Clase 19- Aplicación de transistores a circuitos analógicos (II)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Clase 19- Aplicación de transistores a circuitos analógicos (II)"

Transcripción

1 86.03/66.25 Dispositivos Semiconductores Clase 19 1 Clase 19- Aplicación de transistores a circuitos analógicos (II Amplificador Source Común y Copia de Corriente con MOSFET Última actualización: 1 cuatrimestre de 2017 ectura recomendada: Howe and Sodini, Ch. 8, , Ch. 9, 9.4

2 86.03/66.25 Dispositivos Semiconductores Clase Amplificador Source Común Cómo cambia todo si cambio un TBJ por un MOSFET? V DD Elimina la contínua i R Signal Source v out R s i G i D v OUT v s v IN + V G Punto de polarización V DD I R V OUT R s I G I D V GS + V G Suponemos que el MOSFET está en saturación:

3 86.03/66.25 Dispositivos Semiconductores Clase 19 3 I D = W 2 µ nc ox (V GS V T 2 I R = V DD V OUT I D = I R = W 2 µ nc ox (V GS V T 2 = V DD V OUT Entonces: V GS = 2(V DD V OUT W µ nc ox + V T Finalmente verificamos que el punto Q este en zona de saturación: V DS = V DD I D > V GS V T

4 86.03/66.25 Dispositivos Semiconductores Clase 19 4 Ganancia de tensión A vo de pequeña señal Signal Source i r v out R s i g i d v s v in R s i g i d v s v in g m v gs r o v out A vo = v out v in = g m (r o //

5 86.03/66.25 Dispositivos Semiconductores Clase 19 5 Resistencia de entrada, R IN : i t v t g m v gs r o v out i t = 0 R IN = v t i t Esta es la resistencia de entrada inherente al circuito. Puede modificarse si se utilizan resistores para polarizar el circuito. Resistencia de salida, R OUT : i d i t R s g m v gs r o v t El generador controlado no se enciende. v gs = 0 g m v gs = 0 i t = i d + v t = v t r o + v t

6 86.03/66.25 Dispositivos Semiconductores Clase 19 6 v t = i t (r o // R OUT = v t i t = r o // Ganancia de tensión A vs de pequeña señal Se puede también definir la ganancia de tensión respecto de la fuente de señal v s : A vs = v out v s = v out v in v in v s Para el source-común: v in v s v in v s 1 A vs v out v in = A vo

7 86.03/66.25 Dispositivos Semiconductores Clase 19 7 Máxima señal sin distorsión: Máxima señal de entrada sin distorsión Hay que verificar que v gs se encuentre dentro del rango de validez del modelo de pequeña señal: v gs 0.2(V GS V T Máxima señal de salida sin distorsión: ímite superior: para v s demasiado negativa el transistor se va al corte, i.e. toda la corriente de señal anula la corriente de polarización v out,max = I DQ = V DD V DSQ ímite inferior: para v s muy positiva el MOSFET entrará en régimen de tríodo. El caso límite tolerable es: v OUT,min = V DSsat v out,max = V DSQ V DSsat = V DSQ (V GS V T

8 86.03/66.25 Dispositivos Semiconductores Clase 19 8 Relación de compromiso de A vo,, V DD e I DQ : Examinemos la dependencia con la polarización: A vo = g m (r o // g m Reescribimos A vo de la siguiente forma: A vo g m = 2 W µ nc ox I D V DD V OUT I D V DD V OUT ID uego, para obtener elevado A vo : V DD I D Si V OUT se quiere dejar constante, entonces ambos enfoques implican = V DD I D Consecuencias de un elevado valor de : imitado por el valor de r o. Si r o A vo g m r o Requiere una pequeña I D, difícil de controlar. En Circuitos Integrados, requiere un área enorme de Si.

9 86.03/66.25 Dispositivos Semiconductores Clase 19 9 De hecho, en C.I. sería muy bueno prescindir completamente de resistores. Necesitamos un mejor circuito. o vemos la clase que viene.

10 86.03/66.25 Dispositivos Semiconductores Clase El transistor MOS como fuente de corriente: i OUT V REF + i OUT + v OUT I DSAT 1 r o V GS = V REF V DSSAT v OUT i OUT = 1 2 µ C ox Características: W (V REF V T 2 ( 1 + λ(vout V DSSAT El valor de la corriente de salida es i D y está definido por una tensión de referencia V REF. El transistor funciona como fuente de corriente en régimen de saturación. Hay un valor mínimo de tensión de salida para el cual la fuente funciona correctamente: v OUT = V DSSAT. Presenta una resistencia de salida R OUT = r o. El transistor N MOSFET es un sumidero de corriente.

11 86.03/66.25 Dispositivos Semiconductores Clase Fuente de corriente P-MOSFET: i OUT Vdd I DSAT 1 r o V GS = V REF V DD V REF + i OUT + v OUT V DD V DD + V DSSAT v OUT i OUT = 1 2 µc W ox (V REF V DD V T 2 ( 1 λ(vout V DD V DSSAT Características: El valor de la corriente de salida es i OUT = i D y está definido por una tensión de referencia V REF. El transistor funciona como fuente de corriente en régimen de saturación. Hay un valor máximo de tensión de salida para el cual la fuente funciona correctamente: v OUT = V DD + V DSSAT. Presenta una resistencia de salida R OUT = r o. El transistor P MOSFET es un fuente de corriente. Cómo se implementa V REF?

12 86.03/66.25 Dispositivos Semiconductores Clase Copia de corriente espejo simple: i OUT = 1 2 µ C ox W 2 (V REF V T 2 I REF = 1 2 µ C ox W 1 (V REF V T 2 Entonces: ( W i OUT = I REF 2 ( W 1 i OUT se ajusta con I REF según la relación W/ de los MOSFETs: Circuito espejo de corriente. Es importante contar con transistores bien apareados : proporción W/ muy controlada, mismo V T, t ox, etc.

13 86.03/66.25 Dispositivos Semiconductores Clase Fuente de corriente P-MOSFET: Fuente espejo con P-MOSFET :

14 86.03/66.25 Dispositivos Semiconductores Clase Múltiples fuentes de corriente Dado que I G = 0, de una sola fuente de corriente es posible obtener múltiples fuentes espejo: ( W I OUT n = I REF n ( W R a misma idea se aplica a fuentes de corriente NMOS:

15 86.03/66.25 Dispositivos Semiconductores Clase Múltiples fuentes y sumideros de corriente Generalmente, en cualquier circuito se necesitan múltiples fuentes que absorvan y entreguen corriente. Éstas se puede construir a partir de una única fuente de corriente: ( W I OUT 1 = I REF 1 ( W R ( W I OUT 2 = I REF 2 ( W R ( W ( W ( W I OUT 4 = I OUT 1 4 ( W = I REF ( 4 ( 1 W W 3 3 R

16 86.03/66.25 Dispositivos Semiconductores Clase Principales conclusiones Polarizar un source común polarizado con una fuente de corriente facilita una polarización estable y puede mejorar su amplificación. Una copia de corriente se puede obtener a partir de una fuente de corriente con un circuitocopia de corriente espejo. Se pueden obtener múltiples fuentes o sumideros de corriente, a partir de una sola fuente de corriente de referencia. a calidad de estas fuentes de corriente se basa en que en la tecnología de circuitos integrados dispone de transistores bien apareados dentro de un mismo chip, es decir: misma T emp, mismo V T, mismo t ox y relación controlable de W/.

Clase Aplicación de transistores a circuitos analógicos (I)

Clase Aplicación de transistores a circuitos analógicos (I) 86.03/66.25 Dispositivos Semiconductores Clase 18 1 Clase 18 1 - Aplicación de transistores a circuitos analógicos (I) Amplificador Emisor-Común y Source-Común Última actualización: 2 do cuatrimestre de

Más detalles

Clase Fuentes de corriente - Introducción a amplificadores multietapa integrados. Junio de 2011

Clase Fuentes de corriente - Introducción a amplificadores multietapa integrados. Junio de 2011 66.25 - Dispositivos Semiconductores - 1er Cuat. 2011 Clase 24-1 Clase 24 1 - Fuentes de corriente - Introducción a amplificadores multietapa integrados Junio de 2011 Contenido: 1. El transistor MOS como

Más detalles

Clase Aplicación de transistores a circuitos analógicos (I) Amplificador Emisor Común Última actualización: 1 er cuatrimestre de 2017

Clase Aplicación de transistores a circuitos analógicos (I) Amplificador Emisor Común Última actualización: 1 er cuatrimestre de 2017 86.03/66.25 Dispositivos Semiconductores Clase 18 1 Clase 18 1 - Aplicación de transistores a circuitos analógicos (I) Amplificador Emisor Común Última actualización: 1 er cuatrimestre de 2017 Lectura

Más detalles

Dispositivos Semiconductores Última actualización: 2 do Cuatrimestre de 2013 V GS = 3.0 V V GS = 2.5 V V GS = 2.

Dispositivos Semiconductores  Última actualización: 2 do Cuatrimestre de 2013 V GS = 3.0 V V GS = 2.5 V V GS = 2. Guía de Ejercicios N o 8: Aplicacion de transistores en circuitos analogicos Parte I: Amplificadores con MOSFET 1. Dada la curva de I D vs. V DS de la figura 1a y el circuito de la figura 1b, con V dd

Más detalles

MOSFET: caracteristicas I-V 14 de Abril de 2010

MOSFET: caracteristicas I-V 14 de Abril de 2010 66.25 - Dispositivos Semiconductores - 1er Cuat. 2010 Clase 10-1 Clase 9 1 - MOSFET (I) MOSFET: caracteristicas I-V 14 de Abril de 2010 Contenido: 1. MOSFET: corte seccional, layout, símbolos 2. Descripción

Más detalles

TEMA 6: Amplificadores con Transistores

TEMA 6: Amplificadores con Transistores TEMA 6: Amplificadores con Transistores Contenidos del tema: El transistor como amplificador. Característica de gran señal Polarización. Parámetros de pequeña señal Configuraciones de amplificadores con

Más detalles

Tecnología Electrónica

Tecnología Electrónica Universidad de Alcalá Departamento de Electrónica Tecnología Electrónica Ejercicios Versión: 2017-02-15 Capítulos 3 y 4: Transistores: modelos en pequeña señal y configuraciones básicas de amplificación

Más detalles

Guía de Ejercicios N o 4: Transistor MOS

Guía de Ejercicios N o 4: Transistor MOS Guía de Ejercicios N o 4: Transistor MOS Datos generales: ε 0 = 8,85 10 12 F/m, ε r (Si) = 11,7, ε r (SiO 2 ) = 3,9, n i = 10 10 /cm 3, φ(n, p = n i ) = 0 V. 1. En un transistor n-mosfet, a) La corriente

Más detalles

1º Escuela Técnica Superior de Ingeniería de Telecomunicación TECNOLOGÍA Y COMPONENTES ELECTRÓNICOS Y FOTÓNICOS. PROBLEMAS de transistores MOS

1º Escuela Técnica Superior de Ingeniería de Telecomunicación TECNOLOGÍA Y COMPONENTES ELECTRÓNICOS Y FOTÓNICOS. PROBLEMAS de transistores MOS 1º Escuela écnica Superior de Ingeniería de elecomunicación ECNOLOGÍA Y COMPONENES ELECRÓNICOS Y FOÓNICOS 4 PROBLEMAS de transistores MOS EJERCICIOS de diodos: ECNOLOGÍA Y COMPONENES ELECRÓNICOS Y FOÓNICOS

Más detalles

VGD = 0 < Vt = 2 Están en saturación Ecuaciones en el circuito MOSFET de la izquierda Iref = ID:

VGD = 0 < Vt = 2 Están en saturación Ecuaciones en el circuito MOSFET de la izquierda Iref = ID: ESPEJO DE CORRIENTE CON MOSFET Hallar los valores de los voltajes y corrientes en el circuito. VGD = 0 < Vt = 2 Están en saturación Ecuaciones en el circuito MOSFET de la izquierda Iref = ID: Ecuación

Más detalles

V T V GS V DS =3V =V GS

V T V GS V DS =3V =V GS Guía de Ejercicios Nº4 Transistor MOS Datos generales: ε o = 8.85 x 10-12 F/m, ε r(si) = 11.7, ε r(sio 2) = 3.9 1) En un transistor n-mosfet, a) La corriente entre Source y Drain es de huecos o de electrones?

Más detalles

TRANSISTOR DE EFECTO DE CAMPO (FET)

TRANSISTOR DE EFECTO DE CAMPO (FET) TRANSISTOR DE EFECTO DE CAMPO (FET) 1 METAL OXIDO SEMICONDUCTOR (MOSFET) P G B V GB Al SiO Si Capacitor de Placas Paralelas Q = C V GB 0 < V GS < V TH Q movil = 0 D N V TH Tension umbral V DS G V GS S

Más detalles

Tema 9: Estructuras MIS, transistores MOSFET (introducción, zonas de funcionamiento). Fabricación.

Tema 9: Estructuras MIS, transistores MOSFET (introducción, zonas de funcionamiento). Fabricación. Tema 9: Estructuras MIS, transistores MOSFET (introducción, zonas de funcionamiento). Fabricación. Lecturas recomendadas: Circuitos Microelectrónicos, 4ª ed. Cap.5, Sedra/Smith. Ed. Oxford Circuitos Microelectrónicos,

Más detalles

AMPLIFICADOR DRAIN COMÚN

AMPLIFICADOR DRAIN COMÚN AMPLIFICADOR DRAIN COMÚN * Circuito equivalente con el modelo π incluyendo ro * Ganancia de voltaje Se define Rp = RC//RL//r Es menor que 1 La salida está en fase con la entrada Resistencia de entrada

Más detalles

Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 4

Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 4 Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 4 CARACTERISTICAS DEL MOSFET, AMPLIFICADOR SOURCE COMUN Objetivo:

Más detalles

Fundamentos del transitor MOSFET

Fundamentos del transitor MOSFET Fundamentos del transitor MOSFET Lección 04.1 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge Castro-Godínez

Más detalles

Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas Departamento de Tecnología Área de Electrónica

Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas Departamento de Tecnología Área de Electrónica Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas Departamento de Tecnología Área de Electrónica Prof. Tony Castillo Símbolos Electrónicos Símbolo de un FET de canal

Más detalles

TRANSITORES DE EFECTO DE CAMPO (Field effect transistor, FET) INTRODUCCIÓN: Son dispositivos de estado sólido Tienen tres o cuatro terminales Es el

TRANSITORES DE EFECTO DE CAMPO (Field effect transistor, FET) INTRODUCCIÓN: Son dispositivos de estado sólido Tienen tres o cuatro terminales Es el TRANSITORES DE EFECTO DE CAMPO (Field effect transistor, FET) INTRODUCCIÓN: Son dispositivos de estado sólido Tienen tres o cuatro terminales Es el campo eléctrico el que controla el flujo de cargas El

Más detalles

'UEWGNC7PKXGTUKVCTKC2QNKVÃEPKECFG+PIGPKGTÈC6ÃEPKEC+PFWUVTKCN 241$.'/#5 FGVTCPUKUVQTGU/15('6

'UEWGNC7PKXGTUKVCTKC2QNKVÃEPKECFG+PIGPKGTÈC6ÃEPKEC+PFWUVTKCN 241$.'/#5 FGVTCPUKUVQTGU/15('6 'UEWGNC7PKXGTUKVCTKC2QNKVÃEPKECFG+PIGPKGTÈC6ÃEPKEC+PFWUVTKCN (/(&75Ï1,&$%È6,&$ 241$'/#5 FGVTCPUKUVQTGU/15('6 ','4%+%+15FGVTCPUKUVQTGU/15('6 (/(&75Ï1,&$%È6,&$ D Un determinado transistor MOSFET de enriquecimiento

Más detalles

Diseño de un Amplificador Operacional totalmente integrado CMOS que funcione como driver para cargas capacitivas elevadas

Diseño de un Amplificador Operacional totalmente integrado CMOS que funcione como driver para cargas capacitivas elevadas Diseño de un Amplificador Operacional totalmente integrado CMOS que funcione como driver para cargas capacitivas elevadas Titulación: Sistemas Electrónicos Tutores: Francisco Javier del Pino Suárez Sunil

Más detalles

Instrumental y Dispositivos Electrónicos

Instrumental y Dispositivos Electrónicos Instrumental y Dispositivos Electrónicos DepartamentoAcadémico Electrónica Facultad de Ingeniería 2014 Diagrama de bloques de una fuente de alimentación lineal RED 220 V TRANSFORMACIÓN RECTIFICACIÓN FILTRADO

Más detalles

Electrónica. Transistores de efecto de campo. Introducción a la Electrónica

Electrónica. Transistores de efecto de campo. Introducción a la Electrónica Introducción a la Electrónica Transistores de efecto de campo Introducción a la Electrónica Características La corriente es controlada a travez de un campo eléctrico establecido por el voltaje aplicado

Más detalles

TEMA 3.1 MOSFET TEMA 3 TRANSISTOR MOS FUNDAMENTOS DE ELECTRÓNICA

TEMA 3.1 MOSFET TEMA 3 TRANSISTOR MOS FUNDAMENTOS DE ELECTRÓNICA TEMA 3.1 MOSFET TEMA 3 TRANSISTOR MOS FUNDAMENTOS DE ELECTRÓNICA 18 de abril de 2015 TEMA 3.1 MOSFET Introducción Regiones de operación Efecto Early Efecto Body 2 TEMA 3.1 MOSFET Introducción Regiones

Más detalles

TBJ DISPOSITIVO ELECTRONICOS 2016

TBJ DISPOSITIVO ELECTRONICOS 2016 TBJ DISPOSITIVO ELECTRONICOS 2016 Transistor Bipolar Tipos de Transistores BIPOLARES DE JUNTURA NPN PNP TRANSISTORES UNIÓN CANAL N (JFET-N) CANAL P (JFET-P) EFECTO DE CAMPO FET METAL-OXIDO- SEMICONDUCTOR

Más detalles

2 Electrónica Analógica TEMA II. Electrónica Analógica

2 Electrónica Analógica TEMA II. Electrónica Analógica TEMA II Electrónica Analógica Electrónica II 2007 1 2 Electrónica Analógica 2.1 Amplificadores Operacionales. 2.2 Aplicaciones de los Amplificadores Operacionales. 2.3 Filtros. 2.4 Transistores. 2 1 2.4

Más detalles

AMPLIFICACIÓN: ESTRUCTURAS BÁSICAS

AMPLIFICACIÓN: ESTRUCTURAS BÁSICAS 1 DISPOSITIVOS ELECTRÓNICOS II Dispositivos Electrónicos II CURSO 2010-11 Temas 4,5 4,5 AMPLIFICACIÓN: ESTRUCTURAS BÁSICAS Miguel Ángel Domínguez Gómez Camilo Quintáns Graña PARTAMENTO TECNOLOGÍA ELECTRÓNICA

Más detalles

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO FORMA DE PRESENTACIÓN DE LAS ECUACIONES DEL MOSFET DE ENRIQUECIMIENTO Se define Para la región triodo (zona ohmica) VGS

Más detalles

TIEMPO: 1:00 h. PROBLEMA 1. 1 ma +5 V 10 KΩ M 1 M 2. v s. 0.5 ma -10 V. A v = f H =

TIEMPO: 1:00 h. PROBLEMA 1. 1 ma +5 V 10 KΩ M 1 M 2. v s. 0.5 ma -10 V. A v = f H = TIEMPO: 1:00 h. PROBLEMA 1 Para el circuito de la figura calcular la ganancia del centro de la banda (A V ), y el polo dominante de alta frecuencia (f H ) empleando el método de las constantes de tiempo.

Más detalles

2 Electrónica Analógica TEMA II. Electrónica Analógica

2 Electrónica Analógica TEMA II. Electrónica Analógica TEMA II Electrónica Analógica Electrónica II 2009 1 2 Electrónica Analógica 2.1 Amplificadores Operacionales. 2.2 Aplicaciones de los Amplificadores Operacionales. 2.3 Filtros. 2.4 Transistores. 2 1 2.4

Más detalles

CARACTERISTICAS DEL MOSFET. AMPLIFICADOR DRAIN COMUN

CARACTERISTICAS DEL MOSFET. AMPLIFICADOR DRAIN COMUN UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRÓNICOS I EC1113 PRACTICA Nº 4 Objetivos CARACTERISTICAS DEL MOSFET. AMPLIFICADOR DRAIN COMUN * Familiarizar al estudiante con el

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos EL42A - Circuitos Electrónicos Clase No. 17: Circuitos Amplificadores Lineales (5) Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 8 de Octubre de 2009 1

Más detalles

Seminario de Electrónica II PLANIFICACIONES Actualización: 2ºC/2016. Planificaciones Seminario de Electrónica II

Seminario de Electrónica II PLANIFICACIONES Actualización: 2ºC/2016. Planificaciones Seminario de Electrónica II Planificaciones 6666 - Seminario de Electrónica II Docente responsable: VENTURINO GABRIEL FRANCISCO CARLOS 1 de 6 OBJETIVOS Estudiar la física de los semiconductores a partir de un enfoque electrostático.

Más detalles

Se suele emplear la extensión.cir para este tipo de ficheros. A lo largo de esta práctica se recordarán los elementos anteriormente descritos.

Se suele emplear la extensión.cir para este tipo de ficheros. A lo largo de esta práctica se recordarán los elementos anteriormente descritos. Departamento de Ingeniería Electrónica http:/www.gte.us.es/asign/dcse_1ie/ Pag 1 PRACTICA 1: Etapa amplificadora MOS simple 1 Introducción 2 Montaje 1: Fuente Común con resistencia 2.1 Modelo DC y AC 2.2

Más detalles

2 Electrónica Analógica TEMA II. Electrónica Analógica

2 Electrónica Analógica TEMA II. Electrónica Analógica TEMA II Electrónica Analógica Electrónica II 2007 1 2 Electrónica Analógica 2.1 Amplificadores Operacionales. 2.2 Aplicaciones de los Amplificadores Operacionales. 2.3 Filtros. 2.4 Transistores. 2 1 2.4

Más detalles

Seminario de Electrónica PLANIFICACIONES Actualización: 2ºC/2018. Planificaciones Seminario de Electrónica

Seminario de Electrónica PLANIFICACIONES Actualización: 2ºC/2018. Planificaciones Seminario de Electrónica Planificaciones 6648 - Seminario de Electrónica Docente responsable: VENTURINO GABRIEL FRANCISCO CARLOS 1 de 6 OBJETIVOS Estudiar la física de los semiconductores a partir de un enfoque electrostático.

Más detalles

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO FORMA DE PRESENTACIÓN DE LAS ECUACIONES DEL MOSFET DE ENRIQUECIMIENTO Se define Para la región triodo (zona ohmica) VGS

Más detalles

'UEWGNC7PKXGTUKVCTKC2QNKVÃEPKECFG+PIGPKGTÈC 6ÃEPKEC+PFWUVTKCN 241$.'/#5. de Respuesta en Frecuencia. Estudio de la Respuesta en Frecuencia

'UEWGNC7PKXGTUKVCTKC2QNKVÃEPKECFG+PIGPKGTÈC 6ÃEPKEC+PFWUVTKCN 241$.'/#5. de Respuesta en Frecuencia. Estudio de la Respuesta en Frecuencia 'UEWGC7PKXGTUKCTKC2QKÃEPKECFGPIGPKGTÈC 6ÃEPKECPFWUTKC (/(&75Ï1,&$%È6,&$ 241$'/#5 de Respuesta en Frecuencia Estudio de la Respuesta en Frecuencia ','4%%15FG4GURWGUCGP (TGEWGPEKC (/(&75Ï1,&$%È6,&$ características:

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos EL42A - Circuitos Electrónicos Clase No. 10: Transistores de Efecto de Campo (1) Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 3 de Septiembre de 2009

Más detalles

Transistores de Efecto de Campo

Transistores de Efecto de Campo Transistores de Efecto de Camo Rev. 1.2 Curso Electrónica 1 Fernando Silveira Instituto de Ingeniería Eléctrica F. Silveira Univ. de la Reública, Montevideo, Uruguay Curso Electrónica 1 1 Field Effect

Más detalles

CARACTERISTICAS DEL MOSFET. AMPLIFICADOR DRAIN COMUN

CARACTERISTICAS DEL MOSFET. AMPLIFICADOR DRAIN COMUN UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LABORATORIO DE ELECTRÓNICA EC2014 PRACTICA Nº 4 Objetivos CARACTERISTICAS DEL MOSFET. AMPLIFICADOR DRAIN COMUN * Familiarizar al estudiante con el

Más detalles

Laboratorio de Electrónica Lineal

Laboratorio de Electrónica Lineal José Miguel Carrera Laboratorio de Electrónica Lineal Polarización del MOSFET Objetivos o Establecer punto de operación y recta de carga estática de un MOSFET (IRF 640 o MTP10N) o Comprobar el efecto producido

Más detalles

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO FORMA DE PRESENTACIÓN DE LAS ECUACIONES DEL MOSFET DE ENRIQUECIMIENTO De la ecuación que define el umbral VDS = VGS -Vth

Más detalles

Clase CMOS: El inversor 22 de Junio de 2017

Clase CMOS: El inversor 22 de Junio de 2017 66.25 - Dispositivos Semiconductores - 2do Cuat. 2011 Clase 20-1 Clase 20 1 - CMOS: El inversor 22 de Junio de 2017 Contenidos: 1. Introducción a la electrónica digital: el inversor 2. El inversor MOS

Más detalles

Tecnología Electrónica

Tecnología Electrónica Universidad de Alcalá Departamento de Electrónica Tecnología Electrónica Ejercicios Versión: 2017-03-01 Capítulo 5: Amplificadores multietapa y diferenciales Referencias: Texto base: Circuitos Electrónicos.

Más detalles

Tipos de Transistores

Tipos de Transistores Transistor Bipolar Tipos de Transistores BIOLARES DE JUTURA TRASISTORES UIÓ CAAL (JFET-) CAAL (JFET-) EFECTO DE CAMO FET METAL-OXIDO- SEMICODUCTOR MOS CAAL (MOSFET-) CAAL (MOSFET-) * FET : Field Effect

Más detalles

Dispositivos Semiconductores Última actualización: 1 er Cuatrimestre de TP N o 4

Dispositivos Semiconductores   Última actualización: 1 er Cuatrimestre de TP N o 4 TP N o 4 Diseño y construcción de un mini-amplificador Condiciones de entrega Fecha de entrega: Martes 14 de junio. La entrega debe ser en formato papel en el horario de clase y en formato digital a través

Más detalles

1.- En el circuito de la figura 5.1 la impedancia de salida Ro es. Figura 5.1

1.- En el circuito de la figura 5.1 la impedancia de salida Ro es. Figura 5.1 Tema 5. Amplificadores con BJT 1.- En el circuito de la figura 5.1 la impedancia de salida Ro es RC 1 hre R c 1 Figura 5.1 2.- En el circuito de la figura 5.1 la impedancia de entrada es igual a R1 h ie

Más detalles

DOS TRANSISTORES. AMPLIFICADOR CON UN TRANSISTOR NPN Y OTRO PNP. a) Polarización. β = 100 y Vbe 0 0,7V.

DOS TRANSISTORES. AMPLIFICADOR CON UN TRANSISTOR NPN Y OTRO PNP. a) Polarización. β = 100 y Vbe 0 0,7V. DOS TRANSISTORES AMPLIFICADOR CON UN TRANSISTOR NPN Y OTRO PNP. a) Polarización. β = 100 y Vbe 0 0,7V. En primer lugar se calcula el Thevenin equivalente del circuito de base de Q1 y todas las variables

Más detalles

PRÁCTICA 9. SIMULACIÓN DE MODELOS DE PEQUEÑA SEÑAL

PRÁCTICA 9. SIMULACIÓN DE MODELOS DE PEQUEÑA SEÑAL PRÁCTICA 9. SIMULACIÓN DE MODELOS DE PEQUEÑA SEÑAL 1. Objetivo Se pretende conocer el modelo de pequeña señal del transistor MOS, y su utilización para la obtención de los parámetros de funcionamiento

Más detalles

Dispositivos Semiconductores Última actualización: 1 do Cuatrimestre de TP N o 4

Dispositivos Semiconductores  Última actualización: 1 do Cuatrimestre de TP N o 4 TP N o 4 Diseño y construcción de un mini-amplificador Condiciones de entrega Fecha de entrega: Viernes 16 de Junio. La entrega debe ser en formato papel en el horario de clase y en formato digital a través

Más detalles

El Transistor MOS: Estructura Física y Modelos de Circuito

El Transistor MOS: Estructura Física y Modelos de Circuito El Transistor MOS: Estructura Física y Modelos de ircuito B.1-1 Estructura del Transistor NMOS Transistor NMOS de enriquecimiento: B.1-1 aracterísticas físicas Transistor NMOS ox Leff L LD, ox t ox B.1-3

Más detalles

Tema 6. Transistores. Ingeniería Eléctrica y Electrónica

Tema 6. Transistores. Ingeniería Eléctrica y Electrónica 1 Tema 6. Transistores 2 Índice Transistor Bipolar de Unión (BJT) Transistor de Efecto ampo (FET) 3 Transistores Es un dispositivo electrónico de 3 terminales, por lo que entre ellos hay 6 variables eléctricas

Más detalles

Inversor con Carga Resisitiva Inversor con Carga Saturada Tiempos de transición. Compuertas NMOS. INEL Electrnica Digital.

Inversor con Carga Resisitiva Inversor con Carga Saturada Tiempos de transición. Compuertas NMOS. INEL Electrnica Digital. .. Compuertas NMOS INEL 4207 - Electrnica Digital Manuel Toledo Enero 27, 2014 Manuel Toledo Compuertas NMOS 1/ 25 Outline.1 Inversor con Carga Resisitiva.2 Inversor con Carga Saturada.3 Tiempos de transición

Más detalles

TEMA 17: Polarización de FETs 17.1

TEMA 17: Polarización de FETs 17.1 Índice TEMA 17: Polarización de FETs 17.1 18.1. INTRODUCCIÓN 17.1 18.2. CIRCUITO DE AUTOPOLARIZACIÓN DE FUENTE 17.3 18.3. CIRCUITO PARA UN FET DE ACUMULACIÓN 17.4 18.4. CIRCUITO DE POLARIZACIÓN CON CUATRO

Más detalles

INDICE Capítulo 1. Principios del Modelado y Procesamiento de Señal Capítulo 2. Amplificadores Operacionales

INDICE Capítulo 1. Principios del Modelado y Procesamiento de Señal Capítulo 2. Amplificadores Operacionales INDICE Prólogo XI Prólogo a la Edición en Español XIV Capítulo 1. Principios del Modelado y Procesamiento de Señal 1 1.1. Sinergia hombre computador 3 1.2. Características tensión corriente y transferencia

Más detalles

Tecnología y Componentes Electrónicos y Fotónicos Convocatoria ordinaria de 2003

Tecnología y Componentes Electrónicos y Fotónicos Convocatoria ordinaria de 2003 Tecnología y Componentes Electrónicos y Fotónicos Convocatoria ordinaria de 003. En el circuito de la figura, calcular la forma de onda de la tensión de salida, V o, cuando la señal de entrada,, es una

Más detalles

S. Hambley, Electrónica, Prentice Hall, 2001.

S. Hambley, Electrónica, Prentice Hall, 2001. Tema 6. El transistor MOS Bibliografía A.S. Sedra, K.C. Smith, Circuitos Microelectrónicos, Oxford University Press, 004. S. Hambley, Electrónica, Prentice Hall, 00. Índice del Tema 6 ESTRUCTURA FÍSCA

Más detalles

ELECTRONICA GENERAL. Tema 7. Transistores de Efecto de Campo

ELECTRONICA GENERAL. Tema 7. Transistores de Efecto de Campo Tema 7. Transistores de Efecto de Campo 1.- Un JFET de canal n tiene una V GSOFF = 3 V y una I DSS = 10 ma. Si le aplicamos una tensión V GS = 1,5 V. Calcular la corriente I D que circula por el dispositivo

Más detalles

Base común: Ganancia de corriente

Base común: Ganancia de corriente Base común: de corriente La ganancia de corriente se encuentra dividiendo la corriente de salida entre la de entrada. En un circuito de base común, la primera es la corriente de colector (Ic) y la corriente

Más detalles

A.3. El transistor unipolar

A.3. El transistor unipolar A.3. El transistor unipolar A.3.1. ntroducción transistor de efecto de campo o FET dos tipos básicos: -JFET => controlado por tensión - MOSFET A.3.2. Caracterización de los transistores unipolares A.3.2.1.

Más detalles

TRANSITORES DE EFECTO DE CAMPO (Field effect transistor, FET) Generalidades Clasificación Principio de Funcionamiento y Simbología Característica V-I

TRANSITORES DE EFECTO DE CAMPO (Field effect transistor, FET) Generalidades Clasificación Principio de Funcionamiento y Simbología Característica V-I TRANSITORES DE EFECTO DE CAMPO (Field effect transistor, FET) Generalidades Clasificación Principio de Funcionamiento y Simbología Característica V-I de Salida Característica de Transferencia Circuitos

Más detalles

Guía de laboratorio No. 6 EL TRANSISTOR MOSFET: CARACTERIZACIÓN Y APLICACIONES BÁSICAS

Guía de laboratorio No. 6 EL TRANSISTOR MOSFET: CARACTERIZACIÓN Y APLICACIONES BÁSICAS Guía de laboratorio No. 6 EL TRANSISTOR MOSFET: CARACTERIZACIÓN Y APLICACIONES BÁSICAS En esta guía se realiza una primera aproximación a las características y polarización de transistores MOSFET, además

Más detalles

Tema 3 EL PROBLEMA DE LA POLARIZACIÓN. FUENTES Y ESPEJOS DE CORRIENTE

Tema 3 EL PROBLEMA DE LA POLARIZACIÓN. FUENTES Y ESPEJOS DE CORRIENTE Tema 3 EL PROBLEMA DE LA POLARIZACIÓN. FUENTES Y ESPEJOS DE CORRIENTE Tema 3: Condiciones generales Todo amplificador consta de un núcleo en el que hay un transistor (Dos, si es diferencial) Se tratará

Más detalles

Diseño de Polarización de Baja Tensión para Transistores Cascode

Diseño de Polarización de Baja Tensión para Transistores Cascode Diseño de Polarización de Baja Tensión para Transistores Cascode Pablo Aguirre, Fernando Silveira Instituto de Ingeniería Eléctrica Universidad de la República Montevideo, Uruguay paguirre@fing.edu.uy

Más detalles

PRÁCTICA 5. SIMULACIÓN DE MODELOS DE PEQUEÑA SEÑAL

PRÁCTICA 5. SIMULACIÓN DE MODELOS DE PEQUEÑA SEÑAL PRÁCTICA 5. SIMULACIÓN DE MODELOS DE PEQUEÑA SEÑAL 1. Objetivo Se pretende conocer el modelo de pequeña señal del transistor MOS, y su utilización para la obtención de los parámetros de funcionamiento

Más detalles

PRÁCTICA 6 AMPLIFICADOR MULTIETAPA CONFIGURACION EMISOR COMUN CON AUTOPOLARIZACION.

PRÁCTICA 6 AMPLIFICADOR MULTIETAPA CONFIGURACION EMISOR COMUN CON AUTOPOLARIZACION. PRÁCTIC 6 MPLIFICDOR MULTIETP CONFIGURCION EMISOR COMUN CON UTOPOLRIZCION. DESRROLLO 1.- rme el circuito de la siguiente figura y aplique a la señal de entrada una señal sinusoidal de 1 KHz. de frecuencia,

Más detalles

INGENIEROS INDUSTRIALES

INGENIEROS INDUSTRIALES ASIGNATURA: ELECTRÓNICA BÁSICA CÓDIGO: 36 DEPARTAMENTO: INGENIERÍA ELECTRÓNICA ÁREAS DE CONOCIMIENTO: TECNOLOGÍA ELECTRÓNICA DESCRIPTORES DEL BOE: Componentes. Técnicas analógicas básicas. Técnicas digitales

Más detalles

BJT como amplificador en configuración de emisor común con resistencia de emisor

BJT como amplificador en configuración de emisor común con resistencia de emisor Práctica 9 BJT como amplificador en configuración de emisor común con resistencia de emisor Índice General 9.1. Objetivos................................ 73 9.2. Introducción teórica..........................

Más detalles

TEMA 4 EL TRANSISTOR BIPOLAR DE UNIÓN

TEMA 4 EL TRANSISTOR BIPOLAR DE UNIÓN TEMA 4 EL TRANSISTOR BIPOLAR DE UNIÓN TTEEMAA 44: :: EEll ttrraanssi issttoorr bbi ippoollaarr dee uunióón 11 1) En un transistor bipolar de unión la zona de semiconductor menos dopada corresponde a, a)

Más detalles

A.2. El transistor bipolar

A.2. El transistor bipolar A.2. El transistor bipolar A.2.1. Introducción componente de tres capas semiconductoras colocadas alternativamente principal aplicación: amplificador A.2.2. aracterización del transistor bipolar tiene

Más detalles

UNIVERSIDAD AUTONOMA METROPOLITANA Iztapalapa CBI. Reporte Proyecto terminal. Desarrollo de estructuras analógicas para circuitos integrados MOSFET

UNIVERSIDAD AUTONOMA METROPOLITANA Iztapalapa CBI. Reporte Proyecto terminal. Desarrollo de estructuras analógicas para circuitos integrados MOSFET UNIVERSIDAD AUTONOMA METROPOLITANA Iztapalapa CBI Reporte Proyecto terminal Desarrollo de estructuras analógicas para circuitos integrados MOSFET Laura Ortiz Balbuena Asesora José Gerardo Andrade De La

Más detalles

APELLIDOS: NOMBRE: DNI/NIE:

APELLIDOS: NOMBRE: DNI/NIE: APELLIDOS: NOMBRE: DNI/NIE: Lea con atención los enunciados de los ejercicios. En caso de duda, pregunte al profesor. Explique claramente los pasos que realice en las deducciones matemáticas. Cualquier

Más detalles

INDICE 1. Sistemas Electrónicos 2. Circuitos Lineales 3. Amplificadores Operacionales 4. Diodos

INDICE 1. Sistemas Electrónicos 2. Circuitos Lineales 3. Amplificadores Operacionales 4. Diodos INDICE 1. Sistemas Electrónicos 1 1.1. Información y señales 2 1.2. Espectro de frecuencia de las señales 3 1.3. Señales analógicas y digitales 5 1.4. Amplificación y filtrado 7 1.5. Comunicaciones 9 1.6.

Más detalles

TECNOLÓGICO DE ESTUDIOS SUPERIORES DE ECATEPEC DIVISIÓN DE INGENIERÍA ELECTRÓNICA Y TELEMÁTICA PRÁCTICAS DE LABORATORIO

TECNOLÓGICO DE ESTUDIOS SUPERIORES DE ECATEPEC DIVISIÓN DE INGENIERÍA ELECTRÓNICA Y TELEMÁTICA PRÁCTICAS DE LABORATORIO TECNOLÓGICO DE ESTUDIOS SUPERIORES DE ECATEPEC DIVISIÓN DE INGENIERÍA ELECTRÓNICA Y TELEMÁTICA PRÁCTICAS DE LABORATORIO ASIGNATURA: ELECTRÓNICA ANALÓGICA I REALIZÓ: DANIEL JAIMES SERRANO SEPTIEMBRE 2009.

Más detalles

Tema 3: Amplificadores de pequeña señal

Tema 3: Amplificadores de pequeña señal Tema 3: Amplificadores de pequeña señal Índice 1 Conceptos de amplificación 2 Amplificadores monoetapa con transistores bipolares 3 Amplificadores monoetapa con transistores de efecto campo 4 Amplificadores

Más detalles

Cox = 6.9 x 10-8 F/cm 2. Vt = 0.65 Volts VGS = 5 V. ID (sat) = 4 ma > > > W = 11.8 µm

Cox = 6.9 x 10-8 F/cm 2. Vt = 0.65 Volts VGS = 5 V. ID (sat) = 4 ma > > > W = 11.8 µm EL TRANSISTOR COMO ELEMENTO DE CIRCUITO Transistor MOS canal N L = 1.25 µm, µn = 650 cm 2 /Vs Cox = 6.9 x 10-8 F/cm 2 Vt = 0.65 Volts VGS = 5 V ID (sat) = 4 ma > > > W = 11.8 µm La capacidad de manejo

Más detalles

EL PREMIO NOBEL DE FÍSICA 1956

EL PREMIO NOBEL DE FÍSICA 1956 EL PREMIO NOBEL DE FÍSICA 1956 EL TRANSISTOR BIPOLAR EL TRANSISTOR BIPOLAR El transistor bipolar (BJT Bipolar Junction Transistor) fue desarrollado en los Laboratorios Bell Thelephone en 1948. El nombre

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos EL42A - Circuitos Electrónicos Clase No. 12: Transistores de Efecto de Campo (3) Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 10 de Septiembre de 2009

Más detalles

Tecnología Electrónica

Tecnología Electrónica Universidad de Alcalá Departamento de Electrónica Tecnología Electrónica Ejercicios Versión: 2017-02-23 Capítulos 1 y 2: Transistores: estructura, características y polarización Referencias: Texto base:

Más detalles

Polarización de transistores y estabilidad

Polarización de transistores y estabilidad Polarización de transistores y estabilidad. Carrillo, J.I. Huircan Abstract Se tienen tres formas básicas para la polarización de un BJT y un FET: polarización ja, autopolarización y polarizacion universal.

Más detalles

Tema 4 CIRCUITOS AMPLIFICADORES DE PEQUEÑA SEÑAL ENTRADA SIMPLE

Tema 4 CIRCUITOS AMPLIFICADORES DE PEQUEÑA SEÑAL ENTRADA SIMPLE Tema 4 CIRCUITOS AMPLIFICADORES DE PEQUEÑA SEÑAL ENTRADA SIMPLE Tema 4: Nociones generales Estructuras ideales CLASIFICACIÓN Salida Corriente Salida Tensión Entrada Corriente A. de Corriente Transrresistor

Más detalles

Universidad Ricardo Palma

Universidad Ricardo Palma Universidad Ricardo Palma FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA ELECTRONICA DEPARTAMENTO ACADÉMICO DE INGENIERÍA PLAN DE ESTUDIOS 2006-II SÍLAB0 1. DATOS ADMINISTRATIVOS 1.1

Más detalles

AMPLIFICADORES CMOS BÁSICOS

AMPLIFICADORES CMOS BÁSICOS AMPLIFICADOES CMOS BÁSICOS 1 INTODUCCIÓN Existen tres configuraciones amplificadores básicas basadas en un transistor MOS: Fuente Común (common source), Puerta Común (common gate) y Drenador Común (common

Más detalles

TRANSISTOR MOS: TEMA 3.1

TRANSISTOR MOS: TEMA 3.1 TRANSISTOR MOS: TEMA 3.1 Zaragoza, 4 de abril de 2011 ÍNDICE TRANSISTOR MOSFET Tema 3.1 El MOSFET en gran señal TRANSISTOR MOSFET Tema 3.1 El MOSFET en gran señal INTRODUCCIÓN Puerta (G, gate) Drenador

Más detalles

Electrónica Digital. Configuración del colector abierto. Electrónica Digital II Circuitos TTL Salidas de Colector Abierto Salidas de Drenador Abierto

Electrónica Digital. Configuración del colector abierto. Electrónica Digital II Circuitos TTL Salidas de Colector Abierto Salidas de Drenador Abierto Electrónica Digital II Circuitos TTL Salidas de Colector Abierto Salidas de Drenador Abierto Salida de colector abierto (Familia TTL) La compuerta de colector abierto se usan en tres aplicaciones principales:

Más detalles

DISEÑO Y CONSTRUCCION DE UN AMPLIFICADOR OPERACIONAL CMOS DE DOS ETAPAS:

DISEÑO Y CONSTRUCCION DE UN AMPLIFICADOR OPERACIONAL CMOS DE DOS ETAPAS: DISEÑO Y CONSTRUCCION DE UN AMPLIFICADOR OPERACIONAL DE DOS ETAPAS: TABLA 5.1. Valores típicos de los parámetros del componente 0,8 μm 0,5 μm 0,25 μm 0,18 μm Parámetro NMOS PMOS NMOS PMOS NMOS PMOS NMOS

Más detalles

Polarización del FET

Polarización del FET Polarización del FET J.I, Huircán Universidad de La Frontera December 9, 0 Abstract Se muestran las redes de polarización ja y autopolarización para el JFET. En ambas se plantean la malla de entrada y

Más detalles

1.- Tensión colector emisor V CE del punto Q de polarización. a) 10,0 V b) 8,0 V c) 6,0 V

1.- Tensión colector emisor V CE del punto Q de polarización. a) 10,0 V b) 8,0 V c) 6,0 V C. Problemas de Transistores. C1.- En el circuito amplificador de la figura se desea que la tensión en la resistencia R L pueda tomar un valor máximo sin distorsión de 8 V. Asimismo, se desea que dicha

Más detalles

TIEMPO: 1:30 h. PROBLEMA 1 Q 1. 0.8 pf. v s Q 2. A v = f H = R en =

TIEMPO: 1:30 h. PROBLEMA 1 Q 1. 0.8 pf. v s Q 2. A v = f H = R en = TIEMPO: 1:30 h. PROBLEMA 1 Para el circuito de la figura calcular la ganancia del centro de la banda (A V ), la resistencia de entrada (R en ) y el polo dominante de alta frecuencia (f H ) empleando el

Más detalles

BIBLIOGRAFÍA 2.1 INTRODUCCIÓN 2.1 INTRODUCCIÓN (2) Tema 3: EL TRANSISTOR FET

BIBLIOGRAFÍA 2.1 INTRODUCCIÓN 2.1 INTRODUCCIÓN (2) Tema 3: EL TRANSISTOR FET BIBLIOGRAFÍA Tema 3: EL TRANSISTOR FET.1 Introducción. El Mosfet de acumulación Funcionamiento y curvas características Polarización.3 El Mosfet de deplexión Funcionamiento y curvas características.4 El

Más detalles

Guía de laboratorio: CONSIDERACIONES GENERALES

Guía de laboratorio: CONSIDERACIONES GENERALES Guía de laboratorio: CONSIDERACIONES GENERALES 1. Información general Asignatura: Electrónica análoga I Modalidad: Práctica Horario: Grupo 1: Viernes 10-13 Grupo 2: Viernes 07-09 Grupo 3: Miércoles 14-16

Más detalles

DISEÑO DE UNCIRCUITO AMPLIFICADOR MONOETAPA EMISOR COMUN, EN AUTOPOLARIZACION CON ACOPLAMIENTO CAPACITIVO PARA MES.

DISEÑO DE UNCIRCUITO AMPLIFICADOR MONOETAPA EMISOR COMUN, EN AUTOPOLARIZACION CON ACOPLAMIENTO CAPACITIVO PARA MES. PRACTICA 2 DISEÑO DE UNCIRCUITO AMPLIFICADOR MONOETAPA EMISOR COMUN, EN AUTOPOLARIZACION CON ACOPLAMIENTO CAPACITIVO PARA MES. Objetivo: El objetivo de esta práctica es que conozcamos el funcionamiento

Más detalles

Generador de Tensión de polarización

Generador de Tensión de polarización 16 al 1 de Septiembre de 007 Córdoba, Argentina Generador de Tensión de polarización 1.1 Descripción La tensión de polarización se extrae de una referencia de corriente comúnmente atribuida a Widlar [1,].

Más detalles

Dispositivos de las tecnologías CMOS

Dispositivos de las tecnologías CMOS Dispositivos de las tecnologías CMOS MOSFET: canal N y canal P (únicos dispositivos en chips digitales) JT: PNP de mala calidad (dispositivos parásitos. Se usan como diodos) Resistencias Condensadores

Más detalles

Vce 1V Vce=0V. Ic (ma)

Vce 1V Vce=0V. Ic (ma) GUIA DE TRABAJOS PRACTICOS P31 Bibliografía de Referencia Transistores y Circuitos Amplificadores * Boylestad, R & Nashelsky, L. Electrónica -Teoría de Circuitos y Dispositivos 10ª. Ed. Pearson Educación,

Más detalles