Tema 2. ALEACIONES. DIAGRAMAS DE EQUILIBRIO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 2. ALEACIONES. DIAGRAMAS DE EQUILIBRIO"

Transcripción

1 1. DISOLUCIONES SÓLIDAS. ALEACIONES...2 A. Constitución de las aleaciones...2 B. Disolvente y soluto...2 C. Tipos de disoluciones sólidas. Deformaciones en la red cristalina CRISTALIZACIÓN DE LSO METALES PUROS Y DE LAS ALEACIONES...3 A. Solidificación...3 B. Energía necesaria para llevar un metal al estado líquido...3 C. Etapas de solidificación DIAGRAMAS DE EQUILIBRIO O DIAGRAMAS DE FASES...4 A. Conceptos...4 B. Diagramas isomórficos binarios. Solubilidad total en estado líquido y sólido...4 C. Diagramas binarios de aleaciones insolubles en estado sólido...6

2 1. DISOLUCIONES SÓLIDAS. ALEACIONES A. Constitución de las aleaciones Aleación es todo producto que resulta de la unión de dos o más elementos químicos, uno de los cuales tiene carácter metálico. Propiedades como tenacidad, dureza o conductividad se mejoran en la aleación notablemente respecto del metal base. Se pueden formar aleaciones binarias, por ejemplo el acero ordinario (Fe y C) y hasta de siete elementos o más, como los aceros rápidos (Fe, C, Co, W, Cr, V y Mo). Para que el producto resultante de la unión de dos o más elementos químicos tenga carácter metálico, se tiene que cumplir: Que los elementos componentes sean totalmente miscibles en estado líquido, de tal forma que al solidificarse resulte un producto homogéneo. Que el producto resultante tenga carácter metálico. Los enlaces metálicos deben permanecer en la aleación. B. Disolvente y soluto Inicialmente el disolvente es el componente que entra en mayor proporción, y soluto es el que lo hace en menor proporción, pero cuando los elementos solubles no posean la misma red cristalina, se considera disolvente al elemento que conserva la red, aunque se encuentre en menor proporción. La proporción en la que intervienen el disolvente y el soluto se expresa mediante la concentración, indicada de forma porcentual, así: m S : masa del soluto Concentración de soluto: m D : masa del disolvente C S = m s m S +m D.100 C. Tipos de disoluciones sólidas. Deformaciones en la red cristalina. Las aleaciones metálicas son disoluciones sólidas entre dos o más elementos. Disponiendo de la disposición de los átomos del disolvente y soluto, se dan dos tipos de disoluciones: Solución por sustitución: los átomos de disolvente y soluto tienen estructura cristalina similar y ambos forman parte del edificio cristalino al reemplazarse átomos del disolvente por átomos del soluto. Solución por inserción: se presenta cuando los átomos de soluto son muy pequeños comparados con los átomos del disolvente, y se colocan en en interior, en los intersticios, de la red cristalina del disolvente. Cuando los átomos que sustituyen o que se insertan en la red son de tamaño superior o inferior a los sustituidos o a los huecos que presenta la red, ésta se deforma provocando tensiones internas semejantes a las que se originan en un ensayo de tracción o una deformación en frío. Se produce entonces un aumento en el límite elástico. El material aumenta la carga de rotura pero se vuelve más frágil.

3 2. CRISTALIZACIÓN DE LSO METALES PUROS Y DE LAS ALEACIONES A. Solidificación La cristalización o formación de los cristales tiene lugar mediante un proceso de solidificación. En los metales puros la solidificación se hace a temperatura constante (a). En las aleaciones la temperatura de solidificación no permanece constante en el proceso de solidificación (c). B. Energía necesaria para llevar un metal al estado líquido Para fundir un metal primero tendremos que aportar energía para elevar su temperatura hasta la temperatura de fusión y posteriormente la energía necesaria para que se produzca el cambio de estado. Q=m.c e.(t f T )+m.l f m: masa de metal a fundir. c e : calor específico del metal a fundir. T f : temperatura de fusión del metal. T: temperatura a la que se encuentra el metal a fundir. l f : calor latente de fusión. C. Etapas de solidificación En la solidificación de un metal o aleación se dan las siguientes etapas: a) Nucleación o formación de núcleos estables en la masa fundida. b) Cristalización o crecimiento del núcleo en las tres direcciones del espacio, en las denominadas dentritas, para dar origen a cristales. c) Formación del grano. Los cristales anteriores van dando a su vez origen a una estructura granular. Cuando los metales solidifican en un molde en las paredes del molde hay mayor velocidad de enfriamiento que hacia el núcleo y, además, el metal se adhiere al molde lo que favorece la formación de núcleos de cristalización, con lo que se forma gran cantidad de granos cristalinos. En cambio, a una cierta distancia de la pared del molde la velocidad es más lenta y hay menos núcleos de cristalización, por lo que los granos son mayores.también, durante el enfriamiento, el metal se contrae, con lo que pueden aparecer defectos, como los rechupes y las sopladuras, originados por la falta de metal líquido en la superficie libre del molde o en el interior, respectivamente.

4 3. DIAGRAMAS DE EQUILIBRIO O DIAGRAMAS DE FASES. A. Conceptos Componente: cada una de las sustancias o elementos químicos que forman un sistema. Fase: cada una de las partes homogéneas de un sistema que se diferencia físicamente del resto. En los elementos puros fase es sinónimo de estado. Por ejemplo, dentro del sistema agua pueden existir tres fases: la sólida (hielo), la fase líquida y la fase gaseosa (vapor de agua). Las fases no tienen por qué estar formadas por elementos químicos puros, sino que pueden estar constituidas por compuestos químicos, aleaciones o disoluciones. Por ejemplo, el sistema agua salada-hielo está formada por dos fases: una es la solución salina, formada a su vez por agua más NaCl; y otra, el hielo. B. Diagramas isomórficos binarios. Solubilidad total en estado líquido y sólido Aleación isomorfa: componentes totalmente solubles en estado líquido y en estado sólido. Se da en metales con la misma red cristalina, radios atómicos y electronegatividades similares. En una aleación, al enfriar el líquido, se va formando sólido. A continuación, antes de que todo esté solidificado, coexistirán las fases líquida y sólida. Consideremos una aleación binaria de componentes A y B que son totalmente solubles en estado líquido y sólido; a este sistema se le denomina isomorfo. Para confeccionar su diagrama de fases se procede de la siguiente manera. 1. Se toma un número de aleaciones con distinto porcentaje de A y B. 2. Se funden y se dejan enfriar lentamente; se toman los datos tiempo-temperatura, registrando los puntos críticos de cada una de las aleaciones (diagramas de enfriamiento). Los puntos (1) de cada curva representan el comienzo de la formación de cristales (estado sólido), y los puntos (2) representan la formación del último cristal. 3. Se trasladan estos puntos críticos a una gráfica temperatura-concentración, colocándose en la perpendicular correspondiente de isoconcentración (puntos de igual concentración).

5 4. Se unen con una línea todos los puntos (1), y de la misma forma los puntos (2), obteniendo el diagrama de equilibrio de la aleación A-B. La línea que une los puntos (1), donde comienzan a formarse los cristales, es la línea que separa la fase líquida del resto del diagrama, que se denomina línea de liquidus. Por encima de esta línea todas las aleaciones estarán en estado líquido. La línea que une todos los puntos (2) representa la línea de solidus. Por debajo de ella todas las aleaciones se encuentran en estado sólido. Se puede determinar la temperatura a la que comienza a fundir una aleación, y aquella donde estará totalmente fundida, para una concentración determinada. Para ello, se traza una línea vertical por el punto que representa la concentración que interesa (línea m-n); de tal forma que los puntos donde intersecta con las líneas solidus y liquidus, muestran, en el eje de temperaturas, los valores a determinar: T S (temperatura de solidificación) y T L (temperatura de licuefacción). Las líneas de solidus y liquidus dividen el diagrama en tres zonas: Zona L: existe una sola fase, la líquida. Zona S: existe una sola fase, la sólida. Zona L+S: en la zona comprendida entre la línea de liquidus y solidus hay dos fases, líquida y sólida, donde la concentración de cada fase depende de la temperatura.

6 Analicemos lo que ocurre, por ejemplo, con una aleación de 70% de A y 30% de B. 1. Se traza una perpendicular (b S -d L ) por la concentración A-B Por debajo de b S todo está en fase sólida, con concentración A-B Por encima de d L todo se encuentra en fase líquida y con igual concentración A-B Entre b S y d L, a medida que va aumentando la temperatura, va aumentando la fase líquida y disminuyendo la sólida. La concentración del componente de menor punto de fusión se va empobreciendo. Por el contrario, se va enriqueciendo la concentración del componente de mayor punto de fusión. Las concentraciones de cada fase (C L y C S ) para el punto c son las que determinan el trazado de la recta de reparto (segmento horizontal), al cortar las líneas de solidus y liquidus: C L : representa la concentración del líquido, que es el 42% de A y 58% de B. C S : representa la concentración del sólido, que es el 80% de A y 20% de B. La cantidad relativa de cada fase (W L y W S ) o porcentaje de cada una de las fases se calcula aplicando la ley de la palanca: C. Diagramas binarios de aleaciones insolubles en estado sólido. Consideremos una aleación de dos materiales A y B totalmente solubles en estado líquido pero que en estado sólido cada componente cristaliza en una fase distinta. El diagrama que representa una aleación de este tipo se puede ver en la figura. La línea que une los puntos donde empieza la formación de los primeros cristales es la línea de liquidus. Por encima de ella, todas las aleaciones se encuentran en estado líquido. La línea que une todos los puntos donde termina de formarse los cristales es la línea de solidus. En todas las aleaciones, sea cual sea su concentración, la temperatura a la que acaban de solidificar es la misma (T 3 : temperatura del eutéctico). Por debajo de la línea de solidus todas las aleaciones están en estado sólido.

7 De la lectura e interpretación de estos diagramas se pueden saber los puntos de fusión y solidificación de cualquier aleación. También se puede determinar la composición de la aleación eutéctica que es una aleación que funde a una temperatura fija, siendo además la aleación de punto de fusión más bajo. Al ser las aleaciones que tienen la temperatura de fusión más baja son las idóneas para fabricar piezas fundidas, por llenar mejor los moldes y ser más homogéneas Las líneas de solidus y liquidus dividen el diagrama en cuatro zonas, analicemos cada zona. 1) Zona L: existe una sola fase, la líquida. 2) Zona L + A: existen dos fases bien definidas, una de líquido y otra sólida de cristales de A. 3) Zona L+B: existen dos fases, una de líquida y otra sólida de cristales de B. 4) Zona A+B: existe dos fases sólidas, cristales de A y cristales de B. Analicemos una aleación hipoeutéctica, por ejemplo, la que representa la línea a-d. a) En el punto a toda la aleación está en estado líquido y su concentración es A-B b) En el punto b L comienzan a formarse los primeros núcleos cristalinos de A. La concentración de la fase líquida ( b L ) es de A-B 70-30, y la correspondiente a la sólida (b S ) es A-B c) En el punto n se tiene fase sólida de cristales de A y fase líquida. Para calcular la concentración de cada fase se traza la recta de reparto, así la fase sólida es de concentración n S = A-B 100-0, y la líquida de concentración n L = A-B Las cantidades relativas o porcentaje de cada fase se obtienen aplicando la ley de la palanca, de la que resulta: d) En el punto d se tienen cristales A de concentración d S = A-B 100-0, y el resto será líquido, cuya concentración es la del punto c, es decir, la de la aleación eutéctica d L = A-B Los porcentajes de cada una de las fases se obtiene aplicando la ley de la palanca, de la que resulta:

8 e) A partir del punto d hacia abajo, las aleaciones están formados por los cristales de A, formados entre b L y d (cristales primarios de A), y de cristales mixtos de B+A (secundarios de A). Las concentraciones serán el 30% del total de B y 70% de A. Analicemos la aleación eutéctica, A-B 40-60: En el punto e la aleación se encuentra en estado líquido y los componentes están totalmente disueltos. Al llegar al punto c comienzan a cristalizar, al mismo tiempo, cristales del componente A y del componente B, íntimamente mezclados, formando cristales mixtos de composición eutéctica. Por debajo de c no hay cambio ninguno. Analicemos una aleación hipoeutéctica, por ejemplo, la que representa la línea k-q. a) En el punto k se tiene líquido homogéneo de concentración igual a la de la aleación. b) En el punto d comienza la formación de fase sólida de cristales de componente B, en contacto con la fase líquida. La concentración de la fase sólida será A-B 0-100, y la concentración de la fase líquida será la de la aleación. c) En el punto p coexisten dos fases, la líquida y la sólida. La sólida está formada por cristales puros de B. La líquida está formada por los dos componentes, su concentración será p L = A-B 32,5-67,5. El porcentaje de cada fase: d) Al llegar al punto q, la fase líquida tiene una concentración c=a-b 40-60, la de la eutéctica;mientras que la sólida continúa siendo de cristales de elemento puro B. Las cantidades de una y otra son: A partir del punto q hacia abajo, las aleaciones están formados por cristales de B libres y cristales mezcaldos de A y B.

9 Cuestiones (Justifica la respuesta en un máximo de dos líneas) 1. Industrialmente se forman aleaciones para: a) Mejorar determinadas propiedades de los metales puros. b) Rebajar los puntos de ebullición. c) Disolver mejor los metales. 2. En una disolución, cuando disolvente y soluto no tenga la misma red cristalina, se considera disolvente al elemento que: a) Esté presente en mayor proporción. b) No conserva en la disolución su red cristalina. c) Conserva en la disolución su red cristalina. 3. Cuando hay una diferencia de tamaño entre los átomos de soluto y los de disolvente sustituidos en una aleación se observa: a) Un aumento de la carga de rotura del material, pero se vuelve más frágil. b) Al ser de sustitución, las propiedades quedan semejantes a las que había. c) Debido a la formación de la red disminuye la resistencia del material. 4. En los diagramas de solidificación de un metal puro y de una aleación eutéctica mientras dura la solidificación, la temperatura: a) Disminuye progresivamente hasta completar la solidificación. b) Se mantiene constante hasta completar la solidificación. c) Dependiendo de la temperatura que se alcanzó en el horno y de la calidad de aislamiento de las paredes, una vez solidifica manteniendo constante la temeperatura y otras disminuye. 5. Las sopladuras en los metales fundidos son: a) Corrientes de aire que lo enfrían. b) Un material extraño que queda atrapado durante la solidificación. c) Huecos que quedan al solidificar debidos a la contracción del material. 6. La línea de liquidus en un diagrama de equilibrio separa: a) La temperatura por debajo de la cual la aleación está toda en estado sólido. b) La temperatura a partir de la cual la aleación está toda en estado líquido. c) La temperatura de fusión de la aleación. Problemas 1. Dibuje un diagrama de equilibrio entre dos componentes cualesquiera, A y B, solubles completamente en estado sólido, que solidifiquen, en su estado puro, a las temperaturas de 1000 y 1300ºC, respectivamente. En la región bifásica sitúe un punto a la composición del 45% del componente A y a la temperatura de 1100ºC. Se pide: a) Identifique las fases presentes en dicho punto. b) Determine la cantidad relativa de las mismas, sabiendo que C L = 80% (de A) y C α = 20% (de A) Sol. W α =58,3%, W L =41,7% 2. Dos metales A y B, son totalmente solubles en estado líquido y en estado sólido. Solidifican a 1200 y 700ºC, respectivamente. Se sabe que una aleación, con el 80% de A, es totalmente líquida por encima de 1150ºC y sólida por debajo de 1000ºC. Así mismo, otra aleación con el 40% de A, es totalemente líquida por encima de 1000ºC y sólida por debajo de 800ºC. Se pide: a) Dibuje el diagrama de equilibrio indicando las fases presentes en cada una de sus zonas. b) Analice lo que ocurre en el enfriamiento de una aleación del 50% de A, desde 1200ºC hasta la temperatura ambiente. c) Para la aleación anterior y la temperatura de 1000ºC, existe más de una fase? Si la respuesta es afirmativa, qué porcentaje hay de cada una? Sol. W α =25%, W L =75% 3. Una hipotética aleación, de composición 60% de A y 40% de B, está a una temperatura que coexisten una fase sólida α y otra líquida. Si las fracciones másicas de ambas son 0,66 y 0,34, respectivamente, y la fase alfa contiene un 13% del componente B y un 87% del A. Determine la composición de la fase líquida a dicha temperatura. Sol. C L =59% A 4. Para el diagrama de fases A-B de la figura, se pide: a) De qué tipo de aleación se trata?. Cuál es la temperatura de inicio y fin del proceso de solidificación para una composición con el 20% de A? b) Cuál es la temperatura mínima en la que encontraremos una aleación en estado líquido para cualquier composición?. Y la máxima en estado sólido para cualquier composición?

10 c) A partir de que tanto por ciento de A una aleación estará totalmente líquida a 1300 ºC?. Y sólida? d) Calcula el número de fases, composición de cada una y cantidades relativas de cada fase para una aleación con el 70% de A a 1400 ºC. 5. Para el siguiente diagrama, determinar para una aleación del 40% de Ni la cantidad relativa de cada fase para una temperatura de 1250ºC. Sol. W L =50%, W S =50% 6. Haciendo uso del diagrama Bi-Sb que se muestra. Calcular para una aleación del 45% de Sb: a) Transformaciones que experimenta al enfriarse lentamente desde el estado líquido hasta la temperatura ambiente. b) Dibújese la curva de enfriamiento. c) A qué temperatura habrá un 50% de aleación en estado líquido? Sol. 440ºC d) Porcentaje de las fases a 400ºC. Sol. W L =44,4%, W S =55,6%

11

TEMA 3: DIAGRAMAS DE EQUILIBRIO

TEMA 3: DIAGRAMAS DE EQUILIBRIO TEMA 3: DIAGRAMAS DE EQUILIBRIO 1.- Aleaciones Características Los metales puros tienen poca aplicación en la industria. La mayoría de ellos se combinan con otros metales o no metales para mejorar sus

Más detalles

TEMA 2: DIAGRAMAS DE FASES

TEMA 2: DIAGRAMAS DE FASES TEMA 2: DIAGRAMAS DE FASES 1.- LAS ALEACIONES 2.- FUSIÓN Y SOLIDIFICACIÓN 3.- DIAGRAMAS DE EQUILIBRIO O DE FASES 4.- TIPOS DE DIAGRAMAS 5.- REPASO - 1 - 1.- ALEACIONES Una aleación es una sustancia compuesta

Más detalles

Departamento de Tecnologías 1 IES Valle del Sol. Selectividad 2015 SELECTIVIDAD 2014 SELECTIVIDAD 2013

Departamento de Tecnologías 1 IES Valle del Sol. Selectividad 2015 SELECTIVIDAD 2014 SELECTIVIDAD 2013 1 IES Valle del Sol No hay ejercicios de este tema No hay ejercicios de este tema. Selectividad 2015 SELECTIVIDAD 2014 SELECTIVIDAD 2013 1. Dos metales A y B solidifican a 1000 ºC y 500 ºC respectivamente

Más detalles

MATERIALES METALICOS 2do Ingeniería Mecánica. Diagramas de Equilibrio de Fases

MATERIALES METALICOS 2do Ingeniería Mecánica. Diagramas de Equilibrio de Fases MATERIALES METALICOS 2do Ingeniería Mecánica Diagramas de Equilibrio de Fases Ing. Víctor Gómez Universidad Tecnológica Nacional Facultad Regional Tucumán Aleaciones Ø Aleación: Sustancia que tiene propiedades

Más detalles

Diagramas de Equilibrio de las Fases

Diagramas de Equilibrio de las Fases Diagramas de fases Aleación es una mezcla metales o no metales. de un metal con otros Componentes son los elementos químicos que forman la aleación Una aleación binaria está formada por dos componentes

Más detalles

b) Aplicar la regla de las fases a cada una de las regiones, líneas y puntos significativos y determina el número de grados de libertad existentes.

b) Aplicar la regla de las fases a cada una de las regiones, líneas y puntos significativos y determina el número de grados de libertad existentes. 1.- El platino y el oro son totalmente solubles en estado sólido y en estado líquido. El punto de fusión del platino son 1774 C y el del oro 1063 C. Una aleación formada por un 40% de oro comienza a solidificar

Más detalles

Problemas de diagramas de equilibrio

Problemas de diagramas de equilibrio PROBEMA 1 os puntos de fusión del bismuto y antimonio son 271 ºC y 62,2 ºC respectivamente. Una aleación con un 5% de SB comienza a solidificar a 52 ºC formándose cristales con un contenido en Sb de un

Más detalles

3.- Con el diagrama de equilibrio Cu-Ni, haga el análisis de fases para una aleación del 50% de Cu a: 1400ºC, 1300ºC, 1200ºC 1100ºC.

3.- Con el diagrama de equilibrio Cu-Ni, haga el análisis de fases para una aleación del 50% de Cu a: 1400ºC, 1300ºC, 1200ºC 1100ºC. 1.- Con el diagrama de equilibrio Cu-Ni que se adjunta, describir el enfriamiento lento de una aleación del 3% de Ni y determinar su composición a 12ºC. 2.- Una aleación compuesta de 2 Kg de Cu y 2 Kg

Más detalles

UNE RAFAEL MARÍA BARALT PROGRAMA DE INGENIERÍA Y TECNOLOGÍA INGENIERÍA EN MTTO MECÁNICO SOLIDIFICACIÓN. Elaborado por: Ing. Roger Chirinos.

UNE RAFAEL MARÍA BARALT PROGRAMA DE INGENIERÍA Y TECNOLOGÍA INGENIERÍA EN MTTO MECÁNICO SOLIDIFICACIÓN. Elaborado por: Ing. Roger Chirinos. UNE RAFAEL MARÍA BARALT PROGRAMA DE INGENIERÍA Y TECNOLOGÍA INGENIERÍA EN MTTO MECÁNICO SOLIDIFICACIÓN Elaborado por: Ing. Roger Chirinos. MSc Cabimas, Noviembre de 2013 SOLIDIFICACIÓN Fundamentos básicos

Más detalles

TEMA VIII Materiales Metálicos

TEMA VIII Materiales Metálicos TEMA VIII Materiales Metálicos LECCIÓN 10 Diagramas de Fase 1 10.1 INTRODUCCIÓN En un material, en términos de microestructura, una Fase es una región macroscópicamente homogénea que difiere en estructura

Más detalles

PROBLEMAS TEMA 2 TECNOLOGÍA INDUSTRIAL II

PROBLEMAS TEMA 2 TECNOLOGÍA INDUSTRIAL II 1. Dibujar un diagrama de equilibrio entre dos componentes cualesquiera A y B, solubles completamente en estado sólido que solidifican en su estado puro a 1000 y 1300 ºC, respectivamente. Situar en la

Más detalles

Solidificación e Imperfecciones. en Sólidos

Solidificación e Imperfecciones. en Sólidos Preguntas definitivas Capítulo 2 Solidificación e Imperfecciones en Sólidos Ciencia de Materiales 28 PREGUNTA 2.1 Cuándo suele presentar interés el uso de un metal en estado puro?. Justifícalo. Pon un

Más detalles

Tema 3: Diagramas de fases. Problemas resueltos

Tema 3: Diagramas de fases. Problemas resueltos Tema 3: Diagramas de fases Problemas resueltos Problema 1. Dos metales y tienen puntos de fusión a 1400 y 1300 respectivamente. El metal presenta dos cambios alotrópicos a los 900,, y a los 700,, de forma

Más detalles

6. SOLIDIFICACIÓN EN SÓLIDOS

6. SOLIDIFICACIÓN EN SÓLIDOS 6. SOLIDIFICACIÓN EN SÓLIDOS Materiales 13/14 1 ÍNDICE 1. Solidificación en metales 2. Formación de núcleos estables 1. Nucleación homogénea 2. Nucleación heterogénea 3. Crecimiento 1. Estructura de grano

Más detalles

I INTRODUCCION A LOS DIAGRAMAS DE FASE

I INTRODUCCION A LOS DIAGRAMAS DE FASE DIAGRAMAS DE FASE I INTRODUCCION A LOS DIAGRAMAS DE FASE El concepto de sistema heterogéneo implica el concepto de fase. Fase es toda porción de un sistema con la misma estructura o arreglo atómico, con

Más detalles

PREGUNTAS PRUEBAS PAU MATERIALES

PREGUNTAS PRUEBAS PAU MATERIALES PREGUNTAS PRUEBAS PAU MATERIALES JUNIO 2010 FE Opción A Defina brevemente las siguientes propiedades que presentan los compuestos metálicos: a) Elasticidad (0,5 puntos) b) Tenacidad (0,5 puntos) c) Maleabilidad

Más detalles

Hoja de problemas Tema 7

Hoja de problemas Tema 7 Hoja 7 FUNDAMENTOS DE CIENCIA DE MATERIALES 1 Hoja de problemas Tema 7 1. Sea el diagrama de fases esquemático de la figura para el sistema A-B. (a) Indique la posición de las líneas de liquidus, solidus

Más detalles

TEMA 3: ALEACIONES Fe-C, PROPIEDADES Y CLASIFICACIÓN. 2.- Formas de encontrar el carbono en las aleaciones férreas

TEMA 3: ALEACIONES Fe-C, PROPIEDADES Y CLASIFICACIÓN. 2.- Formas de encontrar el carbono en las aleaciones férreas TEMA 3: ALEACIONES Fe-C, PROPIEDADES Y CLASIFICACIÓN 1.- Estados alotrópicos del Hierro (Fe) Según las condiciones de, el hierro puede presentar diferentes estados, con mayor o menor capacidad para disolver

Más detalles

TEMA 3: ALEACIONES Fe-C, PROPIEDADES Y CLASIFICACIÓN. 2.- Formas de encontrar el carbono en las aleaciones férreas

TEMA 3: ALEACIONES Fe-C, PROPIEDADES Y CLASIFICACIÓN. 2.- Formas de encontrar el carbono en las aleaciones férreas TEMA 3: ALEACIONES Fe-C, PROPIEDADES Y CLASIFICACIÓN 1.- Estados alotrópicos del Hierro (Fe) Según las condiciones de temperatura, el hierro puede presentar diferentes estados, con mayor o menor capacidad

Más detalles

GUÍA DE ESTUDIO N 4 SOLIDOS Y LÍQUIDOS

GUÍA DE ESTUDIO N 4 SOLIDOS Y LÍQUIDOS A FUERZAS INTERMOLECULARES GUÍA DE ESTUDIO N 4 SOLIDOS Y LÍQUIDOS 1. Menciona y describe las propiedades macroscópicas de los estados de agregación más comunes en que se presenta la materia. 2. Para cada

Más detalles

Equilibrio sólido- líquido en sistemas de dos componentes

Equilibrio sólido- líquido en sistemas de dos componentes Equilibrio sólido- líquido en sistemas de dos componentes Miscibilidad en fase líquida e inmiscibilidad en fase sólida: sean C y B dos sustancias miscibles en todas las proporciones en la fase líquida

Más detalles

Apuntes Disoluciones

Apuntes Disoluciones Una disolución es una mezcla homogénea (los componentes no se pueden distinguir a simple vista) de dos a más sustancias. En las disoluciones hay que distinguir el soluto, el disolvente y la propia disolución

Más detalles

Disoluciones. Química General II 2011

Disoluciones. Química General II 2011 Disoluciones Química General II 2011 Disolución Es una mezcla homogénea de dos o mas sustancias. Componentes: Soluto: Sustancia (s) presente (s) en menor cantidad en una disolución, son las sustancias

Más detalles

TEMA IV.- ALEACIONES DE HIERRO Y CARBONO

TEMA IV.- ALEACIONES DE HIERRO Y CARBONO TEMA IV.- ALEACIONES DE HIERRO Y CARBONO El hierro puro apenas tiene aplicaciones industriales, pero formando aleaciones con el carbono (además de otros elementos), es el metal más utilizado en la industria

Más detalles

Una mezcla es un compuesto formado por varias sustancias con distintas propiedades

Una mezcla es un compuesto formado por varias sustancias con distintas propiedades COMPOSICIÓN DE LA MATERIA Mezclas homogéneas y heterogéneas Una mezcla es un compuesto formado por varias sustancias con distintas propiedades Algunos sistemas materiales como la leche a simple vista parecen

Más detalles

Ejercicios y respuestas del apartado: Enlaces (covalente, iónico, metálico): Definición, propiedades, estructura de Lewis, ejercicios de predicción

Ejercicios y respuestas del apartado: Enlaces (covalente, iónico, metálico): Definición, propiedades, estructura de Lewis, ejercicios de predicción Ejercicios y respuestas del apartado: Enlaces (covalente, iónico, metálico): Definición, propiedades, estructura de Lewis, ejercicios de predicción de enlace 2 de 12 Qué es el enlace químico?, iguales

Más detalles

Materia. Mezclas Son aquellas que están formados por 2 o más sustancias.

Materia. Mezclas Son aquellas que están formados por 2 o más sustancias. Qué es la materia? Materia Sustancias Puras Son aquellas que tienen una composición y propiedades DEFINIDAS. Mezclas Son aquellas que están formados por 2 o más sustancias. Elementos No se pueden separar

Más detalles

CLASIFICACIÓN DE LA MATERIA

CLASIFICACIÓN DE LA MATERIA 1. Clasificación de la materia por su aspecto CLASIFICACIÓN DE LA MATERIA La materia homogénea es la que presenta un aspecto uniforme, en la cual no se pueden distinguir a simple vista sus componentes.

Más detalles

TEMA 8 SISTEMA PERIÓDICO Y ENLACES

TEMA 8 SISTEMA PERIÓDICO Y ENLACES TEMA 8 SISTEMA PERIÓDICO Y ENLACES 1. LA TABLA PERIÓDICA Elementos químicos son el conjunto de átomos que tienen en común su número atómico, Z. Hoy conocemos 111 elementos diferentes. Los elementos que

Más detalles

TEMA 2. FASES Y TRANSFORMACIONES DE FASES. DIAGRAMAS DE EQUILIBRIO.

TEMA 2. FASES Y TRANSFORMACIONES DE FASES. DIAGRAMAS DE EQUILIBRIO. TEMA 2. FASES Y TRANSFORMACIONES DE FASES. DIAGRAMAS DE EQUILIBRIO. Objetivos Este tema tiene por objeto conocer el interés e importancia de las aleaciones y las posibilidades de transformaciones y cambios

Más detalles

5.- Describir la solubilidad del Carbono en el Hierro en función de la temperatura y de sus distintos estados alotrópicos.

5.- Describir la solubilidad del Carbono en el Hierro en función de la temperatura y de sus distintos estados alotrópicos. DIAGRAMA HIERRO-CARBONO: 1.- Haciendo uso del diagrama Fe-C, verificar el enfriamiento lento ( en condiciones próximas al equilibrio) de las siguientes aleaciones: a) Acero de 0.17% de C b) Acero de 0.30%

Más detalles

FISICOQUÍMICA APLICADA

FISICOQUÍMICA APLICADA UNIVERSIDAD NACIONAL DE TUCUMAN FACULTAD DE BIOQUIMICA QUIMICA Y FARMACIA INSTITUTO DE QUIMICA FISICA San Miguel de Tucumán República Argentina FISICOQUÍMICA APLICADA Cambio de fase. Superficies. Coloides

Más detalles

La materia se puede definir como todo aquello que tiene masa y ocupa un volumen.

La materia se puede definir como todo aquello que tiene masa y ocupa un volumen. Tema 2: LA MATERIA Que es la materia? La materia se puede definir como todo aquello que tiene masa y ocupa un volumen. Clasificación de la materia (criterio: separación) Mezclas Sustancias puras Composición

Más detalles

FÍSICA Y QUÍMICA Versión impresa ELECTRONES Y ENLACES

FÍSICA Y QUÍMICA Versión impresa ELECTRONES Y ENLACES FÍSICA Y QUÍMICA Versión impresa ELECTRONES Y ENLACES Niveles de energía Modelo atómico actual Orbitales Configuración electrónica Tabla periódica Cada electrón puede encontrarse con más probabilidad en

Más detalles

FUNDICIONES. Las fundiciones son aleaciones de hierro, también manganeso, fosforo y azufre. Las

FUNDICIONES. Las fundiciones son aleaciones de hierro, también manganeso, fosforo y azufre. Las FUNDICIONES Las fundiciones son aleaciones de hierro, carbono y silicio que generalmente contienen también manganeso, fosforo y azufre. Las fundiciones, que son las más utilizadas en la práctica, aparecen

Más detalles

DIAGRAMA HIERRO-CARBONO

DIAGRAMA HIERRO-CARBONO DIAGRAMA HIERRO-CARBONO 1. Con el diagrama hierro-carbono simplificado de la figura, determina: a) Temperatura de solidificación del hierro puro b) Temperatura de solidificación de la ledeburita (el eutéctico)

Más detalles

SISTEMAS MATERIALES. Departamento de Física y Química 2º ESO

SISTEMAS MATERIALES. Departamento de Física y Química 2º ESO SISTEMAS MATERIALES Departamento de Física y Química 2º ESO 0. Mapa conceptual MATERIA Sustancias puras Mezclas Heterogéneas Homogéneas Sistemas coloidales Técnicas de separación Disoluciones Soluto Disolvente

Más detalles

LA MATERIA: ESTADOS DE AGREGACIÓN

LA MATERIA: ESTADOS DE AGREGACIÓN LA MATERIA: ESTADOS DE AGREGACIÓN 1. PROPIEDADES DE LA MATERIA Materia: es todo aquello que existe, tiene masa y ocupa un volumen, los distintos tipos de materia se llaman sustancias. El sistema material

Más detalles

5b. DIAGRAMA HIERRO-CARBONO

5b. DIAGRAMA HIERRO-CARBONO 5b. DIAGRAMA HIERRO-CARBONO MATERIALES 13/14 ÍNDICE ACERO DIAGRAMA Fe-C FASES EN EL DIAGRAMA PROPIEDADES MECANICAS DE LAS FASES 2 1. ACERO Constituyentes de las aleaciones Fe-C (fases) Ferrita : Solución

Más detalles

FyQ 1. IES de Castuera Bloque 2 Aspectos Cuantitativos de la Química Unidad Didáctica 2

FyQ 1. IES de Castuera Bloque 2 Aspectos Cuantitativos de la Química Unidad Didáctica 2 Física y Química 1º Bachillerato LOMCE FyQ 1 IES de Castuera Bloque 2 Aspectos Cuantitativos de la Química 2015 2016 Unidad Didáctica 2 Rev 01 Las Disoluciones. Métodos Actuales para el Análisis de Sustancias

Más detalles

CIDEAD. 2º BACHILLERATO.TECNOLOGÍA INDUSTRIAL II. Tema 5.- Los tratamientos térmicos de los aceros.

CIDEAD. 2º BACHILLERATO.TECNOLOGÍA INDUSTRIAL II. Tema 5.- Los tratamientos térmicos de los aceros. Desarrollo del tema: 1. Estados alotrópicos del hierro. 2. Aleaciones hierro carbono. Su composición 3. Constitución de las aleaciones hierro carbono. 4. Estructura de las aleaciones Fe C 5. Diagrama de

Más detalles

MEZCLAS Y DISOLUCIONES. Física y Química 3º de E.S.O. IES Isidra de Guzmán

MEZCLAS Y DISOLUCIONES. Física y Química 3º de E.S.O. IES Isidra de Guzmán MEZCLAS Y DISOLUCIONES Física y Química 3º de E.S.O. IES Isidra de Guzmán Introducción Ya sabes que los sistemas materiales se pueden clasificar según su composición en sustancias puras y mezclas. Las

Más detalles

FÍSICA APLICADA Y FISICOQUÍMICA I. Tema 8. Equilibrio de fases en sistemas multicomponentes II

FÍSICA APLICADA Y FISICOQUÍMICA I. Tema 8. Equilibrio de fases en sistemas multicomponentes II María del Pilar García Santos GRADO EN FARMACIA FÍSICA APLICADA Y FISICOQUÍMICA I Tema 8 Equilibrio de fases en sistemas multicomponentes II Esquema Tema 8. Equilibrios de fases en sistemas multicomponentes

Más detalles

CONSTRUCCIÓN DEL DIAGRAMA Fe- C. FASES DEL FE PURO

CONSTRUCCIÓN DEL DIAGRAMA Fe- C. FASES DEL FE PURO CONSTRUCCIÓN DEL DIAGRAMA Fe- C. FASES DEL FE PURO T Fe Líquido. Amorfo A 1536 C es la T de fusión del Fe. A 1536 C se forma Fe delta-fe - sólido si estoy disminuyendo T. Presenta estructura BCC Fe delta

Más detalles

Tema 7. Las mezclas. Introducción

Tema 7. Las mezclas. Introducción Tema 7. Las mezclas Introducción Ya sabes que los sistemas materiales se pueden clasificar según su composición en sustancias puras y mezclas. Las sustancias puras son los elementos y los compuestos que

Más detalles

TRANSFORMACIONES EN ESTADO SOLIDO

TRANSFORMACIONES EN ESTADO SOLIDO TRANSFORMACIONES EN ESTADO SOLIDO Después de solidificada una aleación puede sufrir transformaciones posteriores. Se presenta en metales que tienen al menos un componente que sufre transformaciones alotrópicas

Más detalles

LA MATERIA. - Masa - Volumen -Energía - Carga eléctrica. Propiedades generales

LA MATERIA. - Masa - Volumen -Energía - Carga eléctrica. Propiedades generales TEMA 2 La Materia LA MATERIA Propiedades generales - Masa - Volumen -Energía - Carga eléctrica Propiedades características - Densidad - Punto de fusión - Punto de ebullición -Conductividad eléctrica -

Más detalles

Materia es todo aquello que tiene masa y ocupa un lugar en el espacio (tiene volumen). La ciencia que estudia la materia es la Química.

Materia es todo aquello que tiene masa y ocupa un lugar en el espacio (tiene volumen). La ciencia que estudia la materia es la Química. Alfonso García Materia es todo aquello que tiene masa y ocupa un lugar en el espacio (tiene volumen). La ciencia que estudia la materia es la Química. Un sistema material es una porción de materia. Ejemplos:

Más detalles

Capitulo II 2.1.3 SOLIDIFICACIÓN Y ENFRIAMIENTO

Capitulo II 2.1.3 SOLIDIFICACIÓN Y ENFRIAMIENTO 58.1.3 SOLIDIFICACIÓN Y ENFRIAMIENTO Después de vaciar el metal fundido en el molde, éste se enfría y solidifica. En esta sección examinaremos los mecanismos físicos de solidificación que ocurren durante

Más detalles

Equilibrio de fases en sistemas multicomponentes

Equilibrio de fases en sistemas multicomponentes Equilibrio de fases en sistemas multicomponentes Fase; zona de un sistema en el que la composición y estado físico es igual. Se representa por la letra P, una mezcla de liquidos inmiscibles son dos fases

Más detalles

MODIFICACIÓN DE LAS PROPIEDADES DE LOS METALES CONTENIDOS

MODIFICACIÓN DE LAS PROPIEDADES DE LOS METALES CONTENIDOS MODIFICACIÓN DE LAS PROPIEDADES DE LOS METALES CONTENIDOS Generalidades Estructura interna de los metales. Defectos en la estructura cristalina Soluciones sólidas Mecanismos de endurecimiento de los metales

Más detalles

DISOLUCIONES UNIDAD IV. Licda. Miriam Marroquín Leiva

DISOLUCIONES UNIDAD IV. Licda. Miriam Marroquín Leiva DISOLUCIONES UNIDAD IV 1 DISOLUCIÓN Es una mezcla homogénea de dos o más sustancias; el soluto y el disolvente. Es un término utilizado para describir un sistema en el cual una o más sustancias están mezcladas

Más detalles

TEMA 4. IMPERFECIONES EN SÓLIDOS

TEMA 4. IMPERFECIONES EN SÓLIDOS TEMA 4. IMPERFECIONES EN SÓLIDOS En el Tema 3 se ha descrito el SÓLIDO CRISTALINO mediante la aproximación del CRISTAL IDEAL, que tomamos como modelo de perfección cristalina Los sólidos cristalinos reales

Más detalles

Tema 3. (Parte 1) Enlace químico y propiedades de las sustancias

Tema 3. (Parte 1) Enlace químico y propiedades de las sustancias Tema 3. (Parte 1) Enlace químico y propiedades de las sustancias ÍNDICE 3.1. Enlace y estabilidad energética 3.2. Enlace iónico Energía de red Ciclo de Born-Haber Propiedades de las sustancias iónicas

Más detalles

TEMA 3: MEZCLAS, DISOLUCIONES Y SUSTANCIAS PURAS

TEMA 3: MEZCLAS, DISOLUCIONES Y SUSTANCIAS PURAS TEMA 3: MEZCLAS, DISOLUCIONES Y SUSTANCIAS PURAS 1. LA MATERIA Y SU ASPECTO Los sistemas materiales, formados por una o varias sustancias, pueden clasificarse en: - Sistemas materiales heterogéneos: presentan

Más detalles

PRÁCTICA Nº 3 PROPIEDADES COLIGATIVAS: DETERMINACIÓN DE LA MASA MOLECULAR DE UN SOLUTO PROBLEMA POR CRIOSCOPIA

PRÁCTICA Nº 3 PROPIEDADES COLIGATIVAS: DETERMINACIÓN DE LA MASA MOLECULAR DE UN SOLUTO PROBLEMA POR CRIOSCOPIA PRÁCTICA Nº 3 PROPIEDADES COLIGATIVAS: DETERINACIÓN DE LA ASA OLECULAR DE UN SOLUTO PROBLEA POR CRIOSCOPIA OBJETIVOS: El objetivo de la práctica es el estudio del efecto que produce la adición de un soluto

Más detalles

Diagrama de fases de una sustancia pura: el agua

Diagrama de fases de una sustancia pura: el agua Diagrama de fases de una sustancia pura: el agua Apellidos, nombre Departamento Centro Lorena Atarés Huerta (loathue@tal.upv.es) Tecnología de Alimentos Escuela Técnica Superior de Ingeniería Agronómica

Más detalles

ENLACE QUÍMICO 2º BACH EJERCICIOS DE ENLACE QUÍMICO DEL LIBRO 28. H-CHO H C = O : CH 3 OH H C O H H H H C O C H H H CH 3 OCH 3

ENLACE QUÍMICO 2º BACH EJERCICIOS DE ENLACE QUÍMICO DEL LIBRO 28. H-CHO H C = O : CH 3 OH H C O H H H H C O C H H H CH 3 OCH 3 EJERCICIOS DE ENLACE QUÍMICO DEL LIBRO 28. -CO C = O : C 3 O C O C 3 OC 3 C O C a) La longitud de enlace CO es menor en el formaldehido, ya que tiene un doble enlace. b) El metanol puede formar enlaces

Más detalles

Unidad 2. La materia

Unidad 2. La materia Física y Química Unidad 2: La materia Unidad 2. La materia Índice de contenido 1. Estados de agregación de la materia...3 2. Cambios de estado...4 3. Clasificación de la materia...6 3.1.- Métodos de separación

Más detalles

Importancia del hierro en la metalurgia

Importancia del hierro en la metalurgia DIAGRAMA Fe - C Importancia del hierro en la metalurgia Afinidad química Capacidad de solubilidad de otros elementos Propiedad alotrópica en estado sólido Capacidad para variar sustancialmente la estructura

Más detalles

TEMAS Noviembre Belén Molina Sánchez UNIVERSIDAD ANTONIO DE NEBRIJA ASIGNATURA: MATERIALES I

TEMAS Noviembre Belén Molina Sánchez UNIVERSIDAD ANTONIO DE NEBRIJA ASIGNATURA: MATERIALES I TEMAS 16-21 Noviembre 2005 Belén Molina Sánchez 1 Sistema: porción del universo que ha sido aislada de tal modo que sus propiedades pueden ser estudiadas. Microconstituyente: aquello que es observable

Más detalles

1. MATERIA Y SU ASPECTO

1. MATERIA Y SU ASPECTO 1. MATERIA Y SU ASPECTO El aspecto de un sistema material puede variar según el método de observación. Algunos sistemas materiales como la leche, la sangre o la mantequilla a simple vista parecen uniformes,

Más detalles

ESTADOS DE AGREGACIÓN DE LA MATERIA

ESTADOS DE AGREGACIÓN DE LA MATERIA LA MATERIA LA MATERIA Materia es todo aquello que ocupa un lugar en el espacio y tiene masa. La madera, el agua, el corcho, la sal,.. Son clases diferentes de materia. Las clases de materia que se utilizan

Más detalles

UNIDAD 3. MODIFICACIÓN DE LAS PROPIEDADES DE LOS METALES

UNIDAD 3. MODIFICACIÓN DE LAS PROPIEDADES DE LOS METALES UNIDAD 3. MODIFICACIÓN DE LAS PROPIEDADES DE LOS METALES 1. GENERALIDADES... Pág. 49 2. ESTRUCTURA INTERNA DE LOS METALES... Pág. 49 2.1. Estructuras cristalinas... Pág. 49 2.2. Estructura cristalina cúbica

Más detalles

Tratamientos térmicos del acero

Tratamientos térmicos del acero Tratamientos térmicos del acero Objetivos Análisis con el microscopio metalográfico de las diferentes microestructuras obtenidas a través de tratamientos térmicos con diferentes tipos de enfriamientos

Más detalles

TEMA 2. ENLACES QUIMICOS

TEMA 2. ENLACES QUIMICOS TEMA 2. ENLACES QUIMICOS En la naturaleza los átomos que constituyen la materia se encuentran unidos formando moléculas o agrupaciones más complejas. A pesar de ello existen una serie de elementos que

Más detalles

Departamento de Ingeniería Metalúrgica Universidad de Santiago de Chile

Departamento de Ingeniería Metalúrgica Universidad de Santiago de Chile CAPÍTULO 19: SOLIDIFICACIÓN 19.1. INTRODUCCIÓN Las sustancias se pueden clasificar como amorfas o cristalinas. En el estado cristalino los átomos están dispuestos en una estructura atómica regular, o sea,

Más detalles

TEMA 4 LOS ÁTOMOS Y EL SISTEMA PERIÓDICO

TEMA 4 LOS ÁTOMOS Y EL SISTEMA PERIÓDICO TEMA 4 LOS ÁTOMOS Y EL SISTEMA PERIÓDICO. Objetivos / Criterios de evaluación O.5.1 Conocer la importancia de la búsqueda de los elementos químicos. O.5.2 Diferenciar entre metales y no metales. O.5.3

Más detalles

1. Los elementos químicos

1. Los elementos químicos RESUMEN de la UNIDAD 3. ELEMENTOS Y COMPUESTOS 1. Los elementos químicos La materia está formada por partículas denominadas átomos que, a su vez, están formados por otras partículas más pequeñas: protones,

Más detalles

TEMA 3 MINERALES Y ROCAS

TEMA 3 MINERALES Y ROCAS TEMA 3 MINERALES Y ROCAS No son minerales por no ser inorgánicos 1.1 CRISTALIZACIÓN Las redes cristalinas están definidas por: ejes cristalográficos + los ángulos que forman entre ellos + Elementos

Más detalles

LOS ESTADOS DE LA MATERIA

LOS ESTADOS DE LA MATERIA LOS ESTADOS DE LA MATERIA Como ya hemos estudiado, la materia se presenta en cuatro estados físicos: sólido, líquido, gas y plasma. El plasma es el estado de la materia en las estrellas. Una sustancia,

Más detalles

13. SINTERIZADO PULVIMETALURGIA CARACTERÍSTICAS CARACTERIZACÓN DE POLVOS PROPIEDADES DE LA MASA DE POLVOS

13. SINTERIZADO PULVIMETALURGIA CARACTERÍSTICAS CARACTERIZACÓN DE POLVOS PROPIEDADES DE LA MASA DE POLVOS 13. SINTERIZADO 1 Materiales I 13/14 ÍNDICE CARACTERÍSTICAS CARACTERIZACÓN DE POLVOS PROPIEDADES DE LA MASA DE POLVOS COMPRESIBILIDAD RESISTENCIA EN VERDE SINTERABILIDAD COMPACTACIÓN DE POLVOS METÁLICOS

Más detalles

Endurecimiento por dispersión y diagramas de fases eutécticas

Endurecimiento por dispersión y diagramas de fases eutécticas Endurecimiento por dispersión y diagramas de fases eutécticas Principios y ejemplos de endurecimiento por dispersión La mayoría de los materiales están formados por una sola fase, y muchos de ellos está

Más detalles

Tema: Equilibrio de fases en sistemas de multicomponentes B. Quintero /M.C. Cabeza. Diagrama de fases para un sistema de dos componentes

Tema: Equilibrio de fases en sistemas de multicomponentes B. Quintero /M.C. Cabeza. Diagrama de fases para un sistema de dos componentes Diagrama de fases para un sistema de dos componentes En un tema anterior se describieron los diagramas de fases para compuestos puros y, en particular, el diagrama de fases del agua. Esos diagramas permitían

Más detalles

Diagrama de fases Sn-Pb

Diagrama de fases Sn-Pb Práctica 4 Diagrama de fases Sn-Pb Objetivo Determinación del diagrama de fases Temperatura vs. Composición, a presión atmosférica, de la aleación Estaño - Plomo. Fundamento teórico Casi todos los metales

Más detalles

FÍSICA Y QUÍMICA 2º ESO TEMA VI COMPOSICIÓN DE LA MATERIA

FÍSICA Y QUÍMICA 2º ESO TEMA VI COMPOSICIÓN DE LA MATERIA FÍSICA Y QUÍMICA 2º ESO TEMA VI COMPOSICIÓN DE LA MATERIA 1) MEZCLAS HOMOGÉNEAS Y HETEROGÉNEAS Una mezcla es una composición de sustancias con distintas propiedades. Una mezcla es homogénea si está formada

Más detalles

Tema 2. Diagramas de Equilibrio y TTT

Tema 2. Diagramas de Equilibrio y TTT Tema 2. Diagramas de Equilibrio y TTT 2.1. Regla de las fases. 2.2. Diagramas en sistemas binarios. Eutéctico y peritéctico. 2.3. Curvas temperatura-tiempo-transformación. 2.4. Ciencia de Materiales en

Más detalles

Tema 1: Enlace químico. Se llama enlace químico a las fuerzas que mantienen unidos a los átomos, cualquiera que sea su naturaleza.

Tema 1: Enlace químico. Se llama enlace químico a las fuerzas que mantienen unidos a los átomos, cualquiera que sea su naturaleza. Tema 1: Enlace químico. Se llama enlace químico a las fuerzas que mantienen unidos a los átomos, cualquiera que sea su naturaleza. Tipos de sustancias Sustancias metálicas: tienen puntos de fusión variables,

Más detalles

Física y Química 3º ESO

Física y Química 3º ESO 1. Física y Química. Ciencias de la medida forman parte de las necesitan Ciencias de la naturaleza medir las propiedades de los cuerpos que se dividen en para lo cual se emplean lo que siempre conlleva

Más detalles

Líquido. Sólido. Gas Plasma. educacionsanitariaymas.blogspot.com.

Líquido. Sólido. Gas Plasma.  educacionsanitariaymas.blogspot.com. Líquido Sólido www.juntadeandalucia.es educacionsanitariaymas.blogspot.com Gas Plasma www.palimpalem.com En el estado sólido las moléculas se encuentran muy juntas, tienen mucha cohesión. Las partículas

Más detalles

ENSEÑANZA SECUNDARIA OBLIGATORIA DEPARTAMENTO: Física y Química Evaluación extraordinaria de SEPTIEMBRE

ENSEÑANZA SECUNDARIA OBLIGATORIA DEPARTAMENTO: Física y Química Evaluación extraordinaria de SEPTIEMBRE ENSEÑANZA SECUNDARIA OBLIGATORIA DEPARTAMENTO: Física y Química Evaluación extraordinaria de SEPTIEMBRE APELLIDOS: NOMBRE: MATERIA: Física y química CURSO: 3 ESO GRUPO: CONTENIDOS MÍNIMOS: Conocer el método

Más detalles

ESTRUCTURA DE LA MATERIA. ENLACE QUÍMICO EJERCICIOS DE SELECTIVIDAD 96/97

ESTRUCTURA DE LA MATERIA. ENLACE QUÍMICO EJERCICIOS DE SELECTIVIDAD 96/97 ESTRUCTURA DE LA MATERIA. ENLACE QUÍMICO EJERCICIOS DE SELECTIVIDAD 96/97 1. Comente cada una de las frases siguientes, indicando si son verdaderas o falsas, y explique las razones en las que se basa.

Más detalles

Laboratorio 8. Diagrama de fase sólido-liquido para un sistema binario

Laboratorio 8. Diagrama de fase sólido-liquido para un sistema binario Laboratorio 8. Diagrama de fase sólido-liquido para un sistema binario Objetivo Construir el diagrama de fase sólido líquido para un sistema binario a partir de las curvas de enfriamiento. Se determinará

Más detalles

Los constituyentes metálicos que se pueden presentar en los aceros al carbono son:

Los constituyentes metálicos que se pueden presentar en los aceros al carbono son: DE LOS ACEROS Los constituyentes metálicos que se pueden presentar en los aceros al carbono son: Ferrita Cementita Perlita Sorbita Troostita Martensita Bainita Austenita El análisis de las microestructuras

Más detalles

LOS GASES Y LAS DISOLUCIONES. Departamento de Física y Química 3º ESO

LOS GASES Y LAS DISOLUCIONES. Departamento de Física y Química 3º ESO LOS GASES Y LAS DISOLUCIONES Departamento de Física y Química 3º ESO 0. Mapa conceptual SÓLIDO ESTADOS DE LA MATERIA LÍQUIDO Presión atmosférica GAS Solubilidad Disolución saturada Disoluciones Soluto

Más detalles

A continuación se detallan cada una de las propiedades coligativas:

A continuación se detallan cada una de las propiedades coligativas: PREGUNTA (Técnico Profesional) Se prepara una solución con 2 mol de agua y 0,5 mol de un electrolito no volátil. Al respecto, cuál es la presión de vapor a 25 ºC de esta solución, si la presión del agua

Más detalles

Profesor: Carlos Gutiérrez Arancibia. Temas a tratar: - - Sustancias Puras - Mezclas - Enlaces Químicos - Fuerzas Intermoleculares

Profesor: Carlos Gutiérrez Arancibia. Temas a tratar: - - Sustancias Puras - Mezclas - Enlaces Químicos - Fuerzas Intermoleculares Profesor: Carlos Gutiérrez Arancibia Temas a tratar: - - Sustancias Puras - Mezclas - Enlaces Químicos - Fuerzas Intermoleculares A. Sustancia Pura: SUSTANCIAS PURAS Y MEZCLAS Una sustancia pura es un

Más detalles

Solución test (0,25 puntos por pregunta)

Solución test (0,25 puntos por pregunta) Solución test (0,25 puntos por pregunta) 1. El incremento de la templabilidad puede lograrse mediante: a) A través de un medio de temple con un enfriamiento más lento. Falso, con ello se disminuye la templabilidad

Más detalles

OPTATIVIDAD: EL ALUMNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR LAS PREGUNTAS DE LA MISMA.

OPTATIVIDAD: EL ALUMNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR LAS PREGUNTAS DE LA MISMA. OPTATIVIDAD: EL ALUMNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR LAS PREGUNTAS DE LA MISMA. CRITERIOS GENERALES DE EVALUACIÓN: Se valorarán positivamente las contestaciones ajustadas a las preguntas,

Más detalles

Fundamentos de Química. Horario de Tutorías

Fundamentos de Química. Horario de Tutorías Fundamentos de Química Segundo Cuatrimestre Horario de Tutorías Martes 12:00-14:00 16:00-19:00 Edificio 24B.Tercera Planta 14/02/2006 Tema 11: Propiedades de las disoluciones 11.1 Definición de disolución

Más detalles

ALEACIONES 1. INTRODUCCION 2. CLASIFICACION 3. SOLUCIONES SÓLIDAS 4. FASES INTERMEDIAS 5. SOLUCIONES SÓLIDAS ORDENADAS M.V.M.G ALEACIONES 1

ALEACIONES 1. INTRODUCCION 2. CLASIFICACION 3. SOLUCIONES SÓLIDAS 4. FASES INTERMEDIAS 5. SOLUCIONES SÓLIDAS ORDENADAS M.V.M.G ALEACIONES 1 ALEACIONES 1. INTRODUCCION 2. CLASIFICACION 3. SOLUCIONES SÓLIDAS 4. FASES INTERMEDIAS 5. SOLUCIONES SÓLIDAS ORDENADAS 2007-08 ALEACIONES 1 INTRODUCCIÓN Una aleación es la combinación de dos o más metales,

Más detalles

También son materiales compuestos el aglomerado y el contrachapado. Se fabrican a partir de láminas o restos de maderas con cola.

También son materiales compuestos el aglomerado y el contrachapado. Se fabrican a partir de láminas o restos de maderas con cola. OTROS MATERIALES Algunas veces necesitamos combinar las propiedades de varios tipos de elementos e uno solo, para lo cual se usan materiales compuestos. Un ejemplo de material compuesto es el tetrabrick,

Más detalles

BLOQUE IV.- Materiales metálicos. Tema 10.- Fundiciones

BLOQUE IV.- Materiales metálicos. Tema 10.- Fundiciones BLOQUE IV.- Materiales metálicos * William F. Smith Fundamentos de la Ciencia e Ingeniería de Materiales. Tercera Edición. Ed. Mc-Graw Hill * James F. Shackerlford Introducción a la Ciencia de Materiales

Más detalles

Tema 5. Aleaciones metálicas. El sistema Fe-C.

Tema 5. Aleaciones metálicas. El sistema Fe-C. Tema 5. Aleaciones metálicas. El sistema Fe-C. Problemas sobre aleaciones Fe-C, y cinética de las transformaciones (W.D. Callister Ed. Reverté - Cap 9 y 10). 9.47. Cuál es el porcentaje de carbono de un

Más detalles

DISOLUCIONES. Las disoluciones son mezclas homogéneas de dos o más sustancias (componentes) en proporciones variables.

DISOLUCIONES. Las disoluciones son mezclas homogéneas de dos o más sustancias (componentes) en proporciones variables. DISOLUCIONES Las disoluciones son mezclas homogéneas de dos o más sustancias (componentes) en proporciones variables. Soluto es la sustancia que se encuentra en menor proporción. Disolvente es la sustancia

Más detalles

EFECTO DEL CALOR SOBRE LA MATERIA

EFECTO DEL CALOR SOBRE LA MATERIA EFECTO DEL CALOR SOBRE LA MATERIA MATERIA: es todo aquello que ocupa un lugar en el espacio y tiene masa LOS EFECTOS QUE PRODUCE EL CALOR SOBRE LA MATERIA SE PUEDEN CLASIFICAR EN: * CAMBIOS FÍSICOS. *

Más detalles

PROBLEMAS TEMA 2. FASES y TRANSFORMACIONES DE FASE. DIAGRAMAS DE EQUILIBRIO

PROBLEMAS TEMA 2. FASES y TRANSFORMACIONES DE FASE. DIAGRAMAS DE EQUILIBRIO PROBLEMAS TEMA 2. FASES y TRANSFORMACIONES DE FASE. DIAGRAMAS DE EQUILIBRIO 1. Se adjunta el peso atómico y el radio atómico de tres hipotéticos metales. Determinar para cada una de ellas si su estructura

Más detalles

los Aceros El porqué? Tratamientos térmicos Microestructura) Propiedades d Mecánicas FCEIA-UNR C Materiales FCEIA-UNR C-3.20.

los Aceros El porqué? Tratamientos térmicos Microestructura) Propiedades d Mecánicas FCEIA-UNR C Materiales FCEIA-UNR C-3.20. 11. Tratamientos t Térmicos de los Aceros El porqué? Tratamientos térmicos (Temperatura y tiempo) Microestructura) Propiedades d Mecánicas 1 El factor TIEMPO La mayoría de las transformaciones en estado

Más detalles

TEMA 1: ESTRUCTURA INTERNA DE LOS MATERIALES

TEMA 1: ESTRUCTURA INTERNA DE LOS MATERIALES PERIODO Departamento de Tecnología. IES Nuestra Señora de la Almudena Mª Jesús Saiz TEMA 1: ESTRUCTURA INTERNA DE LOS MATERIALES El átomo: Toda la materia está compuesta por átomos y éstos por partículas

Más detalles