓNDE, QUIEN, QUÉ, CÓMO 1. CUANDO - Cuándo entra en vigor el Nuevo Reglamento R.E.B.T? El Nuevo Reglamento Electrotécnico para Baja Tensión se aprobó

Más detalles

I. RESULTADOS DE APRENDIZAJE

I. RESULTADOS DE APRENDIZAJE CICLO I-15 MEDICIONES ELECTRICAS UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELÉCTRICA Y MECÁNICA GUIA DE LABORATORIO # 1 :Mediciones de potencia electrica I. RESULTADOS DE

Más detalles

Formulario PSU Parte común y optativa de Física

Formulario PSU Parte común y optativa de Física Formulario PSU Parte común y optativa de Física I) Ondas: Sonido y Luz Frecuencia ( f ) f = oscilaciones Vector/, Unidad de medida f 1/s = 1 Hz Periodo ( T ) T = oscilaciones f = 1 T T Segundo ( s ) Longitud

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

5.3 La energía en los circuitos eléctricos.

5.3 La energía en los circuitos eléctricos. CAPÍTULO 5 Corriente eléctrica y circuitos de corriente continua Índice del capítulo 5 51 5.1 Corriente eléctrica. 5.2 esistencia y la ley de Ohm. 5.3 La energía en los circuitos eléctricos. 5.4 Asociaciones

Más detalles

ECUACIONES DIMENSIONALES

ECUACIONES DIMENSIONALES ECUACIONES DIMENSIONALES 1. En la expresión x = k v n / a, x = distancia, v = velocidad, a = aceleración y k es una constante adimensional. Cuánto vale n para que la expresión sea dimensionalmente homogénea?

Más detalles

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores CAPACITORES E INDUCTORES Mg. Amancio R. Rojas Flores A diferencia de resistencias, que disipan la energía, condensadores e inductores no se disipan, pero almacenan energía, que puede ser recuperada en

Más detalles

MÓDULOS PARA EXPERIMENTOS DE ELECTRICIDAD BÁSICA

MÓDULOS PARA EXPERIMENTOS DE ELECTRICIDAD BÁSICA MÓDULOS PARA EXPERIMENTOS DE ELECTRICIDAD BÁSICA CIRCUITOS Y SISTEMAS EN CORRIENTE CONTINUA MOD. MCM1/EV EB 15 CIRCUITOS Y SISTEMAS EN CORRIENTE ALTERNADA MOD. MCM2/EV EB 16 CIRCUITOS Y SISTEMAS TRIFASICOS

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

PROBLEMAS ELECTROMAGNETISMO

PROBLEMAS ELECTROMAGNETISMO PROBLEMAS ELECTROMAGNETISMO 1. Se libera un protón desde el reposo en un campo eléctrico uniforme. Aumenta o disminuye su potencial eléctrico? Qué podemos decir de su energía potencial? 2. Calcula la fuerza

Más detalles

Efecto de los huecos de tensión en el motor de inducción

Efecto de los huecos de tensión en el motor de inducción TRABAJO 1/6 Título Efecto de los huecos de tensión en el motor de inducción Nº de Registro (Resumen) 43 Empresa o Entidad Grupo Energía y Ambiente. Facultad de Ingeniería. Universidad de Buenos Aires Autores

Más detalles

QUÉ ES LA TEMPERATURA?

QUÉ ES LA TEMPERATURA? 1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente

Más detalles

Electrotecnia General Tema 26 TEMA 26 CÁLCULO DE REDES DE DISTRIBUCIÓN II

Electrotecnia General Tema 26 TEMA 26 CÁLCULO DE REDES DE DISTRIBUCIÓN II TEMA 26 CÁLCULO DE REDES DE DISTRIBUCIÓN II 26.1. DISTRIBUCIONES PERFECTAMENTE CERRADAS CON TENSIÓN CONSTANTE Y SECCIÓN UNIFORME. Las distribuciones perfectamente cerradas son aquellas en las que el distribuidor

Más detalles

PROBLEMAS DE ELECTRICIDAD

PROBLEMAS DE ELECTRICIDAD PROBLEMAS DE ELECTRICIDAD 1. Qué intensidad de corriente se habrá establecido en un circuito, si desde que se cerro el interruptor hasta que se volvió a abrir, transcurrieron 16 minutos y 40 segundos y

Más detalles

Ejercicios Propuestos Transporte eléctrico.

Ejercicios Propuestos Transporte eléctrico. Ejercicios Propuestos Transporte eléctrico. 1. La cantidad de carga que pasa a través de una superficie de área 1[ 2 ] varía con el tiempo de acuerdo con la expresión () =4 3 6 2 +6. (a) Cuál es la intensidad

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 2001 1.- Un objeto de 0,2 kg, unido al extremo de un resorte, efectúa oscilaciones armónicas de 0,1 π s de período y su energía cinética máxima es de 0,5 J. a) Escriba la ecuación

Más detalles

Primer examen parcial del curso Física II, M

Primer examen parcial del curso Física II, M Primer examen parcial del curso Física II, 106015M Prof. Beatriz Londoño 11 de octubre de 2013 Tenga en cuenta: Escriba en todas las hojas adicionales su nombre! Hojas sin nombre no serán corregidas El

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 2002-2003 CONVOCATORIA SEPTIEMBRE ELECTROTÉCNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro

Más detalles

PROBLEMAS DE FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA. PRIMERA PARTE

PROBLEMAS DE FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA. PRIMERA PARTE PROBLEMAS DE FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA. PRIMERA PARTE GRADO EN INGENIERÍA ELÉCTRICA GRADO EN INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA GRADO EN INGENIERÍA MECÁNICA GRADO EN INGENIERÍA QUÍMICA

Más detalles

x x x x x x n= número de espiras por unidad de longitud r r enc nli El número de espiras en el tramo L es nl N= número total de espiras

x x x x x x n= número de espiras por unidad de longitud r r enc nli El número de espiras en el tramo L es nl N= número total de espiras c d x x x x x x x b a n número de espiras por unidad de longitud L r r b r r c r r d r r a r r b r r dl µ 0I dl + dl + dl + dl dl L a b c d a enc I enc nli El número de espiras en el tramo L es nl L µ

Más detalles

SISTEMAS DE CONEXIÓN DEL NEUTRO Y DE LAS ITC-BT-08 MASAS EN REDES DE DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA Página 1 de 6 0. ÍNDICE...1

SISTEMAS DE CONEXIÓN DEL NEUTRO Y DE LAS ITC-BT-08 MASAS EN REDES DE DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA Página 1 de 6 0. ÍNDICE...1 ELÉCTRICA Página 1 de 6 0. ÍNDICE 0. ÍNDICE...1 1. ESQUEMAS DE DISTRIBUCION...2 1.1 Esquema TN...2 1.2 Esquema TT...4 1.3 Esquema IT...4 1.4 Aplicación de los tres tipos de esquemas...5 2. PRESCRIPCIONES

Más detalles

Calidad en el Servicio Eléctrico

Calidad en el Servicio Eléctrico balanceados, David Llanos Rodríguez dllanosr@eia.udg.es Girona, Febrero 20 de 2003 balanceados, Triángulo de Potencias La potencia activa se genera como consecuencia de la corriente activa. Esto permite

Más detalles

Trabajo y potencia. Trabajo mecánico: Energía consumida al desplazar un cuerpo. Se mide en julios (J).

Trabajo y potencia. Trabajo mecánico: Energía consumida al desplazar un cuerpo. Se mide en julios (J). Tema 21.6 Trabajo y potencia Trabajo mecánico: Energía consumida al desplazar un cuerpo. Se mide en julios (J). Trabajo = Fuerza espacio 1 J (1 julio) = 1 N m (newton metro) 1 cal (caloría) = 4,187 J 1

Más detalles

Componentes Electrónicos Pasivos

Componentes Electrónicos Pasivos 1 Componentes Electrónicos Pasivos Resistores no lineales 2 Resistores no lineales Termistores NTC y PTC Varistores VDR Fotorresistores LDR Piezorresistores Magnetorresistores MDR 3 Termistores NTC Resistencia

Más detalles