Ingeniería de Telecomunicación PROPAGACIÓN DE ONDAS Apellidos, Nombre

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ingeniería de Telecomunicación PROPAGACIÓN DE ONDAS Apellidos, Nombre"

Transcripción

1 TSC Ingeniería de Telecomunicación PROPAACIÓN DE ONDAS Apellidos, Nombre TEST. (1% de la nota final). DNI: 1. En una línea de transmisión sin pérdidas de 5 Ω de impedancia característica se mide una ROE de. El valor de la impedancia mínima en la línea es de a. 1 Ω b. 75 Ω c. 5 Ω d. 5 Ω. Se ha medido la atenuación de un cable coaxial utilizando para ello el analizador de redes. Tras los pertinentes cálculos, la atenuación resultante a la frecuencia de 1 MHz es de 4,6 Np/m. Si la longitud del cable medido es de 1 m, la medida dada por el analizador de redes a dicha frecuencia, expresada en d es de aproximadamente a. -4 b. -35 c. -3 d A una determinada frecuencia, el módulo de la impedancia de entrada medida en una línea de transmisión terminada por un cortocircuito es de 1 Ω. A la misma frecuencia el módulo de la impedancia de entrada medida para la misma línea terminada por un circuito abierto es de 1 Ω. a impedancia característica de dicha línea a la frecuencia de medida es de a. 5 Ω b. 1 Ω c. 1 k Ω d. 1 k Ω 4. En una guía WR9 se ha medido la frecuencia de trabajo, utilizando para ello un frecuencímetro basado en cavidades resonantes, resultando su valor de 9,66 Hz. El valor de la longitud de onda en la guía (λ g ) resulta ser de a.,569 cm b. 3,78 cm c. 4,57 cm d. 5,414 cm 5. Se pretende medir la frecuencia en una guía WR9 por el método de la longitud de onda en la guía. Si la separación entre dos máximos consecutivos es de 1,94 cm, la frecuencia buscada es de a. 9,66 Hz b. 9,85 Hz c. 1,14 Hz d. 1,39 Hz

2 6. En una guía de ondas se conoce la longitud de onda en la guía (6 cm) y la longitud de onda en el espacio libre (4 cm). a dimensión mayor de la guía es de a. 4,57 cm b. 3,6 cm c.,94 cm d.,68 cm 7. as tensiones máxima y mínima medidas en una guía ranurada a la que se ha conectado una antena son de 79, mv y 57,3 mv, respectivamente. El coeficiente de reflexión medido a la entrada de la antena tendrá de módulo a.,16 b.,33 c.,57 d.,86 8. Considere dos dipolos de igual longitud, uno transmisor y otro receptor, situados a una distancia d y orientados paralelamente. Si uno de los dipolos se gira fortuitamente un ángulo α en un plano perpendicular al que inicialmente determinaban los dos dipolos, aumentarán las pérdidas debido a a. Propagación en el espacio libre. b. Desacoplo de polarización. c. Directividad. d. No varían las pérdidas. 9. El campo recibido que se obtiene utilizando las curvas de propagación por onda de superficie es de 3 du. Si se ha utilizado una antena que radia una pire de 1 kw, el campo real recibido es de a. 3, du b. 35, du c. 36,98 du d. 37,38 du 1. Se dispone de una antena transmisora de 1 m de altura y una antena receptora de m de altura. Para el caso de atmósfera estándar y una distancia entre antenas de 3 km, el ángulo de incidencia será de aproximadamente a. 89,4º b. 84,3º c. 45º d. 5,7º

3 CUESTIÓN 1. (7 puntos). a sensibilidad de un receptor de AM que trabaja a la frecuencia de 75 khz es de 5 du. a estación transmisora ha de garantizar la cobertura en una zona de radio 1 km utilizando una antena de fuerza cimomotriz 43 V y rendimiento del 9%. Se desea utilizar la misma frecuencia de portadora para otro transmisor de AM. Si el campo producido por este segundo transmisor ha de estar 4 d por debajo del producido por el primero cuando se sabe que radia 5 kw y que su antena tiene una ganancia isótropa de 6 d, calcule la potencia que ha de radiar el primer transmisor y la distancia que separa ambos transmisores. El campo realmente recibido a 1 km, debido al primer transmisor, es de 5 du, por lo que el campo realmente recibido en el mismo punto, debido al segundo transmisor, ha de estar 4 d por debajo, es decir, ha de ser de 1 du. Por tanto, el campo correspondiente a este valor cuando se trabaja con una antena vertical corta y una potencia radiada de 1 kw, estará dado por E = E P (dkw) = Rx AVC,1kW Rx rad REF 173 = ERx 1.log(p rad(kw)) i.log = = 1 1.log5 6.log = 17,77 du 3 Será, por tanto, el campo recibido del primer transmisor, si la antena usada es una antena vertical corta y la potencia radiada es de 1 kw, 4 d superior, es decir,,3 du, siendo la potencia radiada por este primer transmisor de fcm P rad (dkw) = ERx ERx.log = AVC,1kW 3 43 = 5,3.log = 4,64 dkw 3 Al no conocer el tipo de terreno sobre el que se produce la propagación de la onda de superficie, no se puede determinar la distancia pedida.

4 CUESTIÓN. (7 puntos). Un generador de impedancia interna alimenta una línea de transmisión de longitud d e impedancia característica, cargada con una impedancia cualquiera. Hallar la relación existente entre el voltaje v g del generador y el de la onda V. Tomando el origen de coordenadas (z=) en el generador, los valores de tensión y de corriente en cualquier punto de la línea están dados por las expresiones V(z) = V e V e γz γz 1 I(z) = V e V e γz γz ( ) El coeficiente de reflexión en la carga (z=) valdrá Γ = Trasladando este coeficiente al generador (z = ) se tendrá Ve V Γ = = e =Γ e γ γ γ Ve V Por tanto, la tensión y la corriente en cualquier punto de la línea se pueden poner como γ ) ( ) ( ) V(z) = Ve 1Γ e = Ve 1Γ e γz γ z γz γ(z V V I(z) = e 1 Γ e = e 1 Γ e ) ( ) ( ) γz γz γz γ(z Como a la entrada se cumple que V IN = V I IN, siendo V IN e I IN los valores de tensión y corriente en z =, se puede poner de donde, operando y llamando V, dado por la expresión V V 1Γ e = V 1 Γ e ( ) ( ) γ γ Γ = 1 V = V 1 e γ ΓΓ, se llega a la expresión de

5 CUESTIÓN 3. (6 puntos). En una guía rectangular normalizada de dimensión a=1 cm se transmite una onda TMmn. Si la distancia entre dos ceros consecutivos es de 1 cm, determinar el modo de la onda que se transmite cuando la frecuencia de trabajo es de 4,5 Hz. a distancia entre dos ceros consecutivos es λ g /, por lo que λ g = cm. Como la frecuencia de trabajo es de 4,5 Hz, será λ=6,66 cm y, al ser λ λ g = f 1 C f Resulta una frecuencia de corte para el modo buscado de 4,43 Hz, siendo fc = f C.RT M TMmn TE1 mn a frecuencia de corte del modo dominante, suponiendo el aire como dieléctrico es de 1,5 Hz, por lo que valdrá,88. R TMmn Al ser R TM mn = m 4n, resulta la ecuación 8=m 4n, de donde resolviendo resulta m= y n=1, es decir, el modo buscado es el TM 1. PROEMA 1. (16 puntos). Se dispone de un vano radioeléctrico de 74 km, estando las antenas transmisora y receptora situadas a 5 y 8 m, respectivamente y trabajándose a 9 MHz. Supuesta atmósfera estándar, se observan tres obstáculos situados a 1, 37 y 64 km de la antena transmisora, para los cuales los despejamientos son de -7 m, 1 m y 5 m, respectivamente. Se pide determinar las pérdidas totales para el caso en el que el gradiente de la refractancia sea de -5 km -1. Datos: ( ) ( ) ( ) d = 6,9 log v,1 1 v,1 D 8 5 Al ser la ecuación del rayo directo y( x) = x 5, y teniendo 74 en cuenta el incremento del despojamiento al variar las condiciones atmosféricas, dd Δ h =, R K final K inicial siendo K inicial =4/3 y

6 K final 1 1 = = 1 1 = 6 dn 6 R ( 5).1 dh 1,19 se pueden determinar los nuevos despejamientos y la altura de los obstáculos sobre tierra plana (h f): Obstáculos 1 3 d 1 (km) d (km) h 4/3 (m) Δh (m) 4,54 9,71 4,54 h'=h 4/3 Δh (m) -,46 19,71 56,54 y(d 1 ) (m) 34, ,68 h f=h y(d 1 ) (m) 31,86 654,71 78, Para la nueva situación, aplicaremos el método general para múltiples obstáculos. Con el fin de determinar el obstáculo dominante, para los nuevos despejamientos calculamos sus correspondientes parámetros de difracción (no se calcula el correspondiente al obstáculo 1, dado que al tener el único despejamiento negativo no podrá corresponder al obstáculo dominante), resultando valores de,33 (obstáculo ) y 1,49 (obstáculo 3). Por tanto, el obstáculo dominante es el intermedio. Para el obstáculo dominante, las pérdidas por difracción son de,9 d En el subvano transmisor (antena transmisora-obstáculo dominante), la ecuación de la recta del rayo directo a la distancia a que se encuentra el primer obstáculo es y(1)=359,58 m, por lo que el despejamiento será de - 57,7 m, resultando un parámetro de difracción de Fresnel de -1,66. Por tanto, las pérdidas en el subvano transmisor son nulas ( d). En el subvano receptor (obstáculo dominante-receptor), la ecuación de la recta del rayo directo a la distancia a que se encuentra el tercer obstáculo es y(7)=76,73 m, por lo que el despejamiento será de 1,49 m, resultando un parámetro de difracción de Fresnel de,616. Por tanto, las pérdidas en el subvano receptor son de 11, d. as pérdidas por difracción serán D =44,1 d y, al ser bf =18,91 d, las pérdidas totales pedidas serán de 17,9 d. PROEMA. (1 puntos). Por una guía de onda rectangular (a =,4 cm y b = 1 cm) hueca se inyecta una señal de frecuencia 9 Hz. Si la impedancia de terminación de la guía es de 6 Ω se pide: 1. Frecuencia de corte de la guía.

7 . Margen de frecuencias de propagación de la guía para el modo dominante. 3. Impedancia característica del modo de propagación de la señal. 4. Valor de la ROE en la guía. 5. Distancia en mm del primer mínimo de tensión a la carga. 6. Distancia en mm entre el primer mínimo y el primer máximo de tensión. 1. Para el modo dominante es la frecuencia de corte de 6,5 Hz, siendo el siguiente modo que se propaga el TE, cuya frecuencia de corte es de 1,5 Hz. Por tanto, la frecuencia de corte de la guía corresponde a la del modo dominante.. El margen de frecuencias pedido es 1,5.f CTE1 <f<,95.f CTE, es decir, 7,815 Hz<f<11,875 Hz. 3. a impedancia característica del modo de propagación de la señal es η TE = = 53,93 Ω 1 fcte 1 1 f TE 1Γ 1 4. Como Γ = =,68, será ROE = = 1, Γ TE 1 5. Como la carga es real, en z= existirá un máximo de tensión, por lo que el primer mínimo se encontrará a λ g /4 de la carga, y como λ λ g = = 46,3 mm, el primer mínimo se encontrará a fcte 1 1 f 11,58 mm de la carga. 6. a distancia pedida será 11,58 mm. PROEMA 3. ( puntos). Se dispone del siguiente circuito formado por dos líneas de transmisión, un generador y una carga:

8 A d d E, γ 1, γ Se pide: 1. a impedancia de entrada de cada una de las líneas.. a potencia neta a la entrada de la línea de 5 Ω. 3. a potencia disipada en la carga. 4. a potencia disipada en cada una de las líneas. Datos: P D = 1 W; d =,18λ; α =,5/ λ Np/m; = 1 Ω; = = 5 Ω; 1 = 7 Ω; 1 Γ P = P 1 Γ Γ D IN 1 1. Como Γ = =,167 será la impedancia de entrada a la 1 segunda línea 1.th( γd) = 1 = 8,48 j19,8 Ω 1.th( γd) por lo que Γ = =,6 j,11, que da lugar a una impedancia de entrada a la línea conectada al generador.th( γd) = A = 38,3 j,43 Ω.th( γd). En función del resultado anterior es A Γ IN = = A,41 j,1. a potencia neta a la entrada de la línea, supuesto z= en el generador, será 4αd Pneta = P P = P 1 Γ.e siendo 1 Γ P = P D =,687 W, con Γ = =,333. Por 1 Γ Γ tanto, P neta =,641 W. 3. Atendiendo al circuito será IN

9 4. P = P.e = P.e =,68 W α d αd A 4 d P. 1 P. α Γ = 1 Γ e, de donde P =,59 W P P.e αd = =,541 W Resultando, por tanto, P = P. 1 Γ =,56 W. P P = P =,687-,59=,95 W. disipada en línea P = P P =,59-,541=,51 W disipada en línea 1

Ejercicios típicos de Líneas A)RG 58 B) RG 213 C) RG 220. (Perdida del Cable RG 58 a 100 MHz) db = 10 * Log (W Ant / W TX ) = - 6,44dB

Ejercicios típicos de Líneas A)RG 58 B) RG 213 C) RG 220. (Perdida del Cable RG 58 a 100 MHz) db = 10 * Log (W Ant / W TX ) = - 6,44dB Ejercicios típicos de Líneas 1- Tenemos que instalar un transmisor de 500W, en una radio de FM que trabaja en.1 MHz. Sabiendo que la torre disponible para sostener la antena es de 40m, calcular la potencia

Más detalles

1 Pérdida total (de un enlace radioeléctrico)*** (símbolos: L l o A l )

1 Pérdida total (de un enlace radioeléctrico)*** (símbolos: L l o A l ) Rec. UIT-R P.341-4 1 RECOMENDACIÓN UIT-R P.341-4 * NOCIÓN DE PÉRDIDAS DE TRANSMISIÓN EN LOS ENLACES RADIOELÉCTRICOS ** Rec. UIT-R P.341-4 (1959-1982-1986-1994-1995) La Asamblea de Radiocomunicaciones de

Más detalles

RADIOCOMUNICACIÓN. PROBLEMAS TEMA 2 Ruido e interferencias en los sistemas radioeléctricos

RADIOCOMUNICACIÓN. PROBLEMAS TEMA 2 Ruido e interferencias en los sistemas radioeléctricos RADIOCOMUNICACIÓN PROBLEMAS TEMA 2 Ruido e interferencias en los sistemas radioeléctricos P1.- Un sistema consiste en un cable cuyas pérdidas son 2 db/km seguido de un amplificador cuya figura de ruido

Más detalles

TEMA 1. FUNDAMENTOS DE LOS SISTEMAS DE RADIOCOMUNICACIÓN

TEMA 1. FUNDAMENTOS DE LOS SISTEMAS DE RADIOCOMUNICACIÓN TEMA 1. FUNDAMENTOS DE LOS SISTEMAS DE RADIOCOMUNICACIÓN Términos y definiciones Radiocomunicación Telecomunicación realizada a través de un medio no guiado. Algunos ejemplos son: telefonía móvil y fija,

Más detalles

2.2 GANANCIA, GANANCIA DIRECTIVA, DIRECTIVIDAD Y EFICIENCIA

2.2 GANANCIA, GANANCIA DIRECTIVA, DIRECTIVIDAD Y EFICIENCIA . GANANCIA, GANANCIA IRECTIVA, IRECTIVIA Y EFICIENCIA GANANCIA Otra medida útil para describir el funcionamiento de una antena es la ganancia. Aunque la ganancia de la antena está íntimamente relacionada

Más detalles

Laboratorio de Microondas, Satélites y Antenas. Práctica #1. Introducción al Equipo de Laboratorio

Laboratorio de Microondas, Satélites y Antenas. Práctica #1. Introducción al Equipo de Laboratorio Laboratorio de Microondas, Satélites y Antenas Práctica #1 Introducción al Equipo de Laboratorio Objetivo Familiarizar al alumno con los instrumentos básicos con que se cuenta, para suministrar potencia

Más detalles

III Unidad Modulación

III Unidad Modulación 1 Modulación Análoga (AM, FM). Digital (MIC). 2 Modulación Longitud de onda Es uno de los parámetros de la onda sinusoidal. Es la distancia que recorre la onda sinusoidal en un ciclo (Hertz). Su unidad

Más detalles

UNIVERSIDAD DISTRITAL FJDC FAC. TECNOLÓGICA INGENIERÍA EN TELECOMUNICACIONES MEDIOS DE TRANSMISIÓN "GUÍAS DE ONDA Y RESONADORES"

UNIVERSIDAD DISTRITAL FJDC FAC. TECNOLÓGICA INGENIERÍA EN TELECOMUNICACIONES MEDIOS DE TRANSMISIÓN GUÍAS DE ONDA Y RESONADORES UNIVERSIDAD DISTRITAL FJDC FAC. TECNOLÓGICA INGENIERÍA EN TELECOMUNICACIONES MEDIOS DE TRANSMISIÓN "GUÍAS DE ONDA Y RESONADORES" Prof. Francisco J. Zamora Propagación de ondas electromagnéticas en guías

Más detalles

Curvas de propagación y condiciones de validez (trayectos homogéneos)

Curvas de propagación y condiciones de validez (trayectos homogéneos) Rec. UIT-R P.368-7 1 RECOMENDACIÓN UIT-R P.368-7 * CURVAS DE PROPAGACIÓN POR ONDA DE SUPERFICIE PARA FRECUENCIAS COMPRENDIDAS ENTRE 10 khz Y 30 MHz (1951-1959-1963-1970-1974-1978-1982-1986-1990-1992) Rc.

Más detalles

Comunicaciones Inalámbricas Capitulo 3: Antenas. Víctor Manuel Quintero Flórez Claudia Milena Hernández Bonilla

Comunicaciones Inalámbricas Capitulo 3: Antenas. Víctor Manuel Quintero Flórez Claudia Milena Hernández Bonilla Comunicaciones Inalámbricas Capitulo 3: Víctor Manuel Quintero Flórez Claudia Milena Hernández Bonilla Maestría en Electrónica y Telecomunicaciones II-2013 Componente fundamental de sistemas de comunicaciones

Más detalles

RECOMENDACIÓN UIT-R P Curvas de propagación por onda de superficie para frecuencias comprendidas entre 10 khz y 30 MHz

RECOMENDACIÓN UIT-R P Curvas de propagación por onda de superficie para frecuencias comprendidas entre 10 khz y 30 MHz Rec. UIT-R P.368-9 1 RECOMENDACIÓN UIT-R P.368-9 Curvas de propagación por onda de superficie para frecuencias comprendidas entre 10 khz y 30 MHz (1951-1959-1963-1970-1974-1978-1982-1986-1990-1992-2005-2007)

Más detalles

Parámetros de antenas

Parámetros de antenas 1/43 Tema 3 Parámetros de antenas Lorenzo Rubio Arjona (lrubio@dcom.upv.es) Departamento de Comunicaciones. ETSI de Telecomunicación 1 /43 3. Parámetros de antenas 3.1. Introducción y justificación del

Más detalles

1 Universidad de Castilla La Mancha Septiembre 2015 SEPTIEMRE 2015 Opción A Problema 1.- Tenemos tres partículas cargadas q 1 = -20 C, q 2 = +40 C y q 3 = -15 C, situadas en los puntos de coordenadas A

Más detalles

Antenas Clase 5. Ing. Marco Rubina

Antenas Clase 5. Ing. Marco Rubina Antenas Clase 5 La Ganancia La Ganancia es una característica importante en las antenas, está dada en decibelios isotrópicos (dbi). Es la ganancia de energía en comparación con una antena isotrópica (antena

Más detalles

Dispositivos y Medios de Transmisión Ópticos

Dispositivos y Medios de Transmisión Ópticos Dispositivos y Medios de Transmisión Ópticos Módulo 2. Propagación en Fibras Ópticas. EJERCICIOS Autor: Isabel Pérez/José Manuel Sánchez /Carmen Vázquez Revisado: Pedro Contreras Grupo de Displays y Aplicaciones

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

Última modificación: 22 de mayo de

Última modificación: 22 de mayo de CÁLCULO DE ENLACE Contenido 1.- Configuración de un enlace satelital. 2.- Atenuación en el espacio libre. 3.- Contornos de PIRE. 4.- Tamaño de la antena parabólica. Última modificación: ió 22 de mayo de

Más detalles

MATERIALES DIELÉCTRICOS

MATERIALES DIELÉCTRICOS MATERIALES DIELÉCTRICOS PREGUNTAS 1. Qué le ocurre a una placa sólida, dieléctrica, cuando se coloca en un campo eléctrico uniforme?. Qué es un material dieléctrico?, argumente. 3. Hay dieléctricos polar

Más detalles

SISTEMAS DE RADIOCOMUNICACIONES. Práctica # 3: SISTEMA DE RADIO MÓVIL EN LA BANDA DE VHF

SISTEMAS DE RADIOCOMUNICACIONES. Práctica # 3: SISTEMA DE RADIO MÓVIL EN LA BANDA DE VHF UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE VICE-RECTORADO PUERTO ORDAZ LAB. DE TELECOMUNICACIONES Sección de Comunicaciones SISTEMAS DE RADIOCOMUNICACIONES Práctica # 3: SISTEMA

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN 1 PROBLEMAS DE OPTIMIZACIÓN Planteamiento y resolución de los problemas de optimización Se quiere construir una caja, sin tapa, partiendo de una lámina rectangular de cm de larga por de ancha. Para ello

Más detalles

INSTITUCIONES DESCENTRALIZADAS

INSTITUCIONES DESCENTRALIZADAS INSTITUCIONES DESCENTRALIZADAS AUTORIDAD REGULADORA DE LOS SERVICIOS PÚBLICOS SUPERINTENDENCIA DE TELECOMUNICACIONES 1 vez. O. C. Nº 0154-12. C-347800. (IN2012078006). Protocolo General de medición

Más detalles

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R TEMA PE9 PE.9.1. Los campos magnéticos de los que estamos rodeados continuamente representan un riesgo potencial para la salud, en Europa se han establecido recomendaciones para limitar la exposición,

Más detalles

SISTEMA DE ENLACE STRI 2013 TRABAJO PRÁCTICO 3 - UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL LA PLATA CARRERA DE GRADO

SISTEMA DE ENLACE STRI 2013 TRABAJO PRÁCTICO 3 - UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL LA PLATA CARRERA DE GRADO CARRERA DE GRADO -INGENIERÍA EN SISTEMAS DE INFORMACIÓN- SISTEMA DE ENLACE UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL LA PLATA STRI 2013 TRABAJO PRÁCTICO 3 - Página 1 de 8 1) Se desea establecer

Más detalles

Determinar la relación entre ganancias expresada en db (100 ptos).

Determinar la relación entre ganancias expresada en db (100 ptos). ELECTRONICA Y TELECOMUNICACIONES Competencia rupal Niel Segunda Instancia PROBLEMA N 1 El personal técnico de una empresa que se dedica a caracterizar antenas se ha propuesto determinar la relación entre

Más detalles

F2 Bach. Movimiento ondulatorio

F2 Bach. Movimiento ondulatorio 1. Introducción. Noción de onda. Tipos de ondas 2. Magnitudes características de una onda 3. Ecuación de las ondas armónicas unidimensionales 4. Propiedad importante de la ecuación de ondas armónica 5.

Más detalles

DEPARTAMENTO DE FÍSICA COLEGIO "LA ASUNCIÓN"

DEPARTAMENTO DE FÍSICA COLEGIO LA ASUNCIÓN COLEGIO "LA ASUNCIÓN" 1(8) Ejercicio nº 1 La ecuación de una onda armónica es: Y = 0 02 sen (4πt πx) Estando x e y expresadas en metros y t en segundos: a) Halla la amplitud, la frecuencia, la longitud

Más detalles

1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IB VC VB IE

1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IB VC VB IE Ejercicios relativos al transistor bipolar Problemas de transistores BJT en estática 1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IC IB VC VB

Más detalles

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas Ondas mecánicas Definición: Una onda mecánica es la propagación de una perturbación a través de un medio. Donde. Así, la función de onda se puede escribir de la siguiente manera, Ondas transversales: Son

Más detalles

La luz. Según los datos del problema se puede esbozar el siguiente dibujo:

La luz. Según los datos del problema se puede esbozar el siguiente dibujo: La luz 1. Se hace incidir sobre un prisma de 60º e índice de refracció un rayo luminoso que forma un ángulo de 45º con la normal. Determinar: a) El ángulo de refracción en el interior del prisma. b) El

Más detalles

Dpto. de Física y Química. IES N. Salmerón A. Ondas 6.2 ( )

Dpto. de Física y Química. IES N. Salmerón A. Ondas 6.2 ( ) CUESTIONES 1. (2004) a) Por qué la profundidad real de una piscina llena de agua es siempre mayor que la profundidad aparente? b) Explique qué es el ángulo límite y bajo qué condiciones puede observarse.

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico 1(10) Ejercicio nº 1 Dos cargas eléctricas iguales, situadas en el vacío a 0,2 milímetros de distancia, se repelen con una fuerza de 0,01 N. Calcula el valor de estas cargas. Ejercicio nº 2 Hallar a qué

Más detalles

IES TIRANT LO EST - ANTENAS BLANC JORGE ANDRES GORDON 1CI2N

IES TIRANT LO EST - ANTENAS BLANC JORGE ANDRES GORDON 1CI2N 23-1-2014 IES TIRANT LO BLANC EST - ANTENAS JORGE ANDRES GORDON 1CI2N ANTENAS DE RADIO-TELEVISION TERRESTRE 3 INTRODUCCION 3 CONCEPTOS BASICOS 3 Multiplexación De Programas 3 Propagación Electromagnética

Más detalles

Podemos plantear un sencillo esquema de alarma como el de la figura: V REF 3600( ) T

Podemos plantear un sencillo esquema de alarma como el de la figura: V REF 3600( ) T Lección 4. MEDIDA DE LA EMPEAUA. Diseñe un sistema de alarma de temperatura utilizando una NC. Deberá activarse cuando la temperatura ascienda por encima de ºC con una exactitud de ºC. Datos: B36K, kω@5ºc,

Más detalles

Ganancia y Polarización. Rogelio Ferreira Escutia

Ganancia y Polarización. Rogelio Ferreira Escutia Ganancia y Polarización Rogelio Ferreira Escutia PARAMETROS DE UNA ANTENA 2 Diagrama de Radiación 3 Diagrama de Radiación Es la representación gráfica de las características de radiación de una antena,

Más detalles

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N?

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N? FÍSICA 2º DE BACHILLERATO PROBLEMAS DE ONDAS 1.- De las funciones que se presentan a continuación (en las que todas las magnitudes están expresadas en el S.I.), sólo dos pueden representar ecuaciones de

Más detalles

ANEXO B1 CALCULO ELECTRICO DE CONDUCTORES

ANEXO B1 CALCULO ELECTRICO DE CONDUCTORES ANEXO B1 CALCULO ELECTRICO DE CONDUCTORES Pág. 1 B1.1 RESISTENCIA El valor de la resistencia por unidad de longitud, en corriente continua y a la temperatura, vendrá dada por la siguiente expresión: Siendo:

Más detalles

INTRODUCCIÓN: OBJETIVOS:

INTRODUCCIÓN: OBJETIVOS: INTRODUCCIÓN: En el desarrollo de esta práctica se observará experimentalmente el comportamiento del transistor bipolar BJT como amplificador, mediante el diseño, desarrollo e implementación de dos amplificadores

Más detalles

Propagación de Ondas Electromagnéticas

Propagación de Ondas Electromagnéticas 1 3 4 5 Capítulo 1 Propagación de Ondas Electromagnéticas 1.1.- Propagación de Ondas. La propagación de ondas se refiere a la propagación de ondas electromagnéticas en el espacio libre. Aunque el espacio

Más detalles

13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio,

13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio, PROBLEMAS ÓPTICA 1. Una de las frecuencias utilizadas en telefonía móvil (sistema GSM) es de 900 MHz. Cuántos fotones GSM necesitamos para obtener la misma energía que con un solo fotón de luz violeta,

Más detalles

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A Problemas de Ondas.- Una onda transversal sinusoidal, que se propaga de derecha a izquierda, tiene una longitud de onda de 0 m, una amplitud de 4 m y una velocidad de propagación de 00 m/s. Si el foco

Más detalles

DISEÑO MECÁNICO (Ingeniería Industrial, 4º curso)

DISEÑO MECÁNICO (Ingeniería Industrial, 4º curso) DISEÑO MECÁNICO (Ingeniería Industrial, 4º curso) EXAMEN: 31 de ENERO de 2009 Nombre y Apellidos:.. Una lavadora de uso doméstico, de carga frontal, presenta sólo un programa de lavado. El proceso completo

Más detalles

TECNOLOGIAS DE LA COMUNICACIÓN.

TECNOLOGIAS DE LA COMUNICACIÓN. AMPLIACION TEMA 2. TECNOLOGIAS DE LA COMUNICACIÓN. 1.- AMPLIACION : ONDAS. Definición de onda: Es la propagacion de una vibracion de forma que transmite energia, pero no transporta materia. Caracteristicas:

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

Colegio Internacional Torrequebrada. Departamento de Matemáticas

Colegio Internacional Torrequebrada. Departamento de Matemáticas Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene

Más detalles

Pérdidas por inserción y de retorno en componentes pasivos de radiofrecuencia

Pérdidas por inserción y de retorno en componentes pasivos de radiofrecuencia Pérdidas por inserción y de retorno en componentes pasivos de radiofrecuencia *Por José Toscano Hoyos 1. Introducción La consideración de las pérdidas que se presentan en un sistema de transmisión de radiofrecuencia,

Más detalles

Ejercicios típicos de Señales

Ejercicios típicos de Señales Ejercicios típicos de Señales 1- Calcular el voltaje eficaz de la onda senoidal. 3V 2V V PP = 6V 1V V P = V PP /2 = 6/2 = 3V -1V V ef = V P * 0.707 = 3V* 0.707 = 2.12V -2V -3V 2- Calcular el valor pico

Más detalles

Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas

Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas Pr.B.4. Detección de luz e imágenes 1. Un detector de Ge debe ser usado en un sistema de comunicaciones

Más detalles

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa?

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? Unidad II Ondas Unidad II - Ondas 2 Ondas Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? o Cómo es posible que nos comuniquemos por celular? o Cómo

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 8 GUÍA TEÓRICO PRÁCTICA Nº 5 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

coaxial multiplicada por su factor de velocidad y un largo total de extremo a

coaxial multiplicada por su factor de velocidad y un largo total de extremo a Dimensiones para construir Antenas bazooka en frecuencias de radio aficionados Tabla para construir la antena doble bazooka para bandas de radio aficionados. Una antena doble bazooka es una combinación

Más detalles

F. de C. E. F. y N. de la U.N.C. Teoría de las Comunicaciones Departamento de Electrónica GUIA Nº 4

F. de C. E. F. y N. de la U.N.C. Teoría de las Comunicaciones Departamento de Electrónica GUIA Nº 4 4.1- Realice el desarrollo analítico de la modulación en frecuencia con f(t) periódica. 4.2- Explique el sentido el índice de modulación en frecuencia y su diferencia con la velocidad de modulación. 4.3-

Más detalles

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a

Más detalles

Primer examen parcial del curso Física II, M

Primer examen parcial del curso Física II, M Primer examen parcial del curso Física II, 106015M Prof. Beatriz Londoño 11 de octubre de 2013 Tenga en cuenta: Escriba en todas las hojas adicionales su nombre! Hojas sin nombre no serán corregidas El

Más detalles

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje. LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de

Más detalles

Guía de Ejercicios de Ondas Electromagnéticas

Guía de Ejercicios de Ondas Electromagnéticas UNIVERSIDAD PEDAGÓGICA EXPERIMENTAL LIBERTADOR INSTITUTO PEDAGÓGICO DE BARQUISIMETO LUIS BELTRÁN PRIETO FIGUEROA DEPARTAMENTO DE CIENCIAS NATURALES PROGRAMA DE FÍSICA ELECTROMAGNETISMO II Objetivo: Analizar

Más detalles

Cálculo de Radioenlace

Cálculo de Radioenlace Unidad 06 Cálculo de Radioenlace Desarrollado por: Sebastian Buettrich, wire.less.dk Editado por: Alberto Escudero Pascual Objetivos Presentar todos los elementos y herramientas necesarias para el cálculo

Más detalles

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca.

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Página 1 de 7 TENSION ALTERNA En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Puede definirse un voltaje alterno como el que varía

Más detalles

Problemas Tema 6. Figura 6.3

Problemas Tema 6. Figura 6.3 Problemas Tema 6 6.1. Se conecta una fuente de voltaje V s =1mV y resistencia interna R s =1MΩ a los terminales de entrada de un amplificador con una ganancia de voltaje en circuito abierto A v0 =10 4,

Más detalles

R 20 m ESCUELA POLITÉCNICA SUPERIOR INGENIERÍA DE TELECOMUNICACIÓN

R 20 m ESCUELA POLITÉCNICA SUPERIOR INGENIERÍA DE TELECOMUNICACIÓN EJERCICIO Nº 1-T Se considera un enlace entre un transmisor que entrega una potencia de 10W a una antena de ganancia directiva 8 dbi y rendimiento 95% a través de un cable con 1.2 db de pérdidas. La antena

Más detalles

Se insta a los estudiantes a estudiar y, en caso que corresponda, completar los ejercicios del material publicado anteriormente:

Se insta a los estudiantes a estudiar y, en caso que corresponda, completar los ejercicios del material publicado anteriormente: Material de apoyo para la realización de las actividades correspondientes a la preparación para el primer examen quimestral de la asignatura Física II. Parte A El presente material sirve de apoyo para

Más detalles

Plan de Asignación de Frecuencias y Propagación de Ondas Electromagnéticas

Plan de Asignación de Frecuencias y Propagación de Ondas Electromagnéticas Plan de Asignación de Frecuencias y Propagación de Ondas Electromagnéticas Curso IV TV digital ISDB-T (UdelaR) Nobuyuki Sato (Experto JICA en Uruguay) Montevideo, 09 abril 2014 1 Contenido del curso (1)

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 2001 1.- Un objeto de 0,2 kg, unido al extremo de un resorte, efectúa oscilaciones armónicas de 0,1 π s de período y su energía cinética máxima es de 0,5 J. a) Escriba la ecuación

Más detalles

EXAMENES ELECTROTECNIA TEORIA

EXAMENES ELECTROTECNIA TEORIA EXAMENES En este archivo presento el tipo de exámenes propuesto en la asignatura de Electrotecnia en la fecha indicada, con las puntuaciones indicadas sobre un total de diez puntos. Según la guía académica

Más detalles

Circuitos de RF y las Comunicaciones Analógicas. Capítulo II: Circuitos resonantes y Redes de acople

Circuitos de RF y las Comunicaciones Analógicas. Capítulo II: Circuitos resonantes y Redes de acople Capítulo II: Circuitos resonantes y Redes de acople 21 22 2. Circuitos Resonantes y Redes de Acople En este capítulo se estudiaran los circuitos resonantes desde el punto de vista del factor de calidad

Más detalles

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso 2014-15 1) (P Jun94) La ecuación del movimiento de un impulso propagándose a lo largo de una cuerda viene dada por, y = 10 cos(2x-

Más detalles

Planificaciones Sistemas Inalámbricos. Docente responsable: COLOMBO HUGO ROBERTO. 1 de 5

Planificaciones Sistemas Inalámbricos. Docente responsable: COLOMBO HUGO ROBERTO. 1 de 5 Planificaciones 8632 - Sistemas Inalámbricos Docente responsable: COLOMBO HUGO ROBERTO 1 de 5 OBJETIVOS Proveer los fundamentos, dentro del área de comunicaciones, acerca de la aplicación de las ondas

Más detalles

Seminario 3: Lentes, espejos y formación de imágenes

Seminario 3: Lentes, espejos y formación de imágenes Seminario 3: Lentes, espejos y ormación de imágenes Fabián Andrés Torres Ruiz Departamento de Física,, Chile 4 de Abril de 2007. Problemas. (Problema 8, capitulo 35,Física, Raymond A. Serway, las supericies

Más detalles

Sistemas de Comunicaciones Móviles. Problemas.

Sistemas de Comunicaciones Móviles. Problemas. Sistemas de Comunicaciones Móviles. Problemas. 1 Problemas de modelado de canal Problema 1 Una estación base transmite a una potencia de 10 W a un cable de alimentación con unas pérdidas de 10 db. La antena

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012.

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012. 2013-Modelo B. Pregunta 2.- La función matemática que representa una onda transversal que avanza por una cuerda es y(x,t)=0,3 sen (100πt 0,4πx + Φ 0), donde todas las magnitudes están expresadas en unidades

Más detalles

MICROONDAS. Enlace punto a punto. Efecto de la curvatura terrestre. Oficina B. Oficina A. Repetidores. Transmisor. Constantino Carlos Reyes Aldasoro

MICROONDAS. Enlace punto a punto. Efecto de la curvatura terrestre. Oficina B. Oficina A. Repetidores. Transmisor. Constantino Carlos Reyes Aldasoro MICROONDAS Enlace punto a punto Oficina A Oficina B Efecto de la curvatura terrestre Transmisor Repetidores 5O km Receptor 1 Uso de repetidores Repetidores Activos Pasivos R Tx f f f f Rx T R = repetidor

Más detalles

Tema: Uso del analizador espectral.

Tema: Uso del analizador espectral. Sistemas de Comunicación I. Guía 1 1 I Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación Tema: Uso del analizador espectral. Objetivos Conocer el funcionamiento de un Analizador

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

LIGHT SCATTERING MEASUREMENTS FROM SMALL DIELECTRIC PARTICLES

LIGHT SCATTERING MEASUREMENTS FROM SMALL DIELECTRIC PARTICLES LIGHT SCATTERING MEASUREMENTS FROM SMALL DIELECTRIC PARTICLES M.Sc. Abner Velazco Dr. Abel Gutarra abnervelazco@yahoo.com Laboratorio de Materiales Nanoestructurados Facultad de ciencias Universidad Nacional

Más detalles

IV - ÓPTICA PAU.98 PAU.98

IV - ÓPTICA PAU.98 PAU.98 1.- Dónde debe colocarse un objeto para que un espejo cóncavo forme imágenes virtuales?. Qué tamaño tienen estas imágenes?. Realiza las construcciones geométricas necesarias para su explicación PAU.94

Más detalles

1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, 2 y 3 dimensiones.

1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, 2 y 3 dimensiones. Ondas. Función de onda 1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, y 3 dimensiones. ) Indique cómo pueden generarse ondas transversales y longitudinales en una varilla metálica.

Más detalles

AUTORIDAD NACIONAL DE LOS SERVICIOS PUBLICOS Dirección Nacional de Telecomunicaciones. Solicitud de Frecuencias Adicionales

AUTORIDAD NACIONAL DE LOS SERVICIOS PUBLICOS Dirección Nacional de Telecomunicaciones. Solicitud de Frecuencias Adicionales Solicitud de Frecuencias Adicionales Nombre del solicitante: Fecha: Servicio: Formularios incluidos en esta solicitud: Formulario Título Cantidad *TRI-01 Enlaces para Servicios de Radiodifusión o Televisión

Más detalles

La luz y las ondas electromagnéticas

La luz y las ondas electromagnéticas La luz y las ondas electromagnéticas Cuestiones (96-E) a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? (96-E)

Más detalles

a) La ecuación del plano que pasa por el punto ( 1, 1, 0 ). (3 puntos) b) La ecuación del plano que es paralelo a la recta r.

a) La ecuación del plano que pasa por el punto ( 1, 1, 0 ). (3 puntos) b) La ecuación del plano que es paralelo a la recta r. PROBLEMAS DE SELECTIVIDAD. BLOQUE GEOMETRÍA 1. En el espacio se dan las rectas Obtener a) El valor de para el que las rectas r y s están contenidas en un plano. (4 puntos) b) La ecuación del plano que

Más detalles

CAPÍTULO I. Propagación de RF

CAPÍTULO I. Propagación de RF CAPÍTULO I Propagación de RF 1.1 Características de la propagación de RF. Las ondas de radio son ondas electromagnéticas que poseen una componente eléctrica y una componente magnética y como tales, están

Más detalles

Campo Magnético en un alambre recto.

Campo Magnético en un alambre recto. Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar

Más detalles

CÁTEDRA DE FÍSICA I ONDAS MECÁNICAS - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I ONDAS MECÁNICAS - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica PROBLEMA Nº 2 La ecuación de una onda armónica transversal que avanza por una cuerda es: y = [6 sen (0,01x + 1,8t)]cm.

Más detalles

ANALIZADORES DE ANTENAS

ANALIZADORES DE ANTENAS ANALIZADORES DE ANTENAS conceptos básicos y circuitos de medida Joan Morros - Eduardo Alonso EA3FXF EA3GHS EA QRP CLUB sinarcas 2011 índice motivación conceptos 1. esquema básico 2. medida con óhmmetro

Más detalles

PAEG UCLM SEPTIEMBRE 2015 FÍSICA OPCIÓN A - PROBLEMA 1

PAEG UCLM SEPTIEMBRE 2015 FÍSICA OPCIÓN A - PROBLEMA 1 OPCIÓN A - PROBLEMA 1 Tenemos tres partículas cargadas q 1 = - 20 C, q 2 = + 40 C y q 3 = - 15 C, situadas en los puntos de coordenadas A (2,0), B (4,0) y C (0,3), respectivamente. Calcula, sabiendo que

Más detalles

Teoría y Cálculo de Antenas (parte 1)

Teoría y Cálculo de Antenas (parte 1) Teoría y Cálculo de Antenas (parte 1) Por Martín A. Moretón Gerente para el territorio latinoamericano AirLive-Ovislink Corp. Enero 2010 Contenido Introducción....1 Qué son las antenas?....1 Qué es el

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica 1(9) Ejercicio nº 1 Una partícula alfa se introduce en un campo cuya inducción magnética es 1200 T con una velocidad de 200 Km/s en dirección perpendicular al campo. Calcular la fuerza qué actúa sobre

Más detalles

Medios Físicos de Transmisión de Datos

Medios Físicos de Transmisión de Datos Medios Físicos de Transmisión de Datos Juan Manuel Orduña Huertas Telemática y Sistemas de Transmisión de Datos - Curso 2011/2012 Contenido 1 2 3 Conceptos básicos Propiedades 4 Organización de una red

Más detalles

PLANEAMIENTO DE LAS COMUNICACIONES EN EMERGENCIAS COMUNICACIONES RADIO. Índice

PLANEAMIENTO DE LAS COMUNICACIONES EN EMERGENCIAS COMUNICACIONES RADIO. Índice Índice 1. comunicaciones radio... 2 1.1 ESPECTRO DE RADIOFRECUENCIA, BANDAS Y SERVICIOS... 2 1.2 CONCEPTOS BÁSICOS DE LA PROPAGACIÓN EN ESPACIO LIBRE... 4 1.3 ANTENAS. DIAGRAMA DE RADIACIÓN... 7 1.4 VELOCIDADES

Más detalles

ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ

ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ 1 ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ INTRODUCCIÓN TEÓRICA: La característica fundamental de una onda propagándose por un medio es su velocidad (v), y naturalmente, cuando la onda cambia

Más detalles

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un rayo de luz de frecuencia 5 10¹⁴ Hz incide con un ángulo de incidencia de 30 sobre una lámina de vidrio de caras plano-paralelas de espesor

Más detalles

EJERCICIOS ADICIONALES: ONDAS MECÁNICAS

EJERCICIOS ADICIONALES: ONDAS MECÁNICAS EJERCICIOS ADICIONALES: ONDAS MECÁNICAS Primer Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Dr. Alejandro Gronoskis Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería

Más detalles

II Unidad Diagramas en bloque de transmisores /receptores

II Unidad Diagramas en bloque de transmisores /receptores 1 Diagramas en bloque de transmisores /receptores 10-04-2015 2 Amplitud modulada AM Frecuencia modulada FM Diagramas en bloque de transmisores /receptores Amplitud modulada AM En la modulación de amplitud

Más detalles

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica.

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica. Capítulo 4. Estudio de la línea recta El análisis cartesiano (René Descartes 1596-1650) descubrió que las ecuaciones pueden tener una representación gráfica. Para lograr esa representación gráfica es necesario

Más detalles

Departamento de Física y Química. PAU Física, junio 2012 OPCIÓN A

Departamento de Física y Química. PAU Física, junio 2012 OPCIÓN A 1 PAU Física, junio 2012 OPCIÓN A Pregunta 1.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita circular a una altura de 2 10 4 km sobre su superficie. Calcule la velocidad orbital

Más detalles

Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad.

Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. LUGARES GEOMÉTRICOS. CÓNICAS. 9.1 LUGARES GEOMÉTRICOS Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. Llamando X(,) a las coordenadas del punto genérico aplicando analíticamente

Más detalles

PROBLEMAS ELECTROMAGNETISMO

PROBLEMAS ELECTROMAGNETISMO PROBLEMAS ELECTROMAGNETISMO 1. Se libera un protón desde el reposo en un campo eléctrico uniforme. Aumenta o disminuye su potencial eléctrico? Qué podemos decir de su energía potencial? 2. Calcula la fuerza

Más detalles

Técnicas de diseño para Compatibilidad Electromagnética. En teoría, teoría y práctica son lo mismo. En la práctica, no lo son - A. Einstein.

Técnicas de diseño para Compatibilidad Electromagnética. En teoría, teoría y práctica son lo mismo. En la práctica, no lo son - A. Einstein. Técnicas de diseño para Compatibilidad Electromagnética En teoría, teoría y práctica son lo mismo. En la práctica, no lo son - A. Einstein. Agenda Qué es compatibilidad electromagnética (EMC)? Elementos

Más detalles

ÓPTICA GEOMÉTRICA 1. Conceptos básicos. 2. Espejos planos. 3. Espejos esféricos. 4. Dioptrios. 5. Lentes delgadas. 6. La visión.

ÓPTICA GEOMÉTRICA 1. Conceptos básicos. 2. Espejos planos. 3. Espejos esféricos. 4. Dioptrios. 5. Lentes delgadas. 6. La visión. ÓPTICA GEOMÉTRICA 1. Conceptos básicos. 2. Espejos planos. 3. Espejos esféricos. 4. Dioptrios. 5. Lentes delgadas. 6. La visión. Física 2º bachillerato Óptica geométrica 1 ÓPTICA GEOMÉTRICA La óptica geométrica

Más detalles