DISEÑO Y CONSTRUCCION DE UN AMPLIFICADOR OPERACIONAL CMOS DE DOS ETAPAS:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DISEÑO Y CONSTRUCCION DE UN AMPLIFICADOR OPERACIONAL CMOS DE DOS ETAPAS:"

Transcripción

1 DISEÑO Y CONSTRUCCION DE UN AMPLIFICADOR OPERACIONAL DE DOS ETAPAS: TABLA 5.1. Valores típicos de los parámetros del componente 0,8 μm 0,5 μm 0,25 μm 0,18 μm Parámetro NMOS PMOS NMOS PMOS NMOS PMOS NMOS PMOS t ox (nm) C ox (ff/μm 2 ) 2,3 2,3 3,8 3,8 5,8 5,8 8,6 8,6 μ (cm 2 /V.s) μc ox (μa/v 2 ) V T0 (V) 0,7-0,7 0,7-0,8 0,473-0,62 0,48-0,45 V DD (V) 5 5 3,3 3,3 2,5 2,5 1,8 1,8 /V A / (V/μm) C ov (ff/μm) 0,2 0,2 0,4 0,4 0,3 0,3 0,37 0,33 Se trata del diseño, simulación y construcción de un amplificador diferencial con técnicas de carga activa acoplado directamente a un fuente común con igual tecnología de modo de cumplimentar las siguientes especificaciones: Diseño de un circuito esquemático utilizando transistores de 0,5 micrómetros Alimentación con 5 V Con carga capacitiva de C L = 10 pf Tensión de modo común de entrada normal: V ICM = 2,5 V Rango de variación de la tensión de entrada de modo común (ICMR): V ICMRmin < 1,5 V ; V ICMRmax > 3,5 V Consumo total de potencia < 250 micro watt Offset sistemático referido a la entrada < 100 micro V Offset total referido a la entrada (+/ 3Sigma) < 5 mv (1) Ganancia de tensión de modo diferencial (Avd) > 80 db Slew Rate > 250 <KV/seg. (1)Asumir que el desvío estándar del Offset entre dos dispositivos MOS de igual geometría esta dado por SigmaV T = K /Raiz cuadrada de (W/L) donde K(NMOS) = 10 mv.micrometro y K(PMOS) m= 25 mv.micrometros Ing. Tulic Página 1 de 7

2 La propuesta es utilizar un amplificador compuesto de dos etapas conectadas en cascada, con acoplamiento directo, la de entrada de tipo diferencial con carga activa y en segundo termino un simple fuente común, utilizando transistores de canal corto de 0,5 μm de longitud L cuyos principales parámetros correspondientes al proceso de 0,5 μm son: t ox = 9 nm C ox = 3,8 ff/μm 2 μ n = 500 cm 2 /V.s μ p = 180 cm 2 /V.s μ n C ox = 190 μa/v 2 μ p C ox = 68 μa/v 2 Tensiones de umbral: V Tn = 0,7 V+/- 0,15V V Tp = - 0,7 V+/-0,15V Tensiones de Early: V An = 10 V V Ap = - 5 V El diagrama del circuito a utilizar es el típico correspondiente al amplificador operacional de dos etapas sin Buffer o etapa de salida de gran señal (salida de alta impedancia) es decir: Como se sabe, así como cualquier amplificador operacional, este dispositivo siempre se desempeñara como amplificador básico de un sistema amplificador realimentado por lo que al igual que en el caso del Op. Amp. μa741 ya estudiado deben evitarse las oscilaciones cuando se incorpore la máxima cantidad de realimentación posible (β = 1). Puede observarse en el precedente circuito que también en este caso se ha adoptado el método de compensación basado en el teorema de Miller (C M = A V2. Cc) de modo que un circuito equivalente dinámico valido para el rango de altas frecuencias será: Ing. Tulic Página 2 de 7

3 Cc G m1.v i G m2.v π En la salida de la primera etapa el capacitor de Miller es mucho mas grande que C1 y en la salida C2 es prácticamente = C L. Tal como se verá en Electrónica Aplicada 2, la Transferencia de Tensiones de este circuito dispondrá de un polo dominante ubicado en la frecuencia compleja: p 1 = - [1/(R 1 A VCS2 C c )] un cero real y positivo en: z o = G m2 /C c y otro polo no dominante en la frecuencia compleja: p 2 = - [G m2 /C L ] Entonces para lograr la estabilidad pedida, si el cero real y positivo z o se ubica por lo menos a una frecuencia diez veces superior que el PGB, entonces para imponer un margen de fase de 60 grados, el segundo polo (el no dominante o p 2 ) debe ubicarse de modo que: arctag [ω/ω 2 ] + arctag [ω/ω 1 ] + arctag [ω/z o ] = 120 o si tenemos en cuenta que p 1 fija la quebradura y a partir de allí la ganancia cae a razón de 20 db/dec hasta hacerse igual a 1 a la frecuencia PGB (en donde dicho polo ya introdujo una componente de fase de 90 o) y que la condición de fase debe cumplirse para PGB, a esta frecuencia: lo cual determina que [ω 2 ] > 2,2 PGB. 120 o (90 o + 5,7 o ) = arctag [PGB/ω 2 ] = 24,3 o En el circuito analizado la interpretación de los componentes del circuito equivalente de altas frecuencias, son: G m2 = g fs6 G m1 = g fs1 R 1 = (r os2 //r os4 ) R 2 = (r os6 //r os7 ) en consecuencia: SR = I D5 /C c ; A Vd1 = g fs1. R 1 = g fs1 (r os2 //r os4 ), A VCS2 = - g fs6. R 2 = - g fs6 (r os6 //r os7 ), A = A Vd1. A VCS2 (1) (2) (3) (4) El producto ganancia por ancho de banda PGB = A. ω 1 = A Vd1. A VCS2. [1/(R 1 A VCS2 C c )] y simplificando: PGB = (g fs1 / C c ) (5) Entonces para posicionar el cero real y positivo una década arriba del PGB: (g fs6 / C c ) > 10. (g fs1 / C c ) por lo que g fs6 > 10. g fs1 (6) Ing. Tulic Página 3 de 7

4 y para conseguir el mencionado margen de fase de 60 o haciendo ω 2 > 2,2 PGB: (g fs6 / C L ) > 2,2. PGB con C L = 10 pf por ello PGB = g fs6 /(2, ) y también : (g fs6 / C L ) > 2,2. (g fs1 / C c ) por ello C c = 0,22 C L (7) Hasta aquí en el análisis de la transferencia hemos despreciado la influencia del capacitor, C3, asociado con la fuente espejo de carga activa de la primera etapa, mas precisamente con la capacidad compuerta fuente de dicho transistor, que actuando en el circuito equivalente de salida de una de las ramas del diferencial produce: Que produce un polo y un cero ubicados en p 3 = -(g fs3 /C 3 ) z 3 = -(2g fs3 /C 3 ) y deberá verificarse si el polo y el cero antes descriptos y debidos tanto a C gs3 como a C gs4 introducen una nueva componente de fase que reduzca el margen de fase previamente adoptado. Para ello aten-diendo la presencia de los ceros en el doble de frecuencia de los polos que disminuyen la influencia de los mismos, el efecto seria el equivalente a un único polo ubicado a la mitad de la frecuencia de p 3. Por ello comprobamos si (p 3 /2) > 10 PGB o si por el contrario se ubica a una frecuencia inferior... Por otra parte el límite superior o valor máximo de la tensión de modo común de pico positivo es aquella tensión de dicha polaridad que se aplica a la entrada, a la cual ni el transistor Q 3 ni el Q1 dejen de operar en la región de saturación. Para que Q 3 opere en saturación, la tensión a través de el entre fuente y drenaje (V SD3 ) debe ser igual, por lo menos, a la tensión de trabajo V OV = V SG3 V T3 a la cual opera. v ICM max + V DG1 + V SD3 V DD = 0 Ing. Tulic Página 4 de 7

5 v ICM max + V DS1 - V GS1 + V SG3 V DD = 0 entonces en el limite: v ICM max = V DD - V GS3 + V T1 o sea v ICM max = V DD - (I D3 /B 3 ) V T3(max) + V T1(min) (8) en donde se han incorporado las dispersiones en las tensiones de umbral tanto de T3 como de T1 suponiendo que se combinen en la situación mas desfavorable. En cuanto al límite inferior del rango de tensión de entrada de modo común, es decir su pico negativo, es el valor de la tensión de entrada a la cual Q1 o Q5 dejan de operar en la zona de saturación. Esto ocurre cuando la tensión de modo común aplicada a la entrada excede el limite de: v ICM min = (I D3 /B 1 ) + V T1 + V DS(sat)5 con V DS(sat)5 = (2.I D3 /B 5 ) (9) Resumiendo todas estas características, las recomendaciones para encarar el problema de diseño que nos han planteado, se pueden resumir como sigue: 1) para conservar un margen de fase de 60 grados como mínimo entonces: Cc > 0,22 C L en nuestro caso Cc > 0, pf = 2,2 Pf debiéndose adoptar un valor superior a dicho mínimo valor. Por ejemplo Cc = 3 pf 2) de acuerdo con SR solicitado I D5 = SR. Cc = (V/seg) (F) = A El resultado obtenido corresponde al mínimo valor de corriente de la fuente de polarización espejo constituida entre otros por el transistor rotulado como T 5, que asegura cumplir con el mínimo requerido de velocidad de excursión o SR con el condensador de compensación precedentemente adoptado. Si para el diseño nosotros deseamos asegurarnos el cumplimiento de dicha especificación debe asignarse un valor de I D5 superior a dicho mínimo. Adoptamos por ejemplo 5 μa, es decir: I D5 = 5 μa (SR = 1,7 V/μseg mejor que 0,25 V//μseg pedido) 3)Determinaremos ahora la relación de aspecto (W/L) del transistor T3 que conforma la fuente de corriente espejo que opera como carga activa del diferencial. Teniendo en cuenta que la constante física B es: B 3 = 0,5. μ p. C ox. (W/L) 3 y además I D3 = 0,5. I D5 para cumplimentar con la máxima tensión de excitación de modo común requerida, es decir V icmr(max) de 2,5 + 1 = 3,5 V y de acuerdo a lo antes señalado: I D (W/L) 3 = = = 7,35 μp.c ox [V DD V icmr(max) V T3(max) + V T1(min) ] (5-3,5 0,85 + 0,55) 2 entonces por tratarse de una fuente espejo y ambos transistores T 3 y T 4 deben ser idénticos por lo que (W/L) 3 = (W/L) 4 = 7,35 Ing. Tulic Página 5 de 7

6 4)Comprobamos ahora la frecuencia de ubicación de los polos de la fuente de corriente espejo que opera como carga activa: B 3.I D3 0, ,35 2, , , (g fs3 /2C gs3 ) = = = = =5,4GR (0,667)W 3 L 3 C ox , , , , ,69 equivalentes a una frecuencia de 861 MHz. En nuestro caso no se da como dato el necesario PGB por lo que del calculo precedente podemos afirmar que el mismo no puede ser mayor 80 a 90 MHz, es decir una década por debajo de los polos de dicha fuente de corriente carga activa (PGB< 80 MHz). 5) A los fines de la determinación de la transconductancia necesaria en la primera etapa tomaremos un PGB un tanto mas conservador pero relativamente bueno si nos atenemos al MHz que presentan un gran número de amplificadores operacionales de propósitos múltiples. Tomaremos 10 MHz, así: g fs1 = , = 188 μs en consecuencia la relación de aspecto de los transistores T 1 y T 2 (el par diferencial) teniendo en 2 uenta que g fs1 = 2 B I D1 : g fs1 (188) 2 (W/L) 1 = (W/L) 2 = = = 40 2 μ n C ox I D ,5 (W/L) 1 = (W/L) 2 = 40 6) Para permitir la aplicación del pico negativo de tensión de modo común de entrada calcularemos la tensión de saturación de T 5 y luego su relación de aspecto V DS(sat)5 = v ICM min - (I D1 /B 1 ) - V T1(max) = 1,5 V - (2, /0, ) 0,85 V = 0,62 V Luego : I D (W/L) 5 = = = 0,14 0,5 μ n C ox [V DS5(sat) ] 2 0, (0,62) 2 Este resultado no resulta satisfactorio. Veremos como solucionarlo. 7) De acuerdo a lo ya adelantado g fs6 > 10. g fs1 = 1,9 ms y en el punto 4 hemos evaluado g fs3 = 2 B 3 I D3 = 51 μs al igual que g fs4. y entonces para lograr la mayor simetría posible en las dos ramas de la fuente espejo de la primera etapa se requiere que V SG4 = V SG6 ya que esta ultima coincide con V SD4 y entonces (B 6 /B 4 ) = (g fs6 /g fs4 ) con lo cual: Ing. Tulic Página 6 de 7

7 g fs (W/L) 6 = (W/L) 4 = 7,35 = 260 g fs4 51 8) En consecuencia la corriente en los transistores T 6 y T g fs6 g fs6 1,9. 1, ,61 I D6 = = = = = 102 μa 4 B 6 4 0,5 μp.c ox.(w/l) ) Dado que los transistores T 7 y T 6 poseen la misma corriente y conocimos la relación de aspecto del T 6, entonces la correspondiente al T 4 es: I (W/L) 7 = (W/L) 5 = 0,14 = 2,9 I ) La ganancia total resultara: V A r os = por lo tanto r os2 = 20V/5 μa = 4 MΩ ; r os4 = 10V/5μA = 2 MΩ y R 1 = 1,33MΩ I D r os6 = 10V/102 μa = 100 KΩ ; r os7 = 20V/102μA = 200 KΩ y R 2 = 66 KΩ A Vd1 = 188.1,33 = 250 ; A VCS2 = 1,9. 66 = 125 y por lo tanto A = = Equivalentes a 90 db. 11) la disipación de potencia también resulta superior al tope asignado ya que P DIS = V DD. (I D5 + I D7 ) = 5 V ( ) μa = 535 μw en lugar de 250 μw como se solicita. Ing. Tulic Página 7 de 7

Electrónica 2. Práctico 3 Alta Frecuencia

Electrónica 2. Práctico 3 Alta Frecuencia Electrónica 2 Práctico 3 Alta Frecuencia Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

Diseño de un Amplificador Operacional totalmente integrado CMOS que funcione como driver para cargas capacitivas elevadas

Diseño de un Amplificador Operacional totalmente integrado CMOS que funcione como driver para cargas capacitivas elevadas Diseño de un Amplificador Operacional totalmente integrado CMOS que funcione como driver para cargas capacitivas elevadas Titulación: Sistemas Electrónicos Tutores: Francisco Javier del Pino Suárez Sunil

Más detalles

RESPUESTA FRECUENCIAL Función de transferencia del amplificador

RESPUESTA FRECUENCIAL Función de transferencia del amplificador Función de transferencia del amplificador A (db) A (db) A 0 3 db A M 3 db Amplificador directamente acoplado ω BW=ω H -ω L GB=A M ω H ω L ω H ω Amplificador capacitivamente acoplado Ancho de Banda Producto

Más detalles

Problemas Tema 6. Figura 6.3

Problemas Tema 6. Figura 6.3 Problemas Tema 6 6.1. Se conecta una fuente de voltaje V s =1mV y resistencia interna R s =1MΩ a los terminales de entrada de un amplificador con una ganancia de voltaje en circuito abierto A v0 =10 4,

Más detalles

Temario. Tema 5. El amplificador operacional real OBJETIVOS DEL TEMA. Introducción

Temario. Tema 5. El amplificador operacional real OBJETIVOS DEL TEMA. Introducción Temario Tema Teo. Pro. 1. Amplificación 2h 1h 2. Realimentación 2.5h 1.5h 3. Amplificador operacional (AO) y sus etapas lineales 7h 4h 4. Comparadores y generadores de onda 7h 4h 5. El amplificador operacional

Más detalles

TEMA 6: Amplificadores con Transistores

TEMA 6: Amplificadores con Transistores TEMA 6: Amplificadores con Transistores Contenidos del tema: El transistor como amplificador. Característica de gran señal Polarización. Parámetros de pequeña señal Configuraciones de amplificadores con

Más detalles

Anexo V: Amplificadores operacionales

Anexo V: Amplificadores operacionales Anexo V: Amplificadores operacionales 1. Introducción Cada vez más, el procesado de la información y la toma de decisiones se realiza con circuitos digitales. Sin embargo, las señales eléctricas analógicas

Más detalles

Electrónica 1. Práctico 2 Amplificadores operacionales 2

Electrónica 1. Práctico 2 Amplificadores operacionales 2 Electrónica 1 Práctico 2 Amplificadores operacionales 2 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

Parcial_2_Curso.2012_2013

Parcial_2_Curso.2012_2013 Parcial_2_Curso.2012_2013 1. La función de transferencia que corresponde al diagrama de Bode de la figura es: a) b) c) d) Ninguna de ellas. w (rad/s) w (rad/s) 2. Dado el circuito de la figura, indique

Más detalles

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO FORMA DE PRESENTACIÓN DE LAS ECUACIONES DEL MOSFET DE ENRIQUECIMIENTO De la ecuación que define el umbral VDS = VGS -Vth

Más detalles

1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IB VC VB IE

1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IB VC VB IE Ejercicios relativos al transistor bipolar Problemas de transistores BJT en estática 1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IC IB VC VB

Más detalles

CAPÍTULO 5. Amplificadores de circuitos integrados de una etapa

CAPÍTULO 5. Amplificadores de circuitos integrados de una etapa CAPÍTULO 5 Amplificadores de circuitos integrados de una etapa. Introducción 269 5.5 El amplificador diferencial Introducción 295 5.1 Filosofía del diseño de Circuito 5.5.2 El par diferencial MOS 296 Integrado

Más detalles

TECNOLOGÍA DE LOS SISTEMAS DIGITALES

TECNOLOGÍA DE LOS SISTEMAS DIGITALES TECNOLOGÍA DE LOS SISTEMAS DIGITALES ESCALAS DE INTEGRACIÓN TECNOLOGÍAS SOPORTES FAMILIAS LÓGICAS FAMILIAS LÓGICAS BIPOLAR MOS BICMOS GaAs TTL ECL CMOS NMOS TRANSMISIÓN DINÁMICOS PARÁMETROS CARACTERÍSTICOS

Más detalles

DISPOSITIVOS ELECTRÓNICOS II

DISPOSITIVOS ELECTRÓNICOS II CURSO 2010- II Profesores: Miguel Ángel Domínguez Gómez Despacho 222, ETSI Industriales Camilo Quintáns Graña Despacho 222, ETSI Industriales Fernando Machado Domínguez Despacho 229, ETSI Industriales

Más detalles

E.E.T Nº 460 GUILLERMO LEHMANN Departamento de Electrónica. Sistemas electrónicos analógicos y digitales TRABAJO PRÁCTICO

E.E.T Nº 460 GUILLERMO LEHMANN Departamento de Electrónica. Sistemas electrónicos analógicos y digitales TRABAJO PRÁCTICO Tema: El amplificador operacional. Objetivo: TRABAJO PRÁCTICO Determinar las limitaciones prácticas de un amplificador operacional. Comprender las diferencias entre un amplificador operacional ideal y

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos ELA - Circuitos Electrónicos Clase No. 24: Amplificadores Operacionales (1) Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 3 de Noviembre de 2009 ELA -

Más detalles

Electrónica 1. Práctico 1 Amplificadores Operacionales 1

Electrónica 1. Práctico 1 Amplificadores Operacionales 1 Electrónica 1 Práctico 1 Amplificadores Operacionales 1 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

Clase Fuentes de corriente - Introducción a amplificadores multietapa integrados. Junio de 2011

Clase Fuentes de corriente - Introducción a amplificadores multietapa integrados. Junio de 2011 66.25 - Dispositivos Semiconductores - 1er Cuat. 2011 Clase 24-1 Clase 24 1 - Fuentes de corriente - Introducción a amplificadores multietapa integrados Junio de 2011 Contenido: 1. El transistor MOS como

Más detalles

Aplicaciones con transistor MOSFET

Aplicaciones con transistor MOSFET Aplicaciones con transistor MOSFET Lección 04.2 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge Castro-Godínez

Más detalles

Transistor BJT como Amplificador

Transistor BJT como Amplificador Transistor BJT como Amplificador Lección 05.2 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Transistor BJT como Amplificador

Más detalles

Tema 2 El Amplificador Operacional

Tema 2 El Amplificador Operacional CICUITOS ANALÓGICOS (SEGUNDO CUSO) Tema El Amplificador Operacional Sebastián López y José Fco. López Instituto de Microelectrónica Aplicada (IUMA) Universidad de Las Palmas de Gran Canaria 3507 - Las

Más detalles

Nombre: Carné Ordinal. Parte I preguntas (1 punto c/u) Escriba la respuesta en el espacio indicado o encierre en un círculo la respuesta correcta:

Nombre: Carné Ordinal. Parte I preguntas (1 punto c/u) Escriba la respuesta en el espacio indicado o encierre en un círculo la respuesta correcta: INSTITUTO TECNOLÓGICO DE COSTA RICA II SEMESTRE 2013 ESCUELA DE INGENIERIA EN ELECTRÓNICA CURSO: EL-5408 CONTROL AUTOMÁTICO MEDIO: Examen 3 PROF: ING. EDUARDO INTERIANO Nombre: Carné Ordinal Parte I preguntas

Más detalles

Laboratorio Nº3. Procesamiento de señales con transistores

Laboratorio Nº3. Procesamiento de señales con transistores Laboratorio Nº3 Procesamiento de señales con transistores Objetivos iseñar redes de polarización para operar transistores JT y JFT en modo activo, y evaluar la estabilidad térmica de puntos de operación,

Más detalles

A partir de dicho circuito surge que la resistencia de entrada corresponde a la de un emisor común, es decir:

A partir de dicho circuito surge que la resistencia de entrada corresponde a la de un emisor común, es decir: A partir de dicho circuito surge que la resistencia de entrada corresponde a la de un emisor común, es decir: V be Ri = ------- (II.14.) con lo que para esta configuración: Ri = h ie (II.31.) cuyo valor

Más detalles

Electrónica Analógica

Electrónica Analógica Prácticas de Electrónica Analógica 2º urso de Ingeniería de Telecomunicación Universidad de Zaragoza urso 1999 / 2000 PATIA 1. Amplificador operacional. Etapas básicas. Entramos en esta sesión en contacto

Más detalles

EXAMEN DE ELECTRÓNICA ANALÓGICA.- CONVOCATORIA º CURSO DE INGENIERÍA TÉCNICA EN ELECTRÓNICA INDUSTRIAL

EXAMEN DE ELECTRÓNICA ANALÓGICA.- CONVOCATORIA º CURSO DE INGENIERÍA TÉCNICA EN ELECTRÓNICA INDUSTRIAL 1 a PARTE DEL EXAMEN: PREGUNTAS DE TEORÍA: 1.- AMPLIFICADORES OPERACIONALES. Efectos de 2º orden 1.1) Respuesta frecuencial del amplificador operacional en lazo abierto, considerándolo como un sistema

Más detalles

CAPITULO IV FAMILIAS LÓGICAS

CAPITULO IV FAMILIAS LÓGICAS FAMILIAS LÓGICAS CAPITULO IV FAMILIAS LÓGICAS FAMILIAS LÓGICAS Una familia lógica es un grupo de dispositivos digitales que comparten una tecnología común de fabricación y tienen estandarizadas sus características

Más detalles

Electrónica Analógica 1

Electrónica Analógica 1 Trabajo Práctico 4: El transistor bipolar como amplificador. Modelo equivalente de pequeña señal. Parámetros híbridos. Configuraciones multietapa. Análisis en pequeña señal: método de trabajo La figura

Más detalles

DIE UPM. Se dispone de una etapa amplificadora conectada a una resistencia de carga R L de valor 1KΩ en paralelo con un condensador C L.

DIE UPM. Se dispone de una etapa amplificadora conectada a una resistencia de carga R L de valor 1KΩ en paralelo con un condensador C L. UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES UPM DIE DEPARTAMENTO DE AUTOMÁTICA, INGENIERÍA ELECTRÓNICA E INFORMÁTICA INDUSTRIAL DIVISIÓN DE INGENIERÍA ELECTRÓNICA

Más detalles

se requiere proyectar una etapa amplificadora tal que satisfaga el esquema y datos que se transcriben a continuación:

se requiere proyectar una etapa amplificadora tal que satisfaga el esquema y datos que se transcriben a continuación: 1.1.) Utilizando transistores efecto de campo de compuerta aislada de Canal permanente N, cuyos principales datos son: 5 ma (mínimo) -0,8 Volt (mínimo) BV DSS > 45 Volt - I DSS = 17 " (típico) - V p =

Más detalles

PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR

PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional, en particular de tres de sus

Más detalles

1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE

1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE UNIDAD 5: CIRCUITOS PARA APLICACIONES ESPECIALES 1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE La corriente que nos entrega una pila o una batería es continua y constante: el polo positivo

Más detalles

ETAPAS DE SALIDA Etapa de salida Clase A Inconvenientes

ETAPAS DE SALIDA Etapa de salida Clase A Inconvenientes Etapa de salida Clase A Inconvenientes El mayor inconveniente de la etapa de salida clase A es que presenta una elevada disipación de potencia en ausencia de señal AC de entrada. En gran cantidad de aplicaciones

Más detalles

DISEÑO Y SIMULACIÓN DE UN AMPLIFICADOR OPERACIONAL COMPLETAMENTE DIFERENCIAL EN TECNOLOGÍA CNM25

DISEÑO Y SIMULACIÓN DE UN AMPLIFICADOR OPERACIONAL COMPLETAMENTE DIFERENCIAL EN TECNOLOGÍA CNM25 DISEÑO Y SIMULACIÓN DE UN AMPLIFICADOR OPERACIONAL COMPLETAMENTE DIFERENCIAL EN TECNOLOGÍA CNM25 Romero, Eduardo (1); Peretti, Gabriela (1); Marqués, Carlos (2) (1) Grupo de Investigación y Servicios en

Más detalles

5.- Si la temperatura ambiente aumenta, la especificación de potencia máxima del transistor a) disminuye b) no cambia c) aumenta

5.- Si la temperatura ambiente aumenta, la especificación de potencia máxima del transistor a) disminuye b) no cambia c) aumenta Tema 4. El Transistor de Unión Bipolar (BJT). 1.- En un circuito en emisor común la distorsión por saturación recorta a) la tensión colector-emisor por la parte inferior b) la corriente de colector por

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II INTEGRADOR, DERIVADOR Y RECTIFICADOR DE ONDA CON AMPLIFICADORES OPERACIONALES LAURA MAYERLY ÁLVAREZ JIMENEZ (20112007040) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN En esta práctica de laboratorio

Más detalles

Contenido. Capítulo 2 Semiconductores 26

Contenido. Capítulo 2 Semiconductores 26 ROMANOS_MALVINO.qxd 20/12/2006 14:40 PÆgina vi Prefacio xi Capítulo 1 Introducción 2 1.1 Las tres clases de fórmulas 1.5 Teorema de Thevenin 1.2 Aproximaciones 1.6 Teorema de Norton 1.3 Fuentes de tensión

Más detalles

Ingeniería Eléctrica A S I G N A T U R A S C O R R E L A T I V A S P R E C E D E N T E S

Ingeniería Eléctrica A S I G N A T U R A S C O R R E L A T I V A S P R E C E D E N T E S UNIVERSIDAD NACIONAL DEL SUR 1/3 DEPARTAMENTO DE: Ingeniería Eléctrica H O R A S D E C L A S E P R O F E S O R R E S P O N S A B L E T E Ó R I C A S P R Á C T I C A S Ing. Pablo Mandolesi Por semana Por

Más detalles

CONSEJOS PRÁCTICOS PARA LA RESOLUCIÓN DE PROBLEMAS

CONSEJOS PRÁCTICOS PARA LA RESOLUCIÓN DE PROBLEMAS Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica Departamento de Electrónica ELECTRÓNICA III CONSEJOS PRÁCTICOS PARA LA RESOLUCIÓN

Más detalles

SIFeIS. CONCAyNT PLANTA EXTERIOR E IPR. CONCAyNT ELECTRÓNICA

SIFeIS. CONCAyNT PLANTA EXTERIOR E IPR. CONCAyNT ELECTRÓNICA ELECTRÓNICA PLANTA EXTERIOR E IPR GUÍA DE ESTUDIOS DE ELECTRÓNICA PARA IPR Un agradecimiento especial al Co. FRANCISCO HERNANDEZ JUAREZ por la oportunidad y el apoyo para realizar este trabajo, así como

Más detalles

BJT como amplificador en configuración de emisor común con resistencia de emisor

BJT como amplificador en configuración de emisor común con resistencia de emisor Práctica 9 BJT como amplificador en configuración de emisor común con resistencia de emisor Índice General 9.1. Objetivos................................ 73 9.2. Introducción teórica..........................

Más detalles

Trabajo práctico: Amplificador Operacional

Trabajo práctico: Amplificador Operacional Problema 1 El amplificador operacional de la figura posee resistencia de entrada infinita, resistencia de salida cero y ganancia de lazo abierto A LA =50. Calcule la ganancia de lazo cerrado Ar=Vo/Vi si

Más detalles

Universidad de Costa Rica. Estudio de las Principales Características de los Amplificadores Operacionales

Universidad de Costa Rica. Estudio de las Principales Características de los Amplificadores Operacionales Universidad de Costa Rica Facultad de Ingeniería Escuela de Ingeniería Eléctrica IE0408 Laboratorio Eléctrico II I ciclo 2015 Reporte Estudio de las Principales Características de los Amplificadores Operacionales

Más detalles

Amplificador de potencia de audio

Amplificador de potencia de audio Amplificador de potencia de audio Evolución desde un amplificador básico a un amplificador operacional y su utilización como amplificador de potencia de audio Amplificador de tres etapas con realimentación

Más detalles

PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II

PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional (op-amp), en particular de tres de sus montajes típicos que

Más detalles

Resumen de CONVERSORES ANALÓGICO DIGITALES Y DIGITALES ANALÓGICOS

Resumen de CONVERSORES ANALÓGICO DIGITALES Y DIGITALES ANALÓGICOS Universidad De Alcalá Departamento de Electrónica Resumen de CONVERSORES ANALÓGICO DIGITALES Y DIGITALES ANALÓGICOS Tecnología de Computadores Almudena López José Luis Martín Sira Palazuelos Manuel Ureña

Más detalles

Marco Antonio Andrade Barrera 1 Diciembre de 2015

Marco Antonio Andrade Barrera 1 Diciembre de 2015 Diseño, simulación, construcción, medición y ajuste de un filtro pasa-bajas activo de segundo orden con coeficientes de Bessel, configuración Sallen-Key, ganancia unitaria y una frecuencia de corte f c

Más detalles

Tema 6.-AMPLIFICADORES OPERACIONALES

Tema 6.-AMPLIFICADORES OPERACIONALES Tema 6.-AMPLIFICADORES OPERACIONALES INTRODUCCION.- El concepto original del AO (amplificador operacional) procede del campo de los computadores analógicos, en los que comenzaron a usarse técnicas operacionales

Más detalles

LABORATORIOS DE: DISPOSITIVOS DE ALMACENAMIENTO Y DE ENTRADA/SALIDA. MEMORIAS Y PERIFÉRICOS.

LABORATORIOS DE: DISPOSITIVOS DE ALMACENAMIENTO Y DE ENTRADA/SALIDA. MEMORIAS Y PERIFÉRICOS. LABORATORIOS DE: DISPOSITIVOS DE ALMACENAMIENTO Y DE ENTRADA/SALIDA. MEMORIAS Y PERIFÉRICOS. OBJETIVO DE LA PRÁCTICA. PRÁCTICA #2 EL AMPLIFICADOR OPERACIONAL Hacer la comprobación experimental de la función

Más detalles

Amplificador Operacional: caracterización y aplicación

Amplificador Operacional: caracterización y aplicación Amplificador Operacional: caracterización y aplicación E. de Barbará, G. C. García *, M. Real y B. Wundheiler ** Laboratorio de Electrónica Facultad de Ciencias Exactas y Naturales Departamento de Física

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II AMPLIFICADORES OPERACIONALES

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II AMPLIFICADORES OPERACIONALES AMPLIFICADORES OPERACIONALES LAURA MAYERLY ÁLVAREZ JIMENEZ (20112007040) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN En esta práctica de laboratorio se implementarán diferentes circuitos electrónicos

Más detalles

INDICE Prologo Semiconductores II. Procesos de transporte de carga en semiconductores III. Diodos semiconductores: unión P-N

INDICE Prologo Semiconductores II. Procesos de transporte de carga en semiconductores III. Diodos semiconductores: unión P-N INDICE Prologo V I. Semiconductores 1.1. clasificación de los materiales desde el punto de vista eléctrico 1 1.2. Estructura electrónica de los materiales sólidos 3 1.3. conductores, semiconductores y

Más detalles

Transformada de Laplace: Aplicación a vibraciones mecánicas

Transformada de Laplace: Aplicación a vibraciones mecánicas Transformada de Laplace: Aplicación a vibraciones mecánicas Santiago Gómez Jorge Estudiante de Ingeniería Electrónica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina thegrimreaper7@gmail.com

Más detalles

DISEÑO Y SIMULACIÓN DE UN AMPLIFICADOR OPERACIONAL DE MILLER ORIENTADO A BAJO RUIDO Y BAJO OFFSET

DISEÑO Y SIMULACIÓN DE UN AMPLIFICADOR OPERACIONAL DE MILLER ORIENTADO A BAJO RUIDO Y BAJO OFFSET DISEÑO Y SIMULACIÓN DE UN AMPLIFICADOR OPERACIONAL DE MILLER ORIENTADO A BAJO RUIDO Y BAJO OFFSET Romero, Eduardo (1); Peretti, Gabriela (1); Marqués, Carlos (2) (1) Grupo de Investigación y Servicios

Más detalles

PRÁCTICA 3 TRANSISTORES BIPOLARES: POLARIZACIÓN Y GENERADORES DE CORRIENTE

PRÁCTICA 3 TRANSISTORES BIPOLARES: POLARIZACIÓN Y GENERADORES DE CORRIENTE PÁCTCA 3 TANSSTOES BPOLAES: POLAZACÓN Y GENEADOES DE COENTE 1. OBJETVO. Se pretende que el alumno tome contacto, por primera vez en la mayor parte de los casos, con transistores bipolares, y que realice

Más detalles

Transistor bipolar de unión: Polarización.

Transistor bipolar de unión: Polarización. lectrónica Analógica 4 Polarización del transistor bipolar 4.1 lección del punto de operación Q Transistor bipolar de unión: Polarización. l término polarización se refiere a la aplicación de tensiones

Más detalles

TEORIA DE CIRCUITOS. CURSO PRÁCTICA 4. RESPUESTA FRECUENCIAL EN REGIMEN PERMANENTE SENOIDAL

TEORIA DE CIRCUITOS. CURSO PRÁCTICA 4. RESPUESTA FRECUENCIAL EN REGIMEN PERMANENTE SENOIDAL 1 INGENIERIA TENIA INDUSTRIAL. ELETRONIA INDUSTRIAL TEORIA DE IRUITOS. URSO 2003-2004 PRÁTIA 4. RESPUESTA FREUENIAL EN REGIMEN PERMANENTE SENOIDAL PRIMERA PARTE: SIMULAIÓN EN PSPIE INTRODUIÓN El objetivo

Más detalles

Circuitos resistivos activos. Primera parte

Circuitos resistivos activos. Primera parte Circuitos resistivos activos. Primera parte Objetivos 1. Analizar circuitos equivalentes de transistores constituidos por resistores y fuentes dependientes. 2. Explicar las características del amplificador

Más detalles

Amplificadores Operacionales

Amplificadores Operacionales Amplificadores Operacionales Introducción l amplificador operacional es básicamente un amplificador de tensión con la particularidad de tener dos entradas, y amplificar solo la señal diferencia entre ellas.

Más detalles

Podemos plantear un sencillo esquema de alarma como el de la figura: V REF 3600( ) T

Podemos plantear un sencillo esquema de alarma como el de la figura: V REF 3600( ) T Lección 4. MEDIDA DE LA EMPEAUA. Diseñe un sistema de alarma de temperatura utilizando una NC. Deberá activarse cuando la temperatura ascienda por encima de ºC con una exactitud de ºC. Datos: B36K, kω@5ºc,

Más detalles

Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas

Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas Pr.B.4. Detección de luz e imágenes 1. Un detector de Ge debe ser usado en un sistema de comunicaciones

Más detalles

Circuito de Offset

Circuito de Offset Figura 3.3 Conexión del Amplificador Los cálculos para la ganancia son simples y se muestran en la ecuación (3.), en estas se puede observar que para el cálculo de la ganancia es necesario establecer el

Más detalles

AMPLIFICADOR OPERACIONAL REALIMENTADO

AMPLIFICADOR OPERACIONAL REALIMENTADO AMPLIFICADOR OPERACIONAL REALIMENTADO INDICE DE TEMAS Tema Pag 1 INTRODUCCION 7 2 EL AMPLIFICADOR OPERACIONAL IDEAL 7 3 EL AMPLIFICADOR OPERACIONAL PRACTICO 7 4 GANANCIA DE TENSIÓN Y ANCHO DE BANDA 8 5

Más detalles

Laboratorio de Electrónica III Práctica I

Laboratorio de Electrónica III Práctica I Laboratorio de Electrónica III Práctica I Características Eléctricas de los Amplificadores Operacionales OBJETIO: Al término de esta práctica el alumno aprenderá medir las características eléctricas más

Más detalles

INTRODUCCIÓN: OBJETIVOS:

INTRODUCCIÓN: OBJETIVOS: INTRODUCCIÓN: En el desarrollo de esta práctica se observará experimentalmente el comportamiento del transistor bipolar BJT como amplificador, mediante el diseño, desarrollo e implementación de dos amplificadores

Más detalles

INSTITUTO DE FORMACIÓN DOCENTE CONTINUA VILLA MERCEDES

INSTITUTO DE FORMACIÓN DOCENTE CONTINUA VILLA MERCEDES PROFESOR: ING. Juan Omar IBAÑEZ ÁREA: TECNOLOGÍA CARRERA: PROFESORADO EN EDUCACIÓN TECNOLÓGICA ESPACIO CURRICULAR: ELECTRICIDAD Y ELECTRÓNICA INSTITUTO DE FORMACIÓN DOCENTE CONTINUA VILLA MERCEDES PROGRAMA

Más detalles

Amplificadores Operacionales

Amplificadores Operacionales Amplificadores Operacionales Configuraciones básicas del amplificador operacional Los amplificadores operacionales se pueden conectar según dos circuitos amplificadores básicos: las configuraciones (1)

Más detalles

Herramientas Integradas para Laboratorios de Electrónica

Herramientas Integradas para Laboratorios de Electrónica Herramientas Integradas para Laboratorios de Electrónica NI Educational Laboratory Virtual Instrumentation Suite (NI ELVIS) Integración y funcionalidad con múltiples instrumentos. Combina instrumentación,

Más detalles

CAPITULO 1 SINOPSIS. La Figura muestra el circuito que usaremos como base para construir varios ejemplos.

CAPITULO 1 SINOPSIS. La Figura muestra el circuito que usaremos como base para construir varios ejemplos. 1 CAPITULO 1 SINOPSIS El propósito de este capítulo no es el de disminuir el entusiasmo del lector por leer el libro, delatando su contenido. En vez de eso se pretende que, mediante el uso de un circuito

Más detalles

TEMA 7. FAMILIAS LOGICAS INTEGRADAS

TEMA 7. FAMILIAS LOGICAS INTEGRADAS TEMA 7. FAMILIAS LOGICAS INTEGRADAS http://www.tech-faq.com/wp-content/uploads/images/integrated-circuit-layout.jpg IEEE 25 Aniversary: http://www.flickr.com/photos/ieee25/with/289342254/ TEMA 7 FAMILIAS

Más detalles

Práctica Nº 5 AMPLIFICADORES OPERACIONALES.

Práctica Nº 5 AMPLIFICADORES OPERACIONALES. Práctica Nº 5 AMPLIFICADORES OPERACIONALES. 1. INTRODUCCION. El concepto original del amplificador operacional procede del campo de los computadores analógicos, en los que comenzaron a usarse técnicas

Más detalles

Transistor BJT; Respuesta en Baja y Alta Frecuencia

Transistor BJT; Respuesta en Baja y Alta Frecuencia Transistor BJT; Respuesta en Baja y Alta Frecuencia Universidad de San Carlos de Guatemala, Facultad de Ingeniería, Escuela de Mecánica Eléctrica, Laboratorio de Electrónica 2, Segundo Semestre 206, Aux.

Más detalles

Tema 4 CIRCUITOS AMPLIFICADORES DE PEQUEÑA SEÑAL ENTRADA SIMPLE

Tema 4 CIRCUITOS AMPLIFICADORES DE PEQUEÑA SEÑAL ENTRADA SIMPLE Tema 4 CIRCUITOS AMPLIFICADORES DE PEQUEÑA SEÑAL ENTRADA SIMPLE Tema 4: Nociones generales Estructuras ideales CLASIFICACIÓN Salida Corriente Salida Tensión Entrada Corriente A. de Corriente Transrresistor

Más detalles

Universidad de Alcalá

Universidad de Alcalá Universidad de Alcalá Departamento de Electrónica CONVERSORES ANALÓGICO-DIGITALES Y DIGITALES-ANALÓGICOS Tecnología de Computadores Ingeniería en Informática Sira Palazuelos Manuel Ureña Mayo 2009 Índice

Más detalles

Experimento 6: Transistores MOSFET como conmutadores y compuertas CMOS

Experimento 6: Transistores MOSFET como conmutadores y compuertas CMOS Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Profesores: Ing. Sergio Morales, Ing. Pablo Alvarado, Ing. Eduardo Interiano Laboratorio de Elementos Activos II Semestre 2006 I Experimento

Más detalles

MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC. El modelo también aplica para transistores pnp sin cambio de polaridades

MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC. El modelo también aplica para transistores pnp sin cambio de polaridades MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC El modelo también aplica para transistores pnp sin cambio de polaridades MODELOS DE PEQUEÑA SEÑAL: EL MODELO T Se eliminan las fuentes

Más detalles

RESPUESTA EN FRECUENCIA DE BJT Y FET INTRODUCION

RESPUESTA EN FRECUENCIA DE BJT Y FET INTRODUCION RESPUESTA EN FRECUENCIA DE BJT Y FET INTRODUCION Hasta el momento no se han considerado los efectos de las capacitancías e inductancias en el análisis de los circuitos con transistores es decir se han

Más detalles

Diseño, medida y verificación n de un mezclador en CMOS 0.35 m para un receptor basado en el estándar IEEE a.

Diseño, medida y verificación n de un mezclador en CMOS 0.35 m para un receptor basado en el estándar IEEE a. Diseño, medida y verificación n de un mezclador en CMOS 0.35 m para un receptor basado en el estándar IEEE 80.11a. Titulación: Ingeniería Electrónica Tutores: Francisco Javier del Pino Suárez Autor: Roberto

Más detalles

TIEMPO: 1:30 h. PROBLEMA 1 Q 1. 0.8 pf. v s Q 2. A v = f H = R en =

TIEMPO: 1:30 h. PROBLEMA 1 Q 1. 0.8 pf. v s Q 2. A v = f H = R en = TIEMPO: 1:30 h. PROBLEMA 1 Para el circuito de la figura calcular la ganancia del centro de la banda (A V ), la resistencia de entrada (R en ) y el polo dominante de alta frecuencia (f H ) empleando el

Más detalles

AUDIO DIGITAL. Diego Cabello Ferrer Dpto. Electrónica y Computación Universidad de Santiago de Compostela

AUDIO DIGITAL. Diego Cabello Ferrer Dpto. Electrónica y Computación Universidad de Santiago de Compostela AUDIO DIGITAL Diego Cabello Ferrer Dpto. Electrónica y Computación Universidad de Santiago de Compostela 1. Introducción Señal de audio: onda mecánica Transductor: señal eléctrica Las variables físicas

Más detalles

Retardo de transporte

Retardo de transporte Retardo de transporte Escalón Escalón con retardo de transporte T Retardo de Transporte. Ejemplo de un Tiristor Tiempo Muerto Ángulo de Disparo (desde controlador) Pulso de disparo Nuevo Pulso de disparo

Más detalles

PRACTICA 1 CIRCUITO AMPLIFICADOR EN EMISOR COMÚN CON POLARIZACIÓN FIJA. Objetivo:

PRACTICA 1 CIRCUITO AMPLIFICADOR EN EMISOR COMÚN CON POLARIZACIÓN FIJA. Objetivo: PRACTICA 1 CIRCUITO AMPLIFICADOR EN EMISOR COMÚN CON POLARIZACIÓN FIJA Objetivo: Comprender el comportamiento de un transistor en un amplificador. Diseñando y comprobando las diferentes configuraciones

Más detalles

UD10. AMPLIFICADOR OPERACIONAL

UD10. AMPLIFICADOR OPERACIONAL UD10. AMPLIFICADOR OPERACIONAL Centro CFP/ES Diagrama de bloques El esquema interno de un amplificador operacional está compuesto por un circuito de transistores, en el cual podemos distinguir tres bloques:

Más detalles

Circuitos de RF y las Comunicaciones Analógicas. Capítulo II: Circuitos resonantes y Redes de acople

Circuitos de RF y las Comunicaciones Analógicas. Capítulo II: Circuitos resonantes y Redes de acople Capítulo II: Circuitos resonantes y Redes de acople 21 22 2. Circuitos Resonantes y Redes de Acople En este capítulo se estudiaran los circuitos resonantes desde el punto de vista del factor de calidad

Más detalles

EL TEMPORIZADOR 555 FUNCIONAMIENTO BÁSICO. FUNCIONAMIENTO COMO MONOESTABLE. FUNCIONAMIENTO COMO AESTABLE

EL TEMPORIZADOR 555 FUNCIONAMIENTO BÁSICO. FUNCIONAMIENTO COMO MONOESTABLE. FUNCIONAMIENTO COMO AESTABLE EL TEMPORIZADOR 555 FUNCIONAMIENTO BÁSICO. FUNCIONAMIENTO COMO MONOESTABLE. FUNCIONAMIENTO COMO AESTABLE EL TEMPORIZADOR 555. El temporizador 555 es un dispositivo versátil y muy utilizado, por que puede

Más detalles

CAPITULO XII PUENTES DE CORRIENTE ALTERNA

CAPITULO XII PUENTES DE CORRIENTE ALTERNA CAPITULO XII PUENTES DE CORRIENTE ALTERNA 2. INTRODUCCION. En el Capítulo IX estudiamos el puente de Wheatstone como instrumento de medición de resistencias por el método de detección de cero. En este

Más detalles

Electrónica de Comunicaciones. Septiembre de 2009.

Electrónica de Comunicaciones. Septiembre de 2009. Electrónica de omunicaciones. Septiembre de 2009. (Teoría) IMPORTANTE: La revisión de la parte teórica del examen tendrá lugar el día 15 de septiembre, a las 10:30 h en el Seminario Heaviside. 1. TEST

Más detalles

UNIDAD II FET Y OTROS DISPOSITIVOS PNPN. ACT 10 TRABAJO COLABORATIVO No. 2

UNIDAD II FET Y OTROS DISPOSITIVOS PNPN. ACT 10 TRABAJO COLABORATIVO No. 2 UNIDAD II FET Y OTROS DISPOSITIVOS PNPN ACT 10 TRABAJO COLABORATIVO No. 2 Nombre de curso: Electrónica Básica - 201419 Temáticas revisadas: El FET, polarizaciones del FET y otros dispositivos PNPN Aspectos

Más detalles

RECOMENDACIÓN UIT-R BS *,** Medición del nivel de tensión del ruido de audiofrecuencia en radiodifusión sonora

RECOMENDACIÓN UIT-R BS *,** Medición del nivel de tensión del ruido de audiofrecuencia en radiodifusión sonora Rec. UIT-R BS.468-4 1 RECOMENDACIÓN UIT-R BS.468-4 *,** Medición del nivel de tensión del ruido de audiofrecuencia en radiodifusión sonora La Asamblea de Radiocomunicaciones de la UIT, (1970-1974-1978-1982-1986)

Más detalles

1. Concepto de amplificación de señales en los circuitos de control Amplificadores estáticos Amplificadores magnéticos...

1. Concepto de amplificación de señales en los circuitos de control Amplificadores estáticos Amplificadores magnéticos... Contenido 1. Concepto de amplificación de señales en los circuitos de control.... 2 2. Amplificadores estáticos.... 2 2.1. Amplificadores magnéticos... 2 2.2. Amplificadores electrónicos.... 3 3. Amplificadores

Más detalles

TEMA: OPERADOR COMO COMPARADOR

TEMA: OPERADOR COMO COMPARADOR TEMA: OPERADOR COMO COMPARADOR Objetivo: Utilizar el opam como controlador en sistemas de control todo o nada. Explicar cómo funciona un comparador y describir la importancia del punto de referencia. Describir

Más detalles

EL42A - Circuitos Electrónicos Clase No. 5: Circuitos Limitadores y Otras Aplicaciones

EL42A - Circuitos Electrónicos Clase No. 5: Circuitos Limitadores y Otras Aplicaciones EL42A - Circuitos Electrónicos Clase No. 5: Circuitos Limitadores y Otras Aplicaciones Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 13 de Agosto de 2009

Más detalles

Medida de magnitudes mecánicas

Medida de magnitudes mecánicas Medida de magnitudes mecánicas Introducción Sensores potenciométricos Galgas extensiométricas Sensores piezoeléctricos Sensores capacitivos Sensores inductivos Sensores basados en efecto Hall Sensores

Más detalles

Consumo de Potencia en CMOS

Consumo de Potencia en CMOS Consumo de Potencia en CMOS Lección 04.3 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Consumo de Potencia en CMOS

Más detalles

Circuitos Sample & Hold y Conversores. Introducción

Circuitos Sample & Hold y Conversores. Introducción Circuitos Sample & Hold y Conversores Introducción Los circuitos de muestreo y retención se utilizan para muestrear una señal analógica en un instante dado y mantener el valor de la muestra durante tanto

Más detalles

Polarización del Transistor de Unión Bipolar (BJT)

Polarización del Transistor de Unión Bipolar (BJT) Polarización del Transistor de Unión Bipolar (BJT) J. I. Huircan Universidad de La Frontera November 21, 2011 Abstract Se tienen tres formas básicas para la polarización de un BJT: Polarización ja, autopolarización

Más detalles

APLICACIONES LINEALES DEL AMPLIFICADOR OPERACIONAL

APLICACIONES LINEALES DEL AMPLIFICADOR OPERACIONAL UNIVERSIDAD DEL VALLE ESCUELA DE INGENIERIA ELÉCTRICA Y ELÉCTRONICA CÁTEDRA DE PERCEPCIÓN Y SISTEMAS INTELIGENTES LABORATORIO N Fundamentos de Electrónica APLICACIONES LINEALES DEL AMPLIFICADOR OPERACIONAL

Más detalles

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca.

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Página 1 de 7 TENSION ALTERNA En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Puede definirse un voltaje alterno como el que varía

Más detalles

Universidad Nacional Autónoma de Honduras. Escuela de Física. Electricidad y magnetismo II Fs-415. Filtros Eléctricos y sus aplicaciones

Universidad Nacional Autónoma de Honduras. Escuela de Física. Electricidad y magnetismo II Fs-415. Filtros Eléctricos y sus aplicaciones Universidad Nacional Autónoma de Honduras Escuela de Física Electricidad y magnetismo II Fs-415 Filtros Eléctricos y sus aplicaciones Introducción: Todo circuito eléctrico que tenga incluidas capacitancias

Más detalles

Determinar la relación entre ganancias expresada en db (100 ptos).

Determinar la relación entre ganancias expresada en db (100 ptos). ELECTRONICA Y TELECOMUNICACIONES Competencia rupal Niel Segunda Instancia PROBLEMA N 1 El personal técnico de una empresa que se dedica a caracterizar antenas se ha propuesto determinar la relación entre

Más detalles