PRÁCTICA 5. SIMULACIÓN DE MODELOS DE PEQUEÑA SEÑAL

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRÁCTICA 5. SIMULACIÓN DE MODELOS DE PEQUEÑA SEÑAL"

Transcripción

1 PRÁCTICA 5. SIMULACIÓN DE MODELOS DE PEQUEÑA SEÑAL 1. Objetivo Se pretende conocer el modelo de pequeña señal del transistor MOS, y su utilización para la obtención de los parámetros de funcionamiento de un circuito. En la práctica se comprobará como el modelo de pequeña señal es una aproximación válida para un rango de frecuencias, y un modelo completo para la simulación proporciona la misma información. 2. Material necesario 1. Ordenador personal 2. Software MicroCAP V 3. Disquete para guardar los resultados obtenidos 3. Conocimientos previos Se va a simular el siguiente montaje de amplificador con MOSFET en fuente común. Figura 1 Los valores de los elementos serán los siguientes: Ri = 5K Ci = 100n RD = 3K RS = 3K Co = 1u Cs = 1u 1

2 RL = 50K Vdd = 10V R1=2.5 M Ω El MOSFET tiene como parámetros V t =2 V k n =0.5 ma/v 2 λ = 1.1e-2 V -1 w/l = 20u/20u El MOSFET se encuentra en zona activa si en el punto de polarización se cumple que V DS > V GS V t. El punto de polarización viene dado por la intersección de la recta de carga con la característica del transistor. La recta de carga es la ecuación obtenida del circuito (sin tener en cuenta el transistor) que relaciona I D con V GS. La característica de un MOSFET es la ecuación I D =(k n /2)(w/L)(V GS -V t ) 2 en zona activa. Como ambas ecuaciones tienen que cumplirse simultáneamente, la intersección de las dos curvas proporciona el punto de polarización, o de funcionamiento del circuito. El modelo de pequeña señal de un MOSFET en activa para frecuencias medias se muestra en la siguiente figura. Figura 2 En el modelo, la transconductancia g m viene dada por la expresión g m= 2 k w n L I Q D y la resistencia de salida r 0 por Q r 0 = 1/λI D Cuando la resistencia de carga RL es grande, la ganancia en tensiones del circuito se puede aproximar por la expresión A V = g m RD Antes de realizar la práctica, el alumno deberá contestar las cuestiones previas, y anotar los valores siguientes, ya que serán necesarios en el desarrollo de la práctica. R2 (obtenido en la cuestión 1) = g m = r 0 = 2

3 4. Realización de la práctica 1. Polarización del circuito Con el valor de R2 calculado, obtener el punto de polarización del circuito usando MicroCAP. En concreto, obtener los valores de V DS, V GS e I D. 2. Respuestas en frecuencia y transitoria del modelo completo Obtener la respuesta en frecuencia (análisis AC) del circuito entre las frecuencias de 10 Hz y 1000 MHz. Cuál es el ancho de banda aproximado del circuito? Y la ganancia máxima? Generar una onda senoidal en la fuente de entrada, de amplitud 0.5 V y frecuencia 100 khz. Obtener la respuesta transitoria durante un intervalo de 50 us. Fijar el tiempo de paso en 0.1 us. Hallar la ganancia en tensiones. 3. Respuestas usando el modelo de pequeña señal En un fichero nuevo, diseñar el esquemático correspondiente al modelo de pequeña señal del circuito. Para ello, sustituir el transistor por su modelo de pequeña señal, poner las fuentes de tensión continua a tierra, y sustituir los condensadores por cortocircuitos. Obtener la respuesta en frecuencia (análisis AC) del circuito entre las frecuencias de 10 Hz y 1000 MHz. Cuál es ahora el ancho de banda aproximado del circuito? Y la ganancia máxima? Generar una onda senoidal en la fuente de entrada, de amplitud 0.5 V y frecuencia 100 khz. Obtener la respuesta transitoria durante un intervalo de 50 ms. Fijar el tiempo de paso en 0.1 us. Hallar la ganancia en tensiones. Comparar los resultados obtenidos en los análisis usando el modelo de pequeña señal con los obtenidos usando el modelo completo. 5. Modelo del transistor El modelo del transistor MOSFET debe tener los siguientes parámetros:.model nfet nmos(vto=2 kp=0.5e-3 lambda=1.1e-2 CGDO=3.7593E-10 +CGSO=3.7593E-10 CGBO=3.9487E-10 CJ=9.2516E-05 MJ= CJSW=4.8928E-10) Además deberán especificarse la anchura y longitud (w y L). 3

4 6. Memoria de resultados Guardar para consulta posterior NOMBRE: 1. Anotar los valores de V DS, V GS e I D obtenidos en el análisis de polarización. V DS = V GS = I D = 2. Dibujar aproximadamente la ganancia en función de la frecuencia obtenida en el análisis AC. Cuál es el ancho de banda aproximado? Y la ganancia máxima? 3. Anotar la ganancia en tensión obtenida con el análisis transitorio usando el modelo completo. 4. Usando el circuito que incluye el modelo de pequeña señal, realizar el análisis AC y anotar los valores obtenidos ahora para el ancho de banda y la ganancia máxima. 5. A qué se deben las diferencias obtenidas en el análisis AC entre el modelo completo y el modelo de pequeña señal? 6. Calcular el valor de ganancia en tensión en el análisis transitorio usando el modelo de pequeña señal 4

5 7. Cuestiones previas Entregar antes del comienzo de la práctica NOMBRE: 1. Deducir y dibujar la recta de carga I D =I D (V GS ) del circuito. 2. Determinar el punto de polarización (I D, V DS ), obtenido como la intersección de la recta de carga con la característica de entrada I D =(k n /2)(w/L)(V GS -V t ) 2 del MOSFET, para que la ganancia en tensión del amplificador sea Determinar el valor de R2 que proporciona el punto de polarización hallado en la pregunta anterior. 4. Calcular los valores del modelo de pequeña señal (g m y r 0 ), para el punto de polarización hallado. 5. Anotar en el espacio designado para ello los valores pedidos, ya que serán necesarios para el desarrollo de la práctica. 5

PRÁCTICA 9. SIMULACIÓN DE MODELOS DE PEQUEÑA SEÑAL

PRÁCTICA 9. SIMULACIÓN DE MODELOS DE PEQUEÑA SEÑAL PRÁCTICA 9. SIMULACIÓN DE MODELOS DE PEQUEÑA SEÑAL 1. Objetivo Se pretende conocer el modelo de pequeña señal del transistor MOS, y su utilización para la obtención de los parámetros de funcionamiento

Más detalles

PRÁCTICA 3. Simulación de amplificadores con transistores

PRÁCTICA 3. Simulación de amplificadores con transistores PRÁCTICA 3. Simulación de amplificadores con transistores 1. Objetivo El objetivo de la práctica es recordar el uso de MicroCap, esta vez en su versión de simulador de circuitos analógicos, analizando

Más detalles

Dispositivos Semiconductores Última actualización: 2 do Cuatrimestre de 2013 V GS = 3.0 V V GS = 2.5 V V GS = 2.

Dispositivos Semiconductores  Última actualización: 2 do Cuatrimestre de 2013 V GS = 3.0 V V GS = 2.5 V V GS = 2. Guía de Ejercicios N o 8: Aplicacion de transistores en circuitos analogicos Parte I: Amplificadores con MOSFET 1. Dada la curva de I D vs. V DS de la figura 1a y el circuito de la figura 1b, con V dd

Más detalles

PRÁCTICA 13. CIRCUITO AMPLIFICADOR MONOETAPA CON BJT

PRÁCTICA 13. CIRCUITO AMPLIFICADOR MONOETAPA CON BJT PRÁCTICA 13. CIRCUITO AMPLIFICADOR MONOETAPA CON BJT 1. Objetivo Se pretende conocer el funcionamiento de un amplificador monoetapa basado en un transistor BJT Q2N2222. 2. Material necesario Se necesita

Más detalles

DOS TRANSISTORES. AMPLIFICADOR CON UN TRANSISTOR NPN Y OTRO PNP. a) Polarización. β = 100 y Vbe 0 0,7V.

DOS TRANSISTORES. AMPLIFICADOR CON UN TRANSISTOR NPN Y OTRO PNP. a) Polarización. β = 100 y Vbe 0 0,7V. DOS TRANSISTORES AMPLIFICADOR CON UN TRANSISTOR NPN Y OTRO PNP. a) Polarización. β = 100 y Vbe 0 0,7V. En primer lugar se calcula el Thevenin equivalente del circuito de base de Q1 y todas las variables

Más detalles

1º Escuela Técnica Superior de Ingeniería de Telecomunicación TECNOLOGÍA Y COMPONENTES ELECTRÓNICOS Y FOTÓNICOS. PROBLEMAS de transistores MOS

1º Escuela Técnica Superior de Ingeniería de Telecomunicación TECNOLOGÍA Y COMPONENTES ELECTRÓNICOS Y FOTÓNICOS. PROBLEMAS de transistores MOS 1º Escuela écnica Superior de Ingeniería de elecomunicación ECNOLOGÍA Y COMPONENES ELECRÓNICOS Y FOÓNICOS 4 PROBLEMAS de transistores MOS EJERCICIOS de diodos: ECNOLOGÍA Y COMPONENES ELECRÓNICOS Y FOÓNICOS

Más detalles

AMPLIFICADOR DRAIN COMÚN

AMPLIFICADOR DRAIN COMÚN AMPLIFICADOR DRAIN COMÚN * Circuito equivalente con el modelo π incluyendo ro * Ganancia de voltaje Se define Rp = RC//RL//r Es menor que 1 La salida está en fase con la entrada Resistencia de entrada

Más detalles

VGD = 0 < Vt = 2 Están en saturación Ecuaciones en el circuito MOSFET de la izquierda Iref = ID:

VGD = 0 < Vt = 2 Están en saturación Ecuaciones en el circuito MOSFET de la izquierda Iref = ID: ESPEJO DE CORRIENTE CON MOSFET Hallar los valores de los voltajes y corrientes en el circuito. VGD = 0 < Vt = 2 Están en saturación Ecuaciones en el circuito MOSFET de la izquierda Iref = ID: Ecuación

Más detalles

Electrónica 1. Práctico 2 Amplificadores operacionales 2

Electrónica 1. Práctico 2 Amplificadores operacionales 2 Electrónica 1 Práctico 2 Amplificadores operacionales 2 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

Se suele emplear la extensión.cir para este tipo de ficheros. A lo largo de esta práctica se recordarán los elementos anteriormente descritos.

Se suele emplear la extensión.cir para este tipo de ficheros. A lo largo de esta práctica se recordarán los elementos anteriormente descritos. Departamento de Ingeniería Electrónica http:/www.gte.us.es/asign/dcse_1ie/ Pag 1 PRACTICA 1: Etapa amplificadora MOS simple 1 Introducción 2 Montaje 1: Fuente Común con resistencia 2.1 Modelo DC y AC 2.2

Más detalles

PRÁCTICA 1. AMPLIFICADORES MONOETAPA CON BJT

PRÁCTICA 1. AMPLIFICADORES MONOETAPA CON BJT PRÁCTICA 1. AMPLIFICADORES MONOETAPA CON BJT 1. Objetivo El objetivo de la práctica es comprobar experimentalmente la amplificación de dos monoetapas con un transistor BJT (emisor común y colector común)

Más detalles

Electrónica 2. Práctico 3 Alta Frecuencia

Electrónica 2. Práctico 3 Alta Frecuencia Electrónica 2 Práctico 3 Alta Frecuencia Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

Índice...9. Presentación Referencias y nomenclatura Aplicación multimedia Contenidos del CD-ROM...23

Índice...9. Presentación Referencias y nomenclatura Aplicación multimedia Contenidos del CD-ROM...23 Índice Índice...9 Presentación...13 Referencias y nomenclatura...15 Aplicación multimedia...21 Contenidos del CD-ROM...23 Capítulo 1: Metodología de trabajo: Equipamiento y normativa...29 1.1 Metodología

Más detalles

PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR

PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional, en particular de tres de sus

Más detalles

TEMA 6: Amplificadores con Transistores

TEMA 6: Amplificadores con Transistores TEMA 6: Amplificadores con Transistores Contenidos del tema: El transistor como amplificador. Característica de gran señal Polarización. Parámetros de pequeña señal Configuraciones de amplificadores con

Más detalles

PRÁCTICA 11. OSCILACIÓN EN AMPLIFICADORES REALIMENTADOS

PRÁCTICA 11. OSCILACIÓN EN AMPLIFICADORES REALIMENTADOS PRÁCTICA 11. OSCILACIÓN EN AMPLIFICADORES REALIMENTADOS 1. Objetivo El objetivo de la práctica es comprobar experimentalmente el problema de la oscilación en amplificadores realimentados. Dicho problema

Más detalles

Tema 4: Respuesta en frecuencia de los amplificadores

Tema 4: Respuesta en frecuencia de los amplificadores Tema 4: Respuesta en frecuencia de los amplificadores Introducción 1 Introducción Motivación Objetivos Revisión Modelos de componentes en alta frecuencia 2 Herramientas de análisis 3 Respuesta en frecuencia

Más detalles

Diseño de un Amplificador Operacional totalmente integrado CMOS que funcione como driver para cargas capacitivas elevadas

Diseño de un Amplificador Operacional totalmente integrado CMOS que funcione como driver para cargas capacitivas elevadas Diseño de un Amplificador Operacional totalmente integrado CMOS que funcione como driver para cargas capacitivas elevadas Titulación: Sistemas Electrónicos Tutores: Francisco Javier del Pino Suárez Sunil

Más detalles

Electrónica 2. Práctico 3 Alta Frecuencia

Electrónica 2. Práctico 3 Alta Frecuencia Electrónica 2 Práctico 3 Alta Frecuencia Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

PRÁCTICA 10. EMISOR COMÚN Y COLECTOR COMÚN

PRÁCTICA 10. EMISOR COMÚN Y COLECTOR COMÚN PRÁCTICA 10. EMISOR COMÚN Y COLECTOR COMÚN 1. Objetivo El objetivo de la práctica es comprobar experimentalmente la amplificación de dos monoetapas con un transistor BJT (emisor común y colector común)

Más detalles

8. El amplificador operacional. Aplicaciones lineales

8. El amplificador operacional. Aplicaciones lineales 8. El amplificador operacional. Aplicaciones lineales Objetivos: Analizar, con ayuda de MicroCAP, algunas aplicaciones del amplificador operacional cuando trabaja en la zona lineal: amplificador inversor,

Más detalles

7. Respuesta en frecuencia del amplificador

7. Respuesta en frecuencia del amplificador 7. Respuesta en frecuencia del amplificador Objetivos: Obtención, mediante simulación y con los equipos del laboratorio, de las frecuencias de corte inferior y superior del transistor y análisis de los

Más detalles

INTRODUCCIÓN: OBJETIVOS:

INTRODUCCIÓN: OBJETIVOS: INTRODUCCIÓN: En el desarrollo de esta práctica se observará experimentalmente el comportamiento del transistor bipolar BJT como amplificador, mediante el diseño, desarrollo e implementación de dos amplificadores

Más detalles

EXAMEN DE ELECTRÓNICA ANALÓGICA.- CONVOCATORIA º CURSO DE INGENIERÍA TÉCNICA EN ELECTRÓNICA INDUSTRIAL

EXAMEN DE ELECTRÓNICA ANALÓGICA.- CONVOCATORIA º CURSO DE INGENIERÍA TÉCNICA EN ELECTRÓNICA INDUSTRIAL 1 a PARTE DEL EXAMEN: PREGUNTAS DE TEORÍA: 1) Modelo del diodo de silicio para pequeñas señales (Frecuencia de la c.a lo suficientemente baja como para no tener en cuenta los efectos capacitivos de la

Más detalles

PRÁCTICA 4. Polarización de transistores en emisor/colector común

PRÁCTICA 4. Polarización de transistores en emisor/colector común PRÁCTICA 4. Polarización de transistores en emisor/colector común 1. Objetivo El objetivo de la práctica es comprobar experimentalmente la polarización de un transistor y la influencia de distintos parámetros

Más detalles

AMPLIFICACIÓN: ESTRUCTURAS BÁSICAS

AMPLIFICACIÓN: ESTRUCTURAS BÁSICAS 1 DISPOSITIVOS ELECTRÓNICOS II Dispositivos Electrónicos II CURSO 2010-11 Temas 4,5 4,5 AMPLIFICACIÓN: ESTRUCTURAS BÁSICAS Miguel Ángel Domínguez Gómez Camilo Quintáns Graña PARTAMENTO TECNOLOGÍA ELECTRÓNICA

Más detalles

4. OSCILADORES R F R A

4. OSCILADORES R F R A 4. OSIADOES F (Sep.94). En el siguiente circuito oscilador, calcular: a) a ganancia de lazo b) a frecuencia de oscilación c) a condición de oscilación Nota: el A.O. es ideal A Sol. (b) ω ο = / (c) F A

Más detalles

Electrónica 1. Práctico 2 Amplificadores operacionales 2

Electrónica 1. Práctico 2 Amplificadores operacionales 2 Electrónica 1 Práctico 2 Amplificadores operacionales 2 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

Capítulo VI: COMPARACIÓN DE RESULTADOS TEÓRICOS Y EXPERIMENTALES

Capítulo VI: COMPARACIÓN DE RESULTADOS TEÓRICOS Y EXPERIMENTALES Capítulo VI: COMPARACIÓN DE RESULTADOS TEÓRICOS Y EXPERIMENTALES Proyecto Fin de Carrera 71 Antonio Andújar Caballero 6. COMPARACIÓN DE RESULTADOS TEÓRICOS Y REALES. La comparación entre los resultados

Más detalles

DEPARTAMENTO DE TEORÍA DE LA SEÑAL Y COMUNICACIONES ANÁLISIS Y SÍNTESIS DE CIRCUITOS PRÁCTICA 3: Diseño de Filtros Activos

DEPARTAMENTO DE TEORÍA DE LA SEÑAL Y COMUNICACIONES ANÁLISIS Y SÍNTESIS DE CIRCUITOS PRÁCTICA 3: Diseño de Filtros Activos DEPARTAMENTO DE TEORÍA DE LA SEÑAL Y COMUNICACIONES ANÁLISIS Y SÍNTESIS DE CIRCUITOS PRÁCTICA 3: Diseño de Filtros Activos Curso 2009-2010 ÍNDICE 1. Objetivos. 2 2. Herramientas. 2 3. Desarrollo y cuestiones.

Más detalles

GANANCIA EN CIRCUITOS AMPLIFICADORES. LAURA MAYERLY ÁLVAREZ JIMÉNEZ ( ) MARÍA ALEJANDRA MEDINA OSPINA ( ) RESUMEN

GANANCIA EN CIRCUITOS AMPLIFICADORES. LAURA MAYERLY ÁLVAREZ JIMÉNEZ ( ) MARÍA ALEJANDRA MEDINA OSPINA ( ) RESUMEN GANANCIA EN CIRCUITOS AMPLIFICADORES. LAURA MAYERLY ÁLVAREZ JIMÉNEZ (20112007038) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN Observar la amplificación del transistor mediante un análisis y diseño

Más detalles

Pr.A Boletín de problemas de la Unidad Temática A.I: Características principales y utilización

Pr.A Boletín de problemas de la Unidad Temática A.I: Características principales y utilización Pr.A Boletín de problemas de la Unidad Temática A.I: Características principales y utilización Pr.A.1. El diodo 1. Obtener de forma gráfica la corriente que circula por el diodo del siguiente circuito

Más detalles

Electrónica Analógica

Electrónica Analógica Universidad de Alcalá Departamento de Electrónica Electrónica Analógica Ejercicios Versión: 2014-09-03 Tema 1.1: Fundamentos de amplificación Referencias: Texto base: - Apuntes de la asignatura - Circuitos

Más detalles

SISTEMAS ELECTRÓNICOS DE COMUNICACIÓN

SISTEMAS ELECTRÓNICOS DE COMUNICACIÓN SISTEMAS EECTRÓNICOS DE COMUNICACIÓN PRACTICAS con SPICE Curso 2004-05 Eugenio García Moreno Toni Mateos Sastre RESPUESTA FRECUENCIA DE OS AMPIFICADORES 1. Para los siguientes circuitos, utilizando el

Más detalles

PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II

PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional, en particular de tres de sus montajes típicos que son como

Más detalles

Diseño de un convertidor DC DC reductor tipo BUCK

Diseño de un convertidor DC DC reductor tipo BUCK Diseño de un convertidor DC DC reductor tipo BUCK Ejemplo para la asignatura Electrónica Industrial 24 de abril de 2007 1. Requerimientos V in = 12V V o = 5V I max = 1A I min = 100mA (MC) v o < 50mV f

Más detalles

4. El diodo semiconductor

4. El diodo semiconductor 4. El diodo semiconductor Objetivos: Comprobar el efecto de un circuito rectificador de media onda con una onda senoidal de entrada. Observar cómo afecta la frecuencia en el funcionamiento de un diodo

Más detalles

TIEMPO: 1:00 h. PROBLEMA 1. 1 ma +5 V 10 KΩ M 1 M 2. v s. 0.5 ma -10 V. A v = f H =

TIEMPO: 1:00 h. PROBLEMA 1. 1 ma +5 V 10 KΩ M 1 M 2. v s. 0.5 ma -10 V. A v = f H = TIEMPO: 1:00 h. PROBLEMA 1 Para el circuito de la figura calcular la ganancia del centro de la banda (A V ), y el polo dominante de alta frecuencia (f H ) empleando el método de las constantes de tiempo.

Más detalles

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO FORMA DE PRESENTACIÓN DE LAS ECUACIONES DEL MOSFET DE ENRIQUECIMIENTO Se define Para la región triodo (zona ohmica) VGS

Más detalles

Ejercicios analógicos

Ejercicios analógicos 1. Una empresa de comunicaciones nos ha encargado el diseño de un sistema que elimine el ruido de una transmisión analógica. Los requisitos son tales que toda la componente de frecuencia superior a 10

Más detalles

Tema 9: Estructuras MIS, transistores MOSFET (introducción, zonas de funcionamiento). Fabricación.

Tema 9: Estructuras MIS, transistores MOSFET (introducción, zonas de funcionamiento). Fabricación. Tema 9: Estructuras MIS, transistores MOSFET (introducción, zonas de funcionamiento). Fabricación. Lecturas recomendadas: Circuitos Microelectrónicos, 4ª ed. Cap.5, Sedra/Smith. Ed. Oxford Circuitos Microelectrónicos,

Más detalles

RESPUESTA FRECUENCIAL Función de transferencia del amplificador

RESPUESTA FRECUENCIAL Función de transferencia del amplificador Función de transferencia del amplificador A (db) A (db) A 0 3 db A M 3 db Amplificador directamente acoplado ω BW=ω H -ω L GB=A M ω H ω L ω H ω Amplificador capacitivamente acoplado Ancho de Banda Producto

Más detalles

Tecnología Electrónica

Tecnología Electrónica Universidad de Alcalá Departamento de Electrónica Tecnología Electrónica Ejercicios Versión: 2017-02-23 Capítulos 1 y 2: Transistores: estructura, características y polarización Referencias: Texto base:

Más detalles

Problemas Tema 6. Figura 6.3

Problemas Tema 6. Figura 6.3 Problemas Tema 6 6.1. Se conecta una fuente de voltaje V s =1mV y resistencia interna R s =1MΩ a los terminales de entrada de un amplificador con una ganancia de voltaje en circuito abierto A v0 =10 4,

Más detalles

8.6.2 Funciones no lineales con AO

8.6.2 Funciones no lineales con AO 1. COMPARADOR Los amplificadores comparadores no operan en la región lineal. En este caso se va a simular un comparador con una señal de referencia de 5 V. 1.1. Circuito La Figura 1 muestra el circuito

Más detalles

PRACTICA 5: Filtros (1) 1 Introducción. 1.1 Filtro paso bajo Sallen-Key

PRACTICA 5: Filtros (1) 1 Introducción. 1.1 Filtro paso bajo Sallen-Key PRACTICA 5: Filtros () Introducción. Filtro paso bajo Sallen-Key.2 Filtro paso alto Sallen-Key.3 Aproximación mediante filtros de Butterworth.4 Simulación 2 Cuestionario Introducción El objetivo de esta

Más detalles

'UEWGNC7PKXGTUKVCTKC2QNKVÃEPKECFG+PIGPKGTÈC 6ÃEPKEC+PFWUVTKCN 241$.'/#5. de Respuesta en Frecuencia. Estudio de la Respuesta en Frecuencia

'UEWGNC7PKXGTUKVCTKC2QNKVÃEPKECFG+PIGPKGTÈC 6ÃEPKEC+PFWUVTKCN 241$.'/#5. de Respuesta en Frecuencia. Estudio de la Respuesta en Frecuencia 'UEWGC7PKXGTUKCTKC2QKÃEPKECFGPIGPKGTÈC 6ÃEPKECPFWUTKC (/(&75Ï1,&$%È6,&$ 241$'/#5 de Respuesta en Frecuencia Estudio de la Respuesta en Frecuencia ','4%%15FG4GURWGUCGP (TGEWGPEKC (/(&75Ï1,&$%È6,&$ características:

Más detalles

Práctica 2.- Medida de la resistencia dinámica del diodo de unión. Cálculo del punto Q. El diodo de unión como rectificador.

Práctica 2.- Medida de la resistencia dinámica del diodo de unión. Cálculo del punto Q. El diodo de unión como rectificador. Práctica 2. Medida de la resistencia dinámica del diodo de unión. Cálculo del punto Q. El diodo de unión como rectificador. A. Objetivos Medir la resistencia dinámica del diodo de unión. Determinación

Más detalles

Tema 3: Amplificadores de pequeña señal

Tema 3: Amplificadores de pequeña señal Tema 3: Amplificadores de pequeña señal Índice 1 Conceptos de amplificación 2 Amplificadores monoetapa con transistores bipolares 3 Amplificadores monoetapa con transistores de efecto campo 4 Amplificadores

Más detalles

'UEWGNC7PKXGTUKVCTKC2QNKVÃEPKECFG+PIGPKGTÈC6ÃEPKEC+PFWUVTKCN 241$.'/#5 FGVTCPUKUVQTGU/15('6

'UEWGNC7PKXGTUKVCTKC2QNKVÃEPKECFG+PIGPKGTÈC6ÃEPKEC+PFWUVTKCN 241$.'/#5 FGVTCPUKUVQTGU/15('6 'UEWGNC7PKXGTUKVCTKC2QNKVÃEPKECFG+PIGPKGTÈC6ÃEPKEC+PFWUVTKCN (/(&75Ï1,&$%È6,&$ 241$'/#5 FGVTCPUKUVQTGU/15('6 ','4%+%+15FGVTCPUKUVQTGU/15('6 (/(&75Ï1,&$%È6,&$ D Un determinado transistor MOSFET de enriquecimiento

Más detalles

EC1282 LABORATORIO DE CIRCUITOS PRELABORATORIO Nº 6 PRÁCTICA Nº 8 MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS CIRCUITOS BÁSICOS DEL AMPLIFICADOR

EC1282 LABORATORIO DE CIRCUITOS PRELABORATORIO Nº 6 PRÁCTICA Nº 8 MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS CIRCUITOS BÁSICOS DEL AMPLIFICADOR EC1282 LABORATORIO DE CIRCUITOS PRELABORATORIO Nº 6 PRÁCTICA Nº 8 MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS CIRCUITOS BÁSICOS DEL AMPLIFICADOR OPERACIONAL (OPAM) CONCEPTOS TEÓRICOS PRÁCTICA Nº 8 * CARACTERÍSTICAS

Más detalles

Transistor BJT como Amplificador

Transistor BJT como Amplificador Transistor BJT como Amplificador Lección 05.2 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Transistor BJT como Amplificador

Más detalles

Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 4

Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 4 Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 4 CARACTERISTICAS DEL MOSFET, AMPLIFICADOR SOURCE COMUN Objetivo:

Más detalles

PROBLEMAS Y CUESTIONES. 1. A qué se debe el tiempo de almacenamiento durante el transitorio de on a off de un diodo?

PROBLEMAS Y CUESTIONES. 1. A qué se debe el tiempo de almacenamiento durante el transitorio de on a off de un diodo? PROBLEMAS Y CUESTIONES 1. A qué se debe el tiempo de almacenamiento durante el transitorio de on a off de un diodo? 2. Qué fenómenos físicos tienen lugar durante los transitorios de un diodo? 3. Explique

Más detalles

PROBLEMAS TEMA 1 INTRODUCCIÓN. DEFINICIONES BÁSICAS

PROBLEMAS TEMA 1 INTRODUCCIÓN. DEFINICIONES BÁSICAS INTRODUCCIÓN. DEFINICIONES BÁSICAS PROBLEMA 1 Se desea obtener un filtro paso banda que cumpla las especificaciones indicadas en la plantilla de atenuación de la figura a partir de un filtro paso bajo

Más detalles

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO FORMA DE PRESENTACIÓN DE LAS ECUACIONES DEL MOSFET DE ENRIQUECIMIENTO Se define Para la región triodo (zona ohmica) VGS

Más detalles

Dispositivos Semiconductores Última actualización: 1 do Cuatrimestre de TP N o 4

Dispositivos Semiconductores  Última actualización: 1 do Cuatrimestre de TP N o 4 TP N o 4 Diseño y construcción de un mini-amplificador Condiciones de entrega Fecha de entrega: Viernes 16 de Junio. La entrega debe ser en formato papel en el horario de clase y en formato digital a través

Más detalles

1.- En el circuito de la figura 5.1 la impedancia de salida Ro es. Figura 5.1

1.- En el circuito de la figura 5.1 la impedancia de salida Ro es. Figura 5.1 Tema 5. Amplificadores con BJT 1.- En el circuito de la figura 5.1 la impedancia de salida Ro es RC 1 hre R c 1 Figura 5.1 2.- En el circuito de la figura 5.1 la impedancia de entrada es igual a R1 h ie

Más detalles

Circuitos Electrónicos Analógicos. Práctica 2: Diseño de filtros analógicos. Área de Electrónica Universidad Miguel Hernández

Circuitos Electrónicos Analógicos. Práctica 2: Diseño de filtros analógicos. Área de Electrónica Universidad Miguel Hernández Circuitos Electrónicos Analógicos Práctica 2: Diseño de filtros analógicos Área de Electrónica Universidad Miguel Hernández Objetivos Los objetivos de esta práctica son: Diseñar un filtro de paso bajo,

Más detalles

PRÁCTICA 4: RESPUESTA EN FRECUENCIA Y COMPENSACION P P T T T. 1.-Objetivos.

PRÁCTICA 4: RESPUESTA EN FRECUENCIA Y COMPENSACION P P T T T. 1.-Objetivos. PRÁCTICA 4: RESPUESTA E FRECUECIA Y COMPESACIO 1.-Objetivos. P P P P Medir y conocer la respuesta en frecuencia de los amplificadores. Medir correctamente la ganancia de tensión de un amplificador, en

Más detalles

MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC. El modelo también aplica para transistores pnp sin cambio de polaridades

MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC. El modelo también aplica para transistores pnp sin cambio de polaridades MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC El modelo también aplica para transistores pnp sin cambio de polaridades CORRIENTE DE EMISOR Y RESISTENCIA DE ENTRADA POR EL EMISOR

Más detalles

Guía de Trabajos Prácticos N 7. Amplificadores Operacionales Ideales

Guía de Trabajos Prácticos N 7. Amplificadores Operacionales Ideales Facultad egional Buenos Aires. Departamento de Electrónica Guía de Trabajos Prácticos N 7 Amplificadores Operacionales Ideales 1. Para el circuito de la siguiente Figura, calcular para las siguientes entradas:

Más detalles

Electrónica Analógica

Electrónica Analógica Prácticas de Electrónica Analógica 2º urso de Ingeniería de Telecomunicación Universidad de Zaragoza urso 1999 / 2000 PATIA 1. Amplificador operacional. Etapas básicas. Entramos en esta sesión en contacto

Más detalles

El amplificador operacional

El amplificador operacional Tema 7 El amplificador operacional Índice 1. Introducción... 1 2. El amplificador diferencial... 2 3. El amplificador operacional... 5 3.1. Configuración inversora... 7 3.2. Configuración no inversora...

Más detalles

2. Calcule la frecuencia de oscilación del oscilador en doble T de la figura 2.

2. Calcule la frecuencia de oscilación del oscilador en doble T de la figura 2. 1/6 ELECTRÓNICA ANALÓGICA II Guía de problemas Nº 9 Osciladores Problemas básicos 1. El oscilador en Puente de Wien de la figura 1 a) tiene dos potenciómetros que le permiten variar la frecuencia de oscilación.

Más detalles

5. El transistor: BJT y JFET

5. El transistor: BJT y JFET 5. El transistor: BJT y JFET Objetivos: Analizar y simular, con ayuda de MicroCAP, algunos circuitos básicos con transistor bipolar (BJT) y con transistor JFET. Realizar el montaje práctico de un interruptor

Más detalles

Electrónica Analógica Amplificadores Operacionales Práctica 4

Electrónica Analógica Amplificadores Operacionales Práctica 4 APELLIDOS:......NOMBRE:... APELLIDOS:...NOMBRE:.... EJERCICIO 1 El circuito de la figura 1 representa el circuito equivalente de un AO. En este ejercicio pretendemos ver como se comporta la ganancia del

Más detalles

Dispositivos Semiconductores Última actualización: 1 er Cuatrimestre de TP N o 4

Dispositivos Semiconductores   Última actualización: 1 er Cuatrimestre de TP N o 4 TP N o 4 Diseño y construcción de un mini-amplificador Condiciones de entrega Fecha de entrega: Martes 14 de junio. La entrega debe ser en formato papel en el horario de clase y en formato digital a través

Más detalles

Guía de laboratorio No. 4 DIODO ZENER Y AMPLIFICADOR OPERACIO- NAL

Guía de laboratorio No. 4 DIODO ZENER Y AMPLIFICADOR OPERACIO- NAL Guía de laboratorio No. 4 DIODO ZENER Y AMPLIFICADOR OPERACIO- NAL En esta guía se estudiará el diodo Zener como regulador de tensión, así como la aplicación de circuitos integrados con amplificadores

Más detalles

DISEÑO DE UNCIRCUITO AMPLIFICADOR MONOETAPA EMISOR COMUN, EN AUTOPOLARIZACION CON ACOPLAMIENTO CAPACITIVO PARA MES.

DISEÑO DE UNCIRCUITO AMPLIFICADOR MONOETAPA EMISOR COMUN, EN AUTOPOLARIZACION CON ACOPLAMIENTO CAPACITIVO PARA MES. PRACTICA 2 DISEÑO DE UNCIRCUITO AMPLIFICADOR MONOETAPA EMISOR COMUN, EN AUTOPOLARIZACION CON ACOPLAMIENTO CAPACITIVO PARA MES. Objetivo: El objetivo de esta práctica es que conozcamos el funcionamiento

Más detalles

Práctica 2: Análisis de circuitos básicos con diodos y transistores Utilización del PSIM para análisis de circuitos electrónicos básicos

Práctica 2: Análisis de circuitos básicos con diodos y transistores Utilización del PSIM para análisis de circuitos electrónicos básicos Práctica 2: Análisis de circuitos básicos con diodos y transistores Utilización del PSIM para análisis de circuitos electrónicos básicos EJERCICIO 1: Rectificador de onda completa con puente de diodos

Más detalles

TEORIA DE CIRCUITOS. CURSO PRÁCTICA 4. RESPUESTA FRECUENCIAL EN REGIMEN PERMANENTE SENOIDAL

TEORIA DE CIRCUITOS. CURSO PRÁCTICA 4. RESPUESTA FRECUENCIAL EN REGIMEN PERMANENTE SENOIDAL 1 INGENIERIA TENIA INDUSTRIAL. ELETRONIA INDUSTRIAL TEORIA DE IRUITOS. URSO 2003-2004 PRÁTIA 4. RESPUESTA FREUENIAL EN REGIMEN PERMANENTE SENOIDAL PRIMERA PARTE: SIMULAIÓN EN PSPIE INTRODUIÓN El objetivo

Más detalles

Electrónica 1. Práctico 8 Amplificadores Diferenciales

Electrónica 1. Práctico 8 Amplificadores Diferenciales Electrónica 1 Práctico 8 Amplificadores Diferenciales Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

PROBLEMAS DE CIRCUITOS ELECTRÓNICOS 2º Curso de Grado en Ingeniería Informática 16/17. TEMA 3: Amplificadores operacionales

PROBLEMAS DE CIRCUITOS ELECTRÓNICOS 2º Curso de Grado en Ingeniería Informática 16/17. TEMA 3: Amplificadores operacionales PROBLEMAS DE CIRCUITOS ELECTRÓNICOS 2º Curso de Grado en Ingeniería Informática 16/17 TEMA 3: Amplificadores operacionales 1.- Hallar v o en el circuito de la figura. 2.- El circuito representado es un

Más detalles

EJEMPLO DE REGLAS DE LAYOUT Y DATOS TECNOLÓGICOS. Tecnología CMOS Estandard. N-well, doble metal, un polisilicio. L min =1.0µm

EJEMPLO DE REGLAS DE LAYOUT Y DATOS TECNOLÓGICOS. Tecnología CMOS Estandard. N-well, doble metal, un polisilicio. L min =1.0µm EJEMPLO DE REGLAS DE LAYOUT Y DATOS TECNOLÓGICOS Tecnología CMOS Estandard N-well, doble metal, un polisilicio L min =1.0µm p. 1 de 18 DEFINICIONES: ANCHURA de A: Distancia interior mínima entre los bordes

Más detalles

Guía de Ejercicios N o 4: Transistor MOS

Guía de Ejercicios N o 4: Transistor MOS Guía de Ejercicios N o 4: Transistor MOS Datos generales: ε 0 = 8,85 10 12 F/m, ε r (Si) = 11,7, ε r (SiO 2 ) = 3,9, n i = 10 10 /cm 3, φ(n, p = n i ) = 0 V. 1. En un transistor n-mosfet, a) La corriente

Más detalles

DIE UPM. Se dispone de una etapa amplificadora conectada a una resistencia de carga R L de valor 1KΩ en paralelo con un condensador C L.

DIE UPM. Se dispone de una etapa amplificadora conectada a una resistencia de carga R L de valor 1KΩ en paralelo con un condensador C L. UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES UPM DIE DEPARTAMENTO DE AUTOMÁTICA, INGENIERÍA ELECTRÓNICA E INFORMÁTICA INDUSTRIAL DIVISIÓN DE INGENIERÍA ELECTRÓNICA

Más detalles

TRABAJO PRÁCTICO Nº 8 EL TRANSISTOR BIPOLAR COMO AMPLIFICADOR DE SEÑAL

TRABAJO PRÁCTICO Nº 8 EL TRANSISTOR BIPOLAR COMO AMPLIFICADOR DE SEÑAL TRABAJO PRÁCTICO Nº 8 EL TRANSISTOR BIPOLAR COMO AMPLIFICADOR DE SEÑAL 1) Introducción Teórica y Circuito de Ensayo Ya hemos visto cómo polarizar al TBJ de modo tal que su punto de trabajo estático (Q)

Más detalles

1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IB VC VB IE

1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IB VC VB IE Ejercicios relativos al transistor bipolar Problemas de transistores BJT en estática 1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IC IB VC VB

Más detalles

El Transistor como Ampli cador

El Transistor como Ampli cador El Transistor como Ampli cador J.I. Huircán Universidad de La Frontera November 21, 2011 Abstract La incorporación de excitaciones de corriente alterna (ca), producen variaciones en i B, v BE, las que

Más detalles

Electrónica Analógica Transistores Práctica 5

Electrónica Analógica Transistores Práctica 5 APELLIDOS:...NOMBRE:... APELLIDOS:...NOMBRE:... EJERCICIO 1: V C V B V E Calcular de forma teórica el valor de todas las tensiones y corrientes del circuito suponiendo el transistor en la zona activa (V

Más detalles

EL AMPLIFICADOR CON BJT

EL AMPLIFICADOR CON BJT 1 Facultad: Estudios Tecnologicos. Escuela: Electrónica. Asignatura: Electronica Analogica Discresta. EL AMPLIFICADOR CON BJT Objetivos específicos Determinar la ganancia de tensión, corriente y potencia

Más detalles

DE UN MEDIDOR DE AC. Existen diversos tipos de medidores que se pueden emplear en medir magnitudes eléctricas alternas. Se pueden clasificar en:

DE UN MEDIDOR DE AC. Existen diversos tipos de medidores que se pueden emplear en medir magnitudes eléctricas alternas. Se pueden clasificar en: PRÁCTICA 1. DISEÑO Y RESPUESTA EN FRECUENCIA 1 Objetivo. DE UN MEDIDOR DE AC Diseñar y construir un voltímetro elemental de corriente alterna utilizando un puente rectificador de media onda y otro de onda

Más detalles

PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II

PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional (op-amp), en particular de tres de sus montajes típicos que

Más detalles

9. El amplificador operacional. Aplicaciones no lineales

9. El amplificador operacional. Aplicaciones no lineales 9. El amplificador operacional. Aplicaciones no lineales Objetivos: Analizar, con ayuda de MicroCAP, dos de las posibles aplicaciones del amplificador operacional trabajando en su zona no lineal de funcionamiento:

Más detalles

A. AMPLIFICADOR OPERACIONAL CON REALIMENTACION NEGATIVA. Para el sistema con realimentación negativa de la figura se pide:

A. AMPLIFICADOR OPERACIONAL CON REALIMENTACION NEGATIVA. Para el sistema con realimentación negativa de la figura se pide: 1/12 Ejercicio N 1 A. AMPLIFICADOR OPERACIONAL CON REALIMENTACION NEGATIVA Para el sistema con realimentación negativa de la figura se pide: a. Hallar A F = So / Si y Se / Si en función de A OL y β. b.

Más detalles

Laboratorio Amplificador Diferencial Discreto

Laboratorio Amplificador Diferencial Discreto Objetivos Laboratorio mplificador Diferencial Discreto Verificar el funcionamiento de un amplificador discreto. Textos de Referencia Principios de Electrónica, Cap. 17, mplificadores Diferenciales. Malvino,

Más detalles

Transistor BJT; Respuesta en Baja y Alta Frecuencia

Transistor BJT; Respuesta en Baja y Alta Frecuencia Transistor BJT; Respuesta en Baja y Alta Frecuencia Universidad de San Carlos de Guatemala, Facultad de Ingeniería, Escuela de Mecánica Eléctrica, Laboratorio de Electrónica 2, Primer Semestre 2017, Aux.

Más detalles

Problemas de Amplificación

Problemas de Amplificación Problemas de Amplificación 1. Dado el circuito de la figura. a. Calcular la ganancia a frecuencias medias. Datos (Q1: =1, ro=3m,r π =52KΩ; : Vt =1, =2 A/V 2,rds=1 M, gm 1 =.1mΩ -1 ; M2: Vt =1, =5 A/V 2,

Más detalles

Electrónica 1. Práctico 8 Amplificadores Diferenciales

Electrónica 1. Práctico 8 Amplificadores Diferenciales Electrónica 1 Práctico 8 Amplificadores Diferenciales Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

PROGRAMA DE TECNOLOGÍA ELECTRICA - UTP LABORATORIO DE CIRCUITOS - PRÁCTICA 10: MEDICION DE POTENCIA

PROGRAMA DE TECNOLOGÍA ELECTRICA - UTP LABORATORIO DE CIRCUITOS - PRÁCTICA 10: MEDICION DE POTENCIA PROGRAMA DE TECNOLOGÍA ELECTRICA - UTP LABORATORIO DE CIRCUITOS - PRÁCTICA 10: MEDICION DE POTENCIA 1. OBJETIVOS Medir la tensión (V), la corriente (I) y la potencia activa (P) en diferentes tipos de carga.

Más detalles

Instrumental y Dispositivos Electrónicos

Instrumental y Dispositivos Electrónicos Instrumental y Dispositivos Electrónicos DepartamentoAcadémico Electrónica Facultad de Ingeniería 2014 Diagrama de bloques de una fuente de alimentación lineal RED 220 V TRANSFORMACIÓN RECTIFICACIÓN FILTRADO

Más detalles

Departamento de Ingeniería Electrónica. Universidad de Sevilla Asignatura: Diseño de Circuitos y Sistemas Electrónicos. Boletín de Problemas Resueltos

Departamento de Ingeniería Electrónica. Universidad de Sevilla Asignatura: Diseño de Circuitos y Sistemas Electrónicos. Boletín de Problemas Resueltos Boletín de Problemas Resueltos DEÑO DE CRCUTO Y TEMA ELECTRÓNCO Dpto. de ngeniería Electrónica Universidad de evilla Antonio Torralba y Fernando Muñoz evilla Noviembre de 007 NDCE NDCE... Ejemplo : Ruido

Más detalles

LABORATORIO DE DISPOSITIVOS ELECTRÓNICOS PRÁCTICA N 6

LABORATORIO DE DISPOSITIVOS ELECTRÓNICOS PRÁCTICA N 6 LABORATORIO DE DISPOSITIVOS ELECTRÓNICOS 1. TEMA PRÁCTICA N 6 ANÁLISIS AC Y DC DE UN TRANSISTOR BIPOLAR DE JUNTURA EN CONFIGURACIÓN EMISOR COMÚN, BASE COMÚN Y COLECTOR COMÚN 2. OBJETIVOS 2.1. Analizar

Más detalles

INDICE Capítulo 1. Principios del Modelado y Procesamiento de Señal Capítulo 2. Amplificadores Operacionales

INDICE Capítulo 1. Principios del Modelado y Procesamiento de Señal Capítulo 2. Amplificadores Operacionales INDICE Prólogo XI Prólogo a la Edición en Español XIV Capítulo 1. Principios del Modelado y Procesamiento de Señal 1 1.1. Sinergia hombre computador 3 1.2. Características tensión corriente y transferencia

Más detalles

Practica 2* I. INTRODUCCIÓN

Practica 2* I. INTRODUCCIÓN Practica 2* * Amplificador BJT en modo de autopolarizacion. 1 st Ronald Bailey Diplomado en matematicas Laboratorio de electronica 2 Facultad de ingenieria de la Universidad de San Carlos Guatemala, Guatemala

Más detalles

6.071 Prácticas de laboratorio 3 Transistores

6.071 Prácticas de laboratorio 3 Transistores 6.071 Prácticas de laboratorio 3 Transistores 1 Ejercicios previos, semana 1 8 de abril de 2002 Leer atentamente todas las notas de la práctica antes de asistir a la sesión. Esta práctica es acumulativa

Más detalles

Circuitos Electrónicos Analógicos EL3004

Circuitos Electrónicos Analógicos EL3004 Circuitos Electrónicos Analógicos EL3004 Guía de Ejercicios Diodos Profesor: Marcos Díaz Auxiliar: Jorge Marín Semestre Primavera 2009 Problema 1 Considere el circuito de la figura: Calcule la corriente

Más detalles

Circuitos lineales con amplificador operacional Guía 6 1/7

Circuitos lineales con amplificador operacional Guía 6 1/7 1/7 ELECTRÓNICA ANALÓGICA II Guía de problemas Nº 6 Circuitos lineales con amplificador operacional Problemas básicos 1. Para el circuito de la figura 1 determine las siguientes cantidades. a) La tensión

Más detalles