Diseño de Polarización de Baja Tensión para Transistores Cascode

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Diseño de Polarización de Baja Tensión para Transistores Cascode"

Transcripción

1 Diseño de Polarización de Baja Tensión para Transistores Cascode Pablo Aguirre, Fernando Silveira Instituto de Ingeniería Eléctrica Universidad de la República Montevideo, Uruguay RESUMEN En este articulo presentamos y verificamos experimentalmente el diseño del circuito de polarización más sencillo para transistores cascode, es decir, un transistor conectado como diodo. Utilizando las ecuaciones de un modelo compacto y válido en todas las zonas de operación (ACM), se logra fijar con precisión la tensión de drain de los transistores del espejo justo por encima de la tensión de saturación. Circuitos de prueba se fabricaron en tecnología CMOS 0,35µm para probar la robustez de la metodología de diseño frente a distintas zonas de operación (inversión débil, moderada y fuerte) y frente a efectos de canal corto. La desviación estándar en el valor medido de la tensión de drain es menor a 3 %. 1. INTRODUCCIÓN La etapa cascode permite aumentar significativamente la ganancia de un amplificador o la precisión de un espejo de corriente, sin agregar etapas que consuman corriente adicional. Sin embargo se reduce la excursión en tensión disponible. Por tanto en aplicaciones de baja tensión es importante contar con circuitos de polarización que maximicen el rango de excursión de esas etapas. Es decir, que polaricen el transistor cascode de forma tal que el transistor en serie con el transistor cascode quede en el borde de la saturación. Muchos circuitos se han presentado en la literatura para resolver este problema logrando además, los trabajos recientes, resolverlo en todas las zonas de inversión [1 3]. Sin embargo, los mismos utilizan estructuras relativamente complejas que sacrifican características como área de silicio o consumo. En este articulo mostramos que es posible utilizar la opción más simple de circuito de polarización, un transistor conectado como diodo, y dimensionarlo adecuadamente en cualquier nivel de inversión de los transistores de la etapa cascode, maximizando la excursión. Si bien la técnica presentada es aplicable a cualquier transistor cascode, en lo que sigue vamos a ejemplificarla en el caso de un espejo de corriente. 2. MODELO ACM Y LA TENSIÓN DE SATURACIÓN Para diseñar un circuito que fije la tensión de drain de los transistores del espejo justo por encima de la tensión de saturación, es conveniente utilizar un modelo del transistor que tenga expresiones simples para las relaciones Tensión - Corriente del transistor. Estas expresiones, sin embargo, deben también ser continuas en todas las zonas de operación del transistor (inversión fuerte, moderada y débil), como así también sus derivadas. El modelo ACM [4] es un modelo basado en la física del transistor que cumple con todos estos requerimientos. En él se expresa la corriente de drain como: I D = I S (i f i r ) (1) donde i f(r) es la corriente normalizada directa (reversa) e I S es la corriente específica del transistor: I S = 1 2 nµc oxφ 2 W T (2) L Aquí n es la pendiente sub-umbral, que depende levemente de V G, y µ, C ox,, W y L tienen sus significados habituales. En saturación directa la corriente de drain se puede aproximar como I D I S i f (3) La expresión usual para la tensión de pinch-off es V P = V G V T 0 (4) n y su relación con la corriente normalizada directa (reversa) y la tensión de source (drain) es V P V S(D) = f(i f(r) ) (5)

2 donde f(i f(r) ) = ( ) 1 + i f(r) 2 + ln 1 + i f(r) 1 (6) Por lo tanto, la característica de salida del transistor MOS (normalizada) de acuerdo al modelo ACM es V DS = 1 + i f 1 + i r + ln ( ) 1 + if ir 1 (7) Para definir la tensión de saturación del transistor vamos a utilizar la definición vista en [1]. En ella se define primero la ganancia máxima de un amplificador gate-común como: A = gm S gm D (8) donde gm S(D) es la transconductancia de source (drain). En el modelo ACM se tiene la siguiente expresión: gm S(D) = 2I ( ) S 1 + i f(r) 1 (9) Entonces, utilizando (7) podemos escribir la tensión de saturación, V DSsat, como ( [1, 4]) aquella tensión V DS para la cual se tiene una cierta relación A 1 entre las transconductancias gm S y gm D : ( V DSsat = ln (A) ( 1 ) + if 1 (10) A) V DSsat ln (A) i f 1 (11) Es fácil de ver que esta expresión tiende a sus valores típicos tanto en inversión fuerte (i f 1, V DSsat if ) como en inversión débil (i f 1, V DSsat ln(a)). Pero además, resulta de mucha utilidad para diseñadores analógicos, donde el nivel de inversión, la ganancia en tensión y los rangos de excursión son parámetros usuales en cualquier diseño. 3. DISEÑO DEL CIRCUITO DE POLARIZACIÓN El circuito de polarización de un transistor cascodo debe fijar la tensión de gate del mismo de tal manera que asegure que el transistor conectado en el source funcione correctamente, es decir, en saturación. Sin embargo, para evitar perder una porción significativa del rango de excursión a la salida del circuito, existe un compromiso en ese valor de polarización. El circuito más simple posible para generar esa tensión es un transistor conectado como diodo, tal como Figura 1: Circuito de bias propuesto para una configuración cascodo. se muestra en la Figura 1. Este circuito no es nuevo naturalmente, pero sin embargo no es utilizado con frecuencia debido a la aparente falta de control sobre la tensión V D1 que fija el transistor M3. Un primer método de dimensionar este transistor fue presentado en [5], sin embargo, el mismo utilizaba expresiones asintóticas para la corriente. Utilizando las ecuaciones del modelo ACM vamos a ver que es posible dimensionar el circuito de manera que el mismo fije la tensión V D1 con precisión cerca de la tensión de saturación de M1, sin importar la zona de operación de ninguno de los transistores. Sea I b la corriente de polarización de M2 e I b /k la corriente de polarización de M3. Así, de acuerdo a la ecuación (3) obtenemos y por lo tanto I D2 I D3 = k = i f2(w/l) 2 i f3 (W/L) 3 (12) i f3 = i f2 (W/L) 2 k(w/l) 3 (13) Utilizando la ecuación (5) podemos escribir la tensión pinch-off de los transistores M2 y M3 como V P 2 = V D1 + f(i f2 ) (14) V P 3 = f(i f3 ) (15) donde, f(i f ) fue definido en la ecuación (6) El criterio es fijar i f3 de manera que V D1 quede un cierto V margen por sobre la tensión de saturación de M1, V DSsat1. Por lo tanto podemos escribir V D1 como V D1 = V DSsat1 + V margen (16)

3 Para relacionar las ecuaciones (14) y (15) vamos a utilizar el hecho de que V G2 = V G3 y por lo tanto V P 2 = V P 3 (V T 02 = V T 03 ). Entonces, si igualamos las ecuaciones (14) y (15) y sustituimos V D1 por la expresión dada en la ecuación (16), donde utilizamos la definición de V DSsat dada en la ecuación (11), llegamos a la siguiente ecuación de diseño: 1 + if3 1 + i f2 i + i f ( ) 1 + if3 1 ln = ln(a) 1 + V margen i + if2 1 (17) donde i f1 es el nivel de inversión del transistor M1. Podemos definir entonces la siguiente metodología de diseño para el transistor M3. Primero definimos V margen según las especificaciones del problema. También suponemos que M 1 y M 2 están diseñados atendiendo a otras consideraciones, como velocidad o ganancia. Entonces, utilizando la ecuación (17), podemos obtener numéricamente el nivel de inversión del transistor M3. Luego, dado el factor k definido según el presupuesto de consumo, con la ecuación (13) podemos obtener (W/L) 3. Es interesante resaltar que las dos ecuaciones utilizadas en la metodología son independientes de los parámetros de la tecnología siempre que los transistores M2 y M3 tengan el mismo V T 0. Esta suposición que puede parecer segura, sin embargo, no lo es tanto como se muestra a continuación. Consideremos el espejo cascodo de la Figura 2, donde para simplificar tomamos M1 y M2 como transistores idénticos, por lo que i f2 = i f1. A partir de la ecuación (13) definimos el factor α como la relación entre el nivel de inversión de M2 y M3 α = if 3 if 2 = (W/L) 2 k(w/l) 3 (18) Como vemos, α nos da también la relación entre el (W/L) de los transistores M 2 y M 3 teniendo en cuenta el factor de corriente k. Aplicando la ecuación (17) podemos ver en la Figura 3 como varía el factor α con respecto al nivel de inversión de los transistores M1 y M2 (i f2 ) para distintos valores de A. Esta Figura da una idea gráfica de la ecuación (17) y permite intuir que para muchos puntos de diseño nos encontraremos con que (W/L) 2 k(w/l) 3. Esto implica que, si mantenemos k 1 para acotar el aumento de consumo, tendremos transistores de geometrías muy disímiles, y por lo tanto la suposición de un V T 0 idéntico para ambos transistores pierde solidez, particularmente en tecnologías de canal corto. Figura 2: Espejo de corriente cascodo. Figura 3: Factor α = (W/L)2 k(w/l) 3 en función de i f2 (= i f1 ) para varios valores de A. Para evitar este problema vamos a utilizar un transistor unitario (M uni) con el cual, mediante asociaciones paralelo y serie, armar los transistores M2 y M3. Por simplicidad vamos a tomar M1 y M2 idénticos. Así, como se ve en la Figura 4, M1 y M2 van a estar formados por M transistores Muni en paralelo y M3 por N transistores Muni en serie. Habiendo salvado el efecto de la dependencia de V T 0 con la geometría del transistor como recién se mostró, en principio no hay problema en extender los resultados a transistores de canal corto, siempre y cuando la característica de salida del transistor llegue en algún punto al valor de A que se este considerando. La influencia de otras efectos de segundo orden se ven atenuados gracias a basarnos en el apareo de transistores unitarios idénticos.

4 L=5 L=0.35 WI MI SI WI I D (µa) 0,05 0,5 5 0,5 M UNI (W/L) 1/5 1/5 1/5 0,5/0,35 M N V D1 (mv) Tabla 1: Diseño de los circuitos de prueba Figura 4: Asociación paralelo y serie de los transistores M1, M2 y M3 4. CIRCUITOS DE PRUEBA Para probar la teoría presentada en la sección anterior diseñamos cuatro circuitos de prueba en una tecnología CMOS estándar de largo mínimo 0,35µm. Todos tienen la misma topología de la Figura 2. Los 3 primeros utilizan transistores de largo L uni = 5µm y están polarizados en inversión débil (WI, i f = 1), moderada (MI, i f = 10) y fuerte (SI, i f = 100). El último utiliza transistores de largo L uni = 0,35µm para probar que al utilizar asociaciones paralelo y serie de un mismo transistor, esta técnica de diseño es insensible a efectos de canal corto. A modo de ejemplo este último circuito esta polarizado en inversión débil (i f = 1). La Tabla 1 muestra los tamaños de los transistores, las corrientes y la tensión V D1 esperada. El criterio utilizado para diseñar el transistor M3 de polarización para cada uno de los espejos de prueba fue el de lograr un V margen = 5 para un V DSsat definido con A = 100. En todos los casos se consideró k = RESULTADOS En las Figuras 5, 6 y 7 vemos la característica de salida del espejo de corriente cascodos con L = 5µm en inversión débil (WI), moderada (MI) y fuerte (SI). A su vez, cada caso esta comparado con la característica de salida de un espejo de corriente idéntico pero Figura 5: Característica de salida del Espejo de Mirror) cuando operan en WI (L = 5µm). En línea punteada, la tensión V D1 en función de V OUT. Figura 6: Característica de salida del Espejo de Mirror) cuando operan en MI (L = 5µm). En línea punteada, la tensión V D1 en función de V OUT. sin los transistores cascodo (espejo simple). También se presenta la evolución de la tensión V D1 con respecto

5 Figura 7: Característica de salida del Espejo de Mirror) cuando operan en SI (L = 5µm). En línea punteada, la tensión V D1 en función de V OUT. Figura 9: Medidas de V D1 cuando V OUT = 2V para 10 chips, comparadas con el valor establecido en el algoritmo de diseño. Figura 8: Característica de salida del Espejo de Mirror) cuando operan en SI (L = 0,35µm). En línea punteada, la tensión V D1 en función de V OUT. a V OUT. Se puede ver claramente en todos los casos la tensión de saturación equivalente del espejo cascodo correspondiente a la tensión V OUT donde V D1 se torna constante. Se puede ver también que la misma corresponde aproximadamente a 2V DSsat del espejo simple, pues estamos considerando los transistores M1 y M2 iguales. La Figura 8 muestra que efectivamente, la metodología de diseño se mantiene para transistores donde los efectos de canal corto no son despreciables. Por último, las Figuras 9 y 10 muestran como se comporta la tensión V D1 para distintas muestras del Figura 10: Histograma de los valores normalizados de V D1 con respecto a la media de cada circuito. mismo chip. Se midió la tensión V D1 cuando V OUT = 2V para 10 chips de una misma corrida. La Figura 9 muestra que en ningún caso la tensión cae por debajo del valor establecido en el algoritmo de diseño. Para determinar la variación relativa en cada caso, se normalizó la tensión V D1 con respecto a la media de cada caso y se realizó un histograma de la tensión normalizada que se muestra en la Figura 10. En el mismo se ve que el error más grande es menor a 8 % y la desviación estándar es σ = 2,58 %. Se puede ver, entonces, que todos los circuitos están dentro de un intervalo 3σ de la media. Incluso, se puede apreciar en la Figura 9 que la dispersión observada esta básicamente determinada por la dispersión de los espejos que utilizan transistores de largo 0,35µm. De considerarse solo los espejos con transistores de canal largo los resultados mejoran sensiblemente. Como trabajo futuro se planean realizar

6 más medidas y un análisis del mismatch del circuito para comparar con los resultados experimentales. 6. CONCLUSIONES Se presentó un método para el dimensionado general en todas las zonas de inversión de la polarización de etapas cascode, utilizando el circuito más simple posible: un transistor conectado como diodo. La aplicación de un layout basado en la asociación serie-paralelo de transistores unitarios permitió extender el método, deducido con un modelo de canal largo, a transistores donde las variaciones de V T 0 con la geometría son significativas (L = 0,35µm). El método propuesto fue analizado y verificado experimentalmente. Los resultados obtenidos respaldan la validez del método propuesto y muestran consistencia en varias muestras de una misma corrida. 7. AGRADECIMIENTOS Los autores agradecen el apoyo brindado por el programa MEP Research de MOSIS para la fabricación de los prototipos. 8. REFERENCIAS [1] V. Vincence, C. Galup-Montoro, and M. Schneider, A high-swing MOS cascode bias circuit for operation at any current level, in Proc. Int. Symp. on Circuits and Systems (ISCAS), vol. V, May 2000, pp [2] P. Heim and M. Jabri, MOS cascode-mirror biasing circuit operating at any current lavel with minimal output saturation voltage, Electronics Letters, vol. 31, no. 9, pp , Apr [3] B. Minch, A low-voltage MOS cascode bias circuit for al current levels, in Proc. Int. Symp. on Circuits and Systems (ISCAS), vol. III, May 2002, pp [4] C. Galup-Montoro, M. Schneider, and A. Cunha, A current-based MOSFET model for integrated circuit design, in Low-Voltage / Low-Power Integrated Circuits and Systems: Low-Voltage Mixed-Signal Circuits, E. Sanchez-Sinencio and A. Andreou, Eds. IEEE Press, ISBN , 1999, ch. 2, pp [5] F. Silveira, Analog design in SOI technology: Micropower and high temperature applications, Master s thesis, Université Catholique de Louvain, Louvain-la- Neuve, Belgique., 1995.

Generador de Tensión de polarización

Generador de Tensión de polarización 16 al 1 de Septiembre de 007 Córdoba, Argentina Generador de Tensión de polarización 1.1 Descripción La tensión de polarización se extrae de una referencia de corriente comúnmente atribuida a Widlar [1,].

Más detalles

Guía de Ejercicios N o 4: Transistor MOS

Guía de Ejercicios N o 4: Transistor MOS Guía de Ejercicios N o 4: Transistor MOS Datos generales: ε 0 = 8,85 10 12 F/m, ε r (Si) = 11,7, ε r (SiO 2 ) = 3,9, n i = 10 10 /cm 3, φ(n, p = n i ) = 0 V. 1. En un transistor n-mosfet, a) La corriente

Más detalles

V T V GS V DS =3V =V GS

V T V GS V DS =3V =V GS Guía de Ejercicios Nº4 Transistor MOS Datos generales: ε o = 8.85 x 10-12 F/m, ε r(si) = 11.7, ε r(sio 2) = 3.9 1) En un transistor n-mosfet, a) La corriente entre Source y Drain es de huecos o de electrones?

Más detalles

Clase 19- Aplicación de transistores a circuitos analógicos (II)

Clase 19- Aplicación de transistores a circuitos analógicos (II) 86.03/66.25 Dispositivos Semiconductores Clase 19 1 Clase 19- Aplicación de transistores a circuitos analógicos (II Amplificador Source Común y Copia de Corriente con MOSFET Última actualización: 1 cuatrimestre

Más detalles

1º Escuela Técnica Superior de Ingeniería de Telecomunicación TECNOLOGÍA Y COMPONENTES ELECTRÓNICOS Y FOTÓNICOS. PROBLEMAS de transistores MOS

1º Escuela Técnica Superior de Ingeniería de Telecomunicación TECNOLOGÍA Y COMPONENTES ELECTRÓNICOS Y FOTÓNICOS. PROBLEMAS de transistores MOS 1º Escuela écnica Superior de Ingeniería de elecomunicación ECNOLOGÍA Y COMPONENES ELECRÓNICOS Y FOÓNICOS 4 PROBLEMAS de transistores MOS EJERCICIOS de diodos: ECNOLOGÍA Y COMPONENES ELECRÓNICOS Y FOÓNICOS

Más detalles

AMPLIFICADOR OPERACIONAL CASCODO PLEGADO EN TECNOLOGÍA CNM25

AMPLIFICADOR OPERACIONAL CASCODO PLEGADO EN TECNOLOGÍA CNM25 AMPLIFICADOR OPERACIONAL CASCODO PLEGADO EN TECNOLOGÍA CNM25 Romero, Eduardo (1); Peretti, Gabriela (1); Marqués, Carlos (2) (1) Grupo de Investigación y Servicios en Electrónica y Control - Facultad Regional

Más detalles

Electrónica. Transistores de efecto de campo. Introducción a la Electrónica

Electrónica. Transistores de efecto de campo. Introducción a la Electrónica Introducción a la Electrónica Transistores de efecto de campo Introducción a la Electrónica Características La corriente es controlada a travez de un campo eléctrico establecido por el voltaje aplicado

Más detalles

Diseño de Circuitos Integrados CMOS Analógicos y Mixtos Analógico - Digitales

Diseño de Circuitos Integrados CMOS Analógicos y Mixtos Analógico - Digitales Diseño de Circuitos Integrados CMOS Analógicos y Mixtos Analógico - Digitales Fernando Silveira Pablo Aguirre F. Silveira Univ. de la República Curso CMOS AD 2014 1 Objetivos Formación en diseño de CIs

Más detalles

Clase Aplicación de transistores a circuitos analógicos (I)

Clase Aplicación de transistores a circuitos analógicos (I) 86.03/66.25 Dispositivos Semiconductores Clase 18 1 Clase 18 1 - Aplicación de transistores a circuitos analógicos (I) Amplificador Emisor-Común y Source-Común Última actualización: 2 do cuatrimestre de

Más detalles

Dispositivos Semiconductores Última actualización: 2 do Cuatrimestre de 2013 V GS = 3.0 V V GS = 2.5 V V GS = 2.

Dispositivos Semiconductores  Última actualización: 2 do Cuatrimestre de 2013 V GS = 3.0 V V GS = 2.5 V V GS = 2. Guía de Ejercicios N o 8: Aplicacion de transistores en circuitos analogicos Parte I: Amplificadores con MOSFET 1. Dada la curva de I D vs. V DS de la figura 1a y el circuito de la figura 1b, con V dd

Más detalles

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO FORMA DE PRESENTACIÓN DE LAS ECUACIONES DEL MOSFET DE ENRIQUECIMIENTO De la ecuación que define el umbral VDS = VGS -Vth

Más detalles

AMS - Diseño de Sistemas Integrados Analógicos y Mixtos

AMS - Diseño de Sistemas Integrados Analógicos y Mixtos Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2017 230 - ETSETB - Escuela Técnica Superior de Ingeniería de Telecomunicación de Barcelona 710 - EEL - Departamento de Ingeniería

Más detalles

Clase Fuentes de corriente - Introducción a amplificadores multietapa integrados. Junio de 2011

Clase Fuentes de corriente - Introducción a amplificadores multietapa integrados. Junio de 2011 66.25 - Dispositivos Semiconductores - 1er Cuat. 2011 Clase 24-1 Clase 24 1 - Fuentes de corriente - Introducción a amplificadores multietapa integrados Junio de 2011 Contenido: 1. El transistor MOS como

Más detalles

TEMA 6: Amplificadores con Transistores

TEMA 6: Amplificadores con Transistores TEMA 6: Amplificadores con Transistores Contenidos del tema: El transistor como amplificador. Característica de gran señal Polarización. Parámetros de pequeña señal Configuraciones de amplificadores con

Más detalles

Electrónica 1. Práctico 8 Amplificadores Diferenciales

Electrónica 1. Práctico 8 Amplificadores Diferenciales Electrónica 1 Práctico 8 Amplificadores Diferenciales Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos EL42A - Circuitos Electrónicos Clase No. 19: Circuitos Amplificadores Lineales (7) Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 15 de Octubre de 2009

Más detalles

MOSFET: caracteristicas I-V 14 de Abril de 2010

MOSFET: caracteristicas I-V 14 de Abril de 2010 66.25 - Dispositivos Semiconductores - 1er Cuat. 2010 Clase 10-1 Clase 9 1 - MOSFET (I) MOSFET: caracteristicas I-V 14 de Abril de 2010 Contenido: 1. MOSFET: corte seccional, layout, símbolos 2. Descripción

Más detalles

TEMA 6 ESTABILIDAD EN EL PUNTO DE TRABAJO

TEMA 6 ESTABILIDAD EN EL PUNTO DE TRABAJO TEMA 6 ESTABILIDAD EN EL PUNTO DE TRABAJO (Guía de lases) Asignatura: Dispositivos Electrónicos I Dpto. Tecnología Electrónica ONTENIDO Introducción Estabilidad en el punto de trabajo Punto de trabajo

Más detalles

Reporte: Amplificador diferencial NMOS y CMOS

Reporte: Amplificador diferencial NMOS y CMOS Introducción EL7036 Análisis y Diseño de Circuitos Integrados Otoño 01 Análisis y Diseño de Circuitos Integrados Reporte: Amplificador diferencial y CMOS Prof. Marcos Díaz. Aux. Accel Abarca Matías Mattamala

Más detalles

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO FORMA DE PRESENTACIÓN DE LAS ECUACIONES DEL MOSFET DE ENRIQUECIMIENTO Se define Para la región triodo (zona ohmica) VGS

Más detalles

CAPITULO 1 SINOPSIS. La Figura muestra el circuito que usaremos como base para construir varios ejemplos.

CAPITULO 1 SINOPSIS. La Figura muestra el circuito que usaremos como base para construir varios ejemplos. 1 CAPITULO 1 SINOPSIS El propósito de este capítulo no es el de disminuir el entusiasmo del lector por leer el libro, delatando su contenido. En vez de eso se pretende que, mediante el uso de un circuito

Más detalles

Cox = 6.9 x 10-8 F/cm 2. Vt = 0.65 Volts VGS = 5 V. ID (sat) = 4 ma > > > W = 11.8 µm

Cox = 6.9 x 10-8 F/cm 2. Vt = 0.65 Volts VGS = 5 V. ID (sat) = 4 ma > > > W = 11.8 µm EL TRANSISTOR COMO ELEMENTO DE CIRCUITO Transistor MOS canal N L = 1.25 µm, µn = 650 cm 2 /Vs Cox = 6.9 x 10-8 F/cm 2 Vt = 0.65 Volts VGS = 5 V ID (sat) = 4 ma > > > W = 11.8 µm La capacidad de manejo

Más detalles

Electrónica 2. Práctico 7 Estructura de los Amplificadores Operacionales

Electrónica 2. Práctico 7 Estructura de los Amplificadores Operacionales Electrónica 2 Práctico 7 Estructura de los Amplificadores Operacionales Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro

Más detalles

Clase CMOS: El inversor 22 de Junio de 2017

Clase CMOS: El inversor 22 de Junio de 2017 66.25 - Dispositivos Semiconductores - 2do Cuat. 2011 Clase 20-1 Clase 20 1 - CMOS: El inversor 22 de Junio de 2017 Contenidos: 1. Introducción a la electrónica digital: el inversor 2. El inversor MOS

Más detalles

Electrónica 2. Práctico 3 Alta Frecuencia

Electrónica 2. Práctico 3 Alta Frecuencia Electrónica 2 Práctico 3 Alta Frecuencia Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

Tema 9: Estructuras MIS, transistores MOSFET (introducción, zonas de funcionamiento). Fabricación.

Tema 9: Estructuras MIS, transistores MOSFET (introducción, zonas de funcionamiento). Fabricación. Tema 9: Estructuras MIS, transistores MOSFET (introducción, zonas de funcionamiento). Fabricación. Lecturas recomendadas: Circuitos Microelectrónicos, 4ª ed. Cap.5, Sedra/Smith. Ed. Oxford Circuitos Microelectrónicos,

Más detalles

Electrónica 2. Práctico 7 Estructura de los Amplificadores Operacionales

Electrónica 2. Práctico 7 Estructura de los Amplificadores Operacionales Electrónica 2 Práctico 7 Estructura de los Amplificadores Operacionales Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro

Más detalles

Fundamentos del transitor MOSFET

Fundamentos del transitor MOSFET Fundamentos del transitor MOSFET Lección 04.1 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge Castro-Godínez

Más detalles

'UEWGNC7PKXGTUKVCTKC2QNKVÃEPKECFG+PIGPKGTÈC6ÃEPKEC+PFWUVTKCN 241$.'/#5 FGVTCPUKUVQTGU/15('6

'UEWGNC7PKXGTUKVCTKC2QNKVÃEPKECFG+PIGPKGTÈC6ÃEPKEC+PFWUVTKCN 241$.'/#5 FGVTCPUKUVQTGU/15('6 'UEWGNC7PKXGTUKVCTKC2QNKVÃEPKECFG+PIGPKGTÈC6ÃEPKEC+PFWUVTKCN (/(&75Ï1,&$%È6,&$ 241$'/#5 FGVTCPUKUVQTGU/15('6 ','4%+%+15FGVTCPUKUVQTGU/15('6 (/(&75Ï1,&$%È6,&$ D Un determinado transistor MOSFET de enriquecimiento

Más detalles

TRANSITORES DE EFECTO DE CAMPO (Field effect transistor, FET) INTRODUCCIÓN: Son dispositivos de estado sólido Tienen tres o cuatro terminales Es el

TRANSITORES DE EFECTO DE CAMPO (Field effect transistor, FET) INTRODUCCIÓN: Son dispositivos de estado sólido Tienen tres o cuatro terminales Es el TRANSITORES DE EFECTO DE CAMPO (Field effect transistor, FET) INTRODUCCIÓN: Son dispositivos de estado sólido Tienen tres o cuatro terminales Es el campo eléctrico el que controla el flujo de cargas El

Más detalles

Compuertas Lógicas. Contenido. Tema IV. Definiciones de parámetros de corriente y voltaje (2) Definiciones de parámetros de corriente y voltaje

Compuertas Lógicas. Contenido. Tema IV. Definiciones de parámetros de corriente y voltaje (2) Definiciones de parámetros de corriente y voltaje Tema IV Circuitos Digitales I Compuertas ógicas Ctenido! Definicies de parámetros de corriente y voltaje.! Compuertas lógicas CMOS Circuitos básicos, Características eléctricas, retardos de propagación.!

Más detalles

Electrónica 1. Práctico 8 Amplificadores Diferenciales

Electrónica 1. Práctico 8 Amplificadores Diferenciales Electrónica 1 Práctico 8 Amplificadores Diferenciales Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

DISEÑO Y SIMULACIÓN DE UN AMPLIFICADOR OPERACIONAL COMPLETAMENTE DIFERENCIAL EN TECNOLOGÍA CNM25

DISEÑO Y SIMULACIÓN DE UN AMPLIFICADOR OPERACIONAL COMPLETAMENTE DIFERENCIAL EN TECNOLOGÍA CNM25 DISEÑO Y SIMULACIÓN DE UN AMPLIFICADOR OPERACIONAL COMPLETAMENTE DIFERENCIAL EN TECNOLOGÍA CNM25 Romero, Eduardo (1); Peretti, Gabriela (1); Marqués, Carlos (2) (1) Grupo de Investigación y Servicios en

Más detalles

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO FORMA DE PRESENTACIÓN DE LAS ECUACIONES DEL MOSFET DE ENRIQUECIMIENTO Se define Para la región triodo (zona ohmica) VGS

Más detalles

Transistor BJT como Amplificador

Transistor BJT como Amplificador Transistor BJT como Amplificador Lección 05.2 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Transistor BJT como Amplificador

Más detalles

PRÁCTICA 9. SIMULACIÓN DE MODELOS DE PEQUEÑA SEÑAL

PRÁCTICA 9. SIMULACIÓN DE MODELOS DE PEQUEÑA SEÑAL PRÁCTICA 9. SIMULACIÓN DE MODELOS DE PEQUEÑA SEÑAL 1. Objetivo Se pretende conocer el modelo de pequeña señal del transistor MOS, y su utilización para la obtención de los parámetros de funcionamiento

Más detalles

Diseño de un Amplificador Operacional totalmente integrado CMOS que funcione como driver para cargas capacitivas elevadas

Diseño de un Amplificador Operacional totalmente integrado CMOS que funcione como driver para cargas capacitivas elevadas Diseño de un Amplificador Operacional totalmente integrado CMOS que funcione como driver para cargas capacitivas elevadas Titulación: Sistemas Electrónicos Tutores: Francisco Javier del Pino Suárez Sunil

Más detalles

Transistores de Efecto de Campo

Transistores de Efecto de Campo Transistores de Efecto de Camo Rev. 1.2 Curso Electrónica 1 Fernando Silveira Instituto de Ingeniería Eléctrica F. Silveira Univ. de la Reública, Montevideo, Uruguay Curso Electrónica 1 1 Field Effect

Más detalles

1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IB VC VB IE

1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IB VC VB IE Ejercicios relativos al transistor bipolar Problemas de transistores BJT en estática 1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IC IB VC VB

Más detalles

Física y Modelado de MOSFETs

Física y Modelado de MOSFETs Capítulo 3 Física y Modelado de MOSFETs Los MOSFETs (metal-oxide-semiconductor field-effect transistor) son los dispositivos de conmutación usados en circuitos integrados CMOS. 3.1 Características Básicas

Más detalles

Dispositivos de las tecnologías CMOS

Dispositivos de las tecnologías CMOS Dispositivos de las tecnologías CMOS MOSFET: canal N y canal P (únicos dispositivos en chips digitales) JT: PNP de mala calidad (dispositivos parásitos. Se usan como diodos) Resistencias Condensadores

Más detalles

Ingeniería Eléctrica A S I G N A T U R A S C O R R E L A T I V A S P R E C E D E N T E S

Ingeniería Eléctrica A S I G N A T U R A S C O R R E L A T I V A S P R E C E D E N T E S UNIVERSIDAD NACIONAL DEL SUR 1/3 DEPARTAMENTO DE: Ingeniería Eléctrica H O R A S D E C L A S E P R O F E S O R R E S P O N S A B L E T E Ó R I C A S P R Á C T I C A S Ing. Pablo Mandolesi Por semana Por

Más detalles

A.2. El transistor bipolar

A.2. El transistor bipolar A.2. El transistor bipolar A.2.1. Introducción componente de tres capas semiconductoras colocadas alternativamente principal aplicación: amplificador A.2.2. aracterización del transistor bipolar tiene

Más detalles

DEPARTAMENTO: Electrónica ASIGNATURA: CÓDIGO: PAG.: 1 Electrónica I REQUISITOS: Redes Eléctricas I. (2107)

DEPARTAMENTO: Electrónica ASIGNATURA: CÓDIGO: PAG.: 1 Electrónica I REQUISITOS: Redes Eléctricas I. (2107) CÓDIGO: PAG.: 1 I Redes s I. (2107) PROPÓSITOS Esta asignatura es la continuación de los estudios en electrónica que deben cursar los estudiantes del ciclo común en el plan de estudio de y es requisito

Más detalles

Operación y Modelado del Transistor MOS para el Diseño Analógico

Operación y Modelado del Transistor MOS para el Diseño Analógico Operación y Modelado del Transistor MOS para el Diseño Analógico Rev. 1.2 Curso CMOS AD. Fernando Silveira Instituto de Ingeniería Eléctrica F. Silveira Univ. de la República, Montevideo, Uruguay Curso

Más detalles

Tema IV. Compuertas Lógicas. Contenido. Circuitos básicos, Características eléctricas, retardos de propagación.

Tema IV. Compuertas Lógicas. Contenido. Circuitos básicos, Características eléctricas, retardos de propagación. Circuitos Digitales I Tema IV Compuertas ógicas uis Taraza, UNEXPO arquisimeto E-3213 Circuitos Digitales I - 2004 100 Ctenido! Definicies de parámetros de corriente y voltaje.! Compuertas lógicas CMOS

Más detalles

Transistor bipolar de unión: Polarización.

Transistor bipolar de unión: Polarización. lectrónica Analógica 4 Polarización del transistor bipolar 4.1 lección del punto de operación Q Transistor bipolar de unión: Polarización. l término polarización se refiere a la aplicación de tensiones

Más detalles

Current Conveyor de Segunda Generación y Bajo-Voltaje

Current Conveyor de Segunda Generación y Bajo-Voltaje Current Conveyor de Segunda Generación y Bajo-Voltaje Juan López-Hernández, José Alejandro Díaz-Méndez y Alejandro Díaz-Sánchez Grupo de Diseño de Circuitos Integrados Instituto Nacional de Astrofísica

Más detalles

TRANSISTOR MOSFET. Tipos: Canal n y canal p. Uno y otro son complementarios: simétricos y opuestos en cuanto a la polaridad de las tensiones

TRANSISTOR MOSFET. Tipos: Canal n y canal p. Uno y otro son complementarios: simétricos y opuestos en cuanto a la polaridad de las tensiones TRANSISTOR MOSFET MOSFET: Metal-Oxide-Semiconductor Field-Effect Transistor Tipos: Canal n y canal p. Uno y otro son complementarios: simétricos y opuestos en cuanto a la polaridad de las tensiones Estructura

Más detalles

Fuentes de corriente

Fuentes de corriente Fuentes de corriente 1) Introducción En Electrotecnia se estudian en forma teórica las fuentes de corriente, sus características y el comportamiento en los circuitos. Desde el punto de vista electrónico,

Más detalles

Pr.A Boletín de problemas de la Unidad Temática A.I: Características principales y utilización

Pr.A Boletín de problemas de la Unidad Temática A.I: Características principales y utilización Pr.A Boletín de problemas de la Unidad Temática A.I: Características principales y utilización Pr.A.1. El diodo 1. Obtener de forma gráfica la corriente que circula por el diodo del siguiente circuito

Más detalles

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser Ley de Ohm La resistencia eléctrica de un resistor se define como la razón entre la caída de tensión, entre los extremos del resistor, y la corriente que circula por éste, tal que Teniendo en cuenta que

Más detalles

PRÁCTICA 5. SIMULACIÓN DE MODELOS DE PEQUEÑA SEÑAL

PRÁCTICA 5. SIMULACIÓN DE MODELOS DE PEQUEÑA SEÑAL PRÁCTICA 5. SIMULACIÓN DE MODELOS DE PEQUEÑA SEÑAL 1. Objetivo Se pretende conocer el modelo de pequeña señal del transistor MOS, y su utilización para la obtención de los parámetros de funcionamiento

Más detalles

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser Ley de Ohm La resistencia se define como la razón entre la caída de tensión, entre los dos extremos de una resistencia, y la corriente que circula por ésta, tal que 1 Teniendo en cuenta que si el voltaje

Más detalles

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica LABORATORIO DE ELECTRÓNICA DE POTENCIA 1. TEMA PRÁCTICA N 5 CARACTERIZACIÓN DEL

Más detalles

EL TRANSISTOR MOSFET. * Las siglas MOSFET corresponden a la descripción de su estructura:

EL TRANSISTOR MOSFET. * Las siglas MOSFET corresponden a la descripción de su estructura: EL TRANSISTOR MOSFET * Las siglas MOSFET corresponden a la descripción de su estructura: METAL OXIDE SEMICONDUCTOR FIELD EFFECT TRANSISTOR TRANSISTOR DE EFECTO DE CAMPO METAL OXIDO SEMICONDUCTOR. * En

Más detalles

2 Electrónica Analógica TEMA II. Electrónica Analógica

2 Electrónica Analógica TEMA II. Electrónica Analógica TEMA II Electrónica Analógica Electrónica II 2007 1 2 Electrónica Analógica 2.1 Amplificadores Operacionales. 2.2 Aplicaciones de los Amplificadores Operacionales. 2.3 Filtros. 2.4 Transistores. 2 1 2.4

Más detalles

Estructura estelar estática

Estructura estelar estática Estructura estelar estática Introducción A lo largo de su existencia, una estrella se encuentra en un estado de equilibrio delicado. Pequeños cambios pueden provocar inestabilidades locales o globales.

Más detalles

APELLIDOS: NOMBRE: DNI/NIE:

APELLIDOS: NOMBRE: DNI/NIE: APELLIDOS: NOMBRE: DNI/NIE: Lea con atención los enunciados de los ejercicios. En caso de duda, pregunte al profesor. Explique claramente los pasos que realice en las deducciones matemáticas. Cualquier

Más detalles

Electrónica 1. Práctico 5 Transistores 1

Electrónica 1. Práctico 5 Transistores 1 Electrónica 1 Práctico 5 Transistores 1 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic Circuits,

Más detalles

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores).

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores). Ejercicio 1 AÑO 013- OPCIÓN A mx + y + z = m 1 m 1 x + my = 1 } (A) = ( 1 m 0 ) (A ) = ( 1 m 0 1 ) 6y z = 1 1 Calculamos el det(a) e igualamos a cero para sacar los valores en los que el determinante se

Más detalles

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 5

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 5 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica LABORATORIO

Más detalles

Diseño de un Amplificador de Bajo Ruido (LNA) en Tecnología SiGe 0,35 µm para el estándar inalámbrico IEEE a

Diseño de un Amplificador de Bajo Ruido (LNA) en Tecnología SiGe 0,35 µm para el estándar inalámbrico IEEE a Diseño de un Amplificador de Bajo Ruido (LNA) en Tecnología SiGe 0,35 µm para el estándar inalámbrico IEEE 802.11a Autor: Jesús Rubén Pulido Medina Tutor: Francisco Javier del Pino Suárez EUITT Sistemas

Más detalles

EXAMEN DE ELECTRÓNICA ANALÓGICA.- CONVOCATORIA º CURSO DE INGENIERÍA TÉCNICA EN ELECTRÓNICA INDUSTRIAL

EXAMEN DE ELECTRÓNICA ANALÓGICA.- CONVOCATORIA º CURSO DE INGENIERÍA TÉCNICA EN ELECTRÓNICA INDUSTRIAL 1 a PARTE DEL EXAMEN: PREGUNTAS DE TEORÍA: 1) Modelo del diodo de silicio para pequeñas señales (Frecuencia de la c.a lo suficientemente baja como para no tener en cuenta los efectos capacitivos de la

Más detalles

2 Electrónica Analógica TEMA II. Electrónica Analógica

2 Electrónica Analógica TEMA II. Electrónica Analógica TEMA II Electrónica Analógica Electrónica II 2009 1 2 Electrónica Analógica 2.1 Amplificadores Operacionales. 2.2 Aplicaciones de los Amplificadores Operacionales. 2.3 Filtros. 2.4 Transistores. 2 1 2.4

Más detalles

Práctica 1.- Característica del diodo Zener

Práctica 1.- Característica del diodo Zener A.- Objetivos Práctica 1.- Característica del diodo ener 1.-Medir los efectos de la polarización directa e inversa en la corriente por el diodo zener. 2.-Determinar experimentalmente y representar la característica

Más detalles

6. Circuitos de Polarización para BJT. Electrónica Analógica

6. Circuitos de Polarización para BJT. Electrónica Analógica 6. Circuitos de Polarización para BJT Electrónica Analógica Temas: El punto de operación en cd Circuitos de Polarización para BJT Polarización por medio de un divisor de voltaje Otros métodos de polarización

Más detalles

2 Electrónica Analógica TEMA II. Electrónica Analógica

2 Electrónica Analógica TEMA II. Electrónica Analógica TEMA II Electrónica Analógica Electrónica II 2007 1 2 Electrónica Analógica 2.1 Amplificadores Operacionales. 2.2 Aplicaciones de los Amplificadores Operacionales. 2.3 Filtros. 2.4 Transistores. 2 1 2.4

Más detalles

Universidad Autónoma Metropolitana Unidad Iztapalapa

Universidad Autónoma Metropolitana Unidad Iztapalapa Universidad Autónoma Metropolitana Unidad Iztapalapa Departamento de Ciencias Básicas e Ingeniería Ingeniería Electrónica en Comunicaciones Proyecto de titulación: Desarrollo de estructuras analógicas

Más detalles

PRÁCTICA 3 TRANSISTORES BIPOLARES: POLARIZACIÓN Y GENERADORES DE CORRIENTE

PRÁCTICA 3 TRANSISTORES BIPOLARES: POLARIZACIÓN Y GENERADORES DE CORRIENTE PÁCTCA 3 TANSSTOES BPOLAES: POLAZACÓN Y GENEADOES DE COENTE 1. OBJETVO. Se pretende que el alumno tome contacto, por primera vez en la mayor parte de los casos, con transistores bipolares, y que realice

Más detalles

Guía de laboratorio: CONSIDERACIONES GENERALES

Guía de laboratorio: CONSIDERACIONES GENERALES Guía de laboratorio: CONSIDERACIONES GENERALES 1. Información general Asignatura: Electrónica análoga I Modalidad: Práctica Horario: Grupo 1: Viernes 10-13 Grupo 2: Viernes 07-09 Grupo 3: Miércoles 14-16

Más detalles

Electrónica 1. Práctico 2 Amplificadores operacionales 2

Electrónica 1. Práctico 2 Amplificadores operacionales 2 Electrónica 1 Práctico 2 Amplificadores operacionales 2 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

TEMA 7. FAMILIAS LOGICAS INTEGRADAS

TEMA 7. FAMILIAS LOGICAS INTEGRADAS TEMA 7. FAMILIAS LOGICAS INTEGRADAS http://www.tech-faq.com/wp-content/uploads/images/integrated-circuit-layout.jpg IEEE 25 Aniversary: http://www.flickr.com/photos/ieee25/with/289342254/ TEMA 7 FAMILIAS

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos EL42A - Circuitos Electrónicos Clase No. 12: Transistores de Efecto de Campo (3) Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 10 de Septiembre de 2009

Más detalles

TRANSISTOR DE EFECTO DE CAMPO (FET)

TRANSISTOR DE EFECTO DE CAMPO (FET) TRANSISTOR DE EFECTO DE CAMPO (FET) 1 METAL OXIDO SEMICONDUCTOR (MOSFET) P G B V GB Al SiO Si Capacitor de Placas Paralelas Q = C V GB 0 < V GS < V TH Q movil = 0 D N V TH Tension umbral V DS G V GS S

Más detalles

Electrónica 2. Práctico 3 Alta Frecuencia

Electrónica 2. Práctico 3 Alta Frecuencia Electrónica 2 Práctico 3 Alta Frecuencia Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

Dispositivos Semiconductores 2do Cuatrimestre de 2012

Dispositivos Semiconductores  2do Cuatrimestre de 2012 DIODOS ESPECIALES Introducción Este apunte es una introducción general a diversos diodos con propiedades eléctricas especiales. Para comprender en detalle el funcionamiento de estos dispositivos se requieren

Más detalles

El Transistor MOS: Estructura Física y Modelos de Circuito

El Transistor MOS: Estructura Física y Modelos de Circuito El Transistor MOS: Estructura Física y Modelos de ircuito B.1-1 Estructura del Transistor NMOS Transistor NMOS de enriquecimiento: B.1-1 aracterísticas físicas Transistor NMOS ox Leff L LD, ox t ox B.1-3

Más detalles

DISEÑO Y CONSTRUCCION DE UN AMPLIFICADOR OPERACIONAL CMOS DE DOS ETAPAS:

DISEÑO Y CONSTRUCCION DE UN AMPLIFICADOR OPERACIONAL CMOS DE DOS ETAPAS: DISEÑO Y CONSTRUCCION DE UN AMPLIFICADOR OPERACIONAL DE DOS ETAPAS: TABLA 5.1. Valores típicos de los parámetros del componente 0,8 μm 0,5 μm 0,25 μm 0,18 μm Parámetro NMOS PMOS NMOS PMOS NMOS PMOS NMOS

Más detalles

Dispositivos Semiconductores Última actualización: 1 er Cuatrimestre de 2018

Dispositivos Semiconductores  Última actualización: 1 er Cuatrimestre de 2018 Guía de Ejercicios N o 5: Diodo PN Datos generales: ε 0 = 8.85 10 12 F/m, ε r (Si) = 11.7, ε r (SiO 2 ) = 3.9, n i = 10 10 cm 3, φ(n, p = n i ) = 0. Principio de funcionamiento y polarización 1. Dado un

Más detalles

Departamento de Ingeniería Electrónica. Universidad de Sevilla Asignatura: Diseño de Circuitos y Sistemas Electrónicos. Boletín de Problemas Resueltos

Departamento de Ingeniería Electrónica. Universidad de Sevilla Asignatura: Diseño de Circuitos y Sistemas Electrónicos. Boletín de Problemas Resueltos Boletín de Problemas Resueltos DEÑO DE CRCUTO Y TEMA ELECTRÓNCO Dpto. de ngeniería Electrónica Universidad de evilla Antonio Torralba y Fernando Muñoz evilla Noviembre de 007 NDCE NDCE... Ejemplo : Ruido

Más detalles

DISEÑO DEL AMPLIFICADOR DE BAJO RUIDO Y DEL MEZCLADOR PARA UN RECEPTOR DE UWB EN CMOS 0,18 µm

DISEÑO DEL AMPLIFICADOR DE BAJO RUIDO Y DEL MEZCLADOR PARA UN RECEPTOR DE UWB EN CMOS 0,18 µm DISEÑO DEL AMPLIFICADOR DE BAJO RUIDO Y DEL MEZCLADOR PARA UN RECEPTOR DE UWB EN CMOS 0,18 µm TUTOR: DR. FRANCISCO JAVIER DEL PINO SUÁREZ COTUTOR: D. HUGO GARCÍA VÁZQUEZ AUTOR: D. AYTHAMI SANTANA PEÑA

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos ELA - Circuitos Electrónicos Clase No. 24: Amplificadores Operacionales (1) Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 3 de Noviembre de 2009 ELA -

Más detalles

EL TRANSISTOR MOSFET. * Las siglas MOSFET corresponden a la descripción de su estructura:

EL TRANSISTOR MOSFET. * Las siglas MOSFET corresponden a la descripción de su estructura: EL TRANSISTOR MOSFET * Las siglas MOSFET corresponden a la descripción de su estructura: METAL OXIDE SEMICONDUCTOR FIELD EFFECT TRANSISTOR TRANSISTOR DE EFECTO DE CAMPO METAL OXIDO SEMICONDUCTOR. * En

Más detalles

Electrónica 1. Práctico 5 Transistores 1

Electrónica 1. Práctico 5 Transistores 1 Electrónica 1 Práctico 5 Transistores 1 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic Circuits,

Más detalles

PROGRAMA PARA LA SINTESIS AUTOMATICA DE UN OTA MILLER

PROGRAMA PARA LA SINTESIS AUTOMATICA DE UN OTA MILLER PROGRAMA PARA LA SINTESIS AUTOMATICA DE UN OTA MILLER Johana Adriana Panduro Alejos, Julio César Saldaña Pumarica a19987129@pucp.edu.pe, saldana.jc@pucp.edu.pe Grupo de Microelectrónica - Pontificia Universidad

Más detalles

Clase Aplicación de transistores a circuitos analógicos (I) Amplificador Emisor Común Última actualización: 1 er cuatrimestre de 2017

Clase Aplicación de transistores a circuitos analógicos (I) Amplificador Emisor Común Última actualización: 1 er cuatrimestre de 2017 86.03/66.25 Dispositivos Semiconductores Clase 18 1 Clase 18 1 - Aplicación de transistores a circuitos analógicos (I) Amplificador Emisor Común Última actualización: 1 er cuatrimestre de 2017 Lectura

Más detalles

DOS TRANSISTORES. AMPLIFICADOR CON UN TRANSISTOR NPN Y OTRO PNP. a) Polarización. β = 100 y Vbe 0 0,7V.

DOS TRANSISTORES. AMPLIFICADOR CON UN TRANSISTOR NPN Y OTRO PNP. a) Polarización. β = 100 y Vbe 0 0,7V. DOS TRANSISTORES AMPLIFICADOR CON UN TRANSISTOR NPN Y OTRO PNP. a) Polarización. β = 100 y Vbe 0 0,7V. En primer lugar se calcula el Thevenin equivalente del circuito de base de Q1 y todas las variables

Más detalles

Dispositivos Semiconductores 1 er Cuatrimestre de TP N o 3

Dispositivos Semiconductores  1 er Cuatrimestre de TP N o 3 TP N o 3 Diseño y construcción de un mini-amplificador de audio 1. Condiciones del trabajo Grupos de dos o tres estudiantes. La fecha de entrega y re-entrega es la que se indica en la página web de la

Más detalles

AMPLIFICADOR DIFERENCIAL Estudio de pequeña señal. v DD. Rc v. v o2 o1 C2 - - Q v i1 =0 + - v i2 R TAIL. -v DD. Estudio de pequeña señal

AMPLIFICADOR DIFERENCIAL Estudio de pequeña señal. v DD. Rc v. v o2 o1 C2 - - Q v i1 =0 + - v i2 R TAIL. -v DD. Estudio de pequeña señal AMPLIFICADOR DIFERENCIAL v DD v o1 =A 11 v i1 A 1 v i v o =A 1 v i1 A v i I C1 Q 1 v v o o1 I C A 11 = v o1 v i1 v i =0 A 1 = v o1 v i v i1 =0 vi1 I TAIL Q R TAIL v i A 1 = v o v i1 v i =0 v DD A = v o

Más detalles

Universidad Ricardo Palma

Universidad Ricardo Palma Universidad Ricardo Palma FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA ELECTRONICA DEPARTAMENTO ACADÉMICO DE INGENIERÍA PLAN DE ESTUDIOS 2006-II SÍLAB0 1. DATOS ADMINISTRATIVOS 1.1

Más detalles

Capítulo 1. Historia y fundamentos físicos de un transistor.

Capítulo 1. Historia y fundamentos físicos de un transistor. Capítulo 1. Historia y fundamentos físicos de un transistor. 1.1 Fundamentos del transistor TBJ 1.1.1 Corrientes en un transistor de unión o TBJ El transistor bipolar de juntura, o TBJ, es un dispositivo

Más detalles

Memoria RAM Estática Asincrónica de 1Kbit

Memoria RAM Estática Asincrónica de 1Kbit 1 Memoria RAM Estática Asincrónica de 1Kbit S. M. Armano, G. H. Stuarts, P. Julián y P. S. Mandolesi* CONICET - Dto. Ing. Eléctrica y Computadoras, Universidad Nacional del Sur - *CIC Resumen En este trabajo

Más detalles

IV - Multietapas de Bajo Nivel: Amplificador Diferencial y Fuentes de Corriente

IV - Multietapas de Bajo Nivel: Amplificador Diferencial y Fuentes de Corriente luego introduciendo (IV.28.) y (IV.29.) en (IV.30.) y considerando valores de ganancia estática de corriente de los transistores lo suficientemente elevadas como para poder considerar 2. I B1-2

Más detalles

TEMA 3.1 MOSFET TEMA 3 TRANSISTOR MOS FUNDAMENTOS DE ELECTRÓNICA

TEMA 3.1 MOSFET TEMA 3 TRANSISTOR MOS FUNDAMENTOS DE ELECTRÓNICA TEMA 3.1 MOSFET TEMA 3 TRANSISTOR MOS FUNDAMENTOS DE ELECTRÓNICA 18 de abril de 2015 TEMA 3.1 MOSFET Introducción Regiones de operación Efecto Early Efecto Body 2 TEMA 3.1 MOSFET Introducción Regiones

Más detalles

1 Tablero maestro 1 Tarjeta de circuito impreso EB Multímetro 1 Osciloscopio 1 Generador de funciones Tabla 1.1. Materiales y equipo.

1 Tablero maestro 1 Tarjeta de circuito impreso EB Multímetro 1 Osciloscopio 1 Generador de funciones Tabla 1.1. Materiales y equipo. Contenido Facultad: Ingeniería Escuela: Ingeniería Electrónica Asignatura: Electrónica industrial Curvas de operación del PUT y osciladores de relajación. Objetivos Específicos Analizar el funcionamiento

Más detalles

3 Celdas básicas. 3.1 Modelo del transistor

3 Celdas básicas. 3.1 Modelo del transistor 3 Celdas básicas Muchas de las celdas utilizadas a lo largo de este trabajo están conformadas por circuitos más pequeños que presentan un comportamiento particular. En capítulos posteriores es necesario

Más detalles

Transistores de efecto de campo (fet)

Transistores de efecto de campo (fet) CAPÍTULO 5 Transistores de efecto de campo (fet) Resumen En este capítulo se habla de los transistores de efecto de campo (FET). Se empieza por explicar sus características, construcción y funcionamiento.

Más detalles