U.E. COLEGIO LOS PIRINEOS DON BOSCO. Cátedra Física 5 Año. Docente: Nerika Suelta. Secciones A-B-C. Obj3.1 Antecedentes Históricos ACTIVIDAD # 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "U.E. COLEGIO LOS PIRINEOS DON BOSCO. Cátedra Física 5 Año. Docente: Nerika Suelta. Secciones A-B-C. Obj3.1 Antecedentes Históricos ACTIVIDAD # 1"

Transcripción

1 U.E. COLEGIO LOS PIRINEOS DON BOSCO Cátedra Física 5 Año Docente: Nerika Suelta. Secciones A-B-C Obj3.1 Antecedentes Históricos ACTIVIDAD # 1 Investigar de cada uno de los siguientes Físicos el origen, los aportes que hicieron a la Física y a la ciencia (3) en su respectivo cuaderno de la asignatura la cual será revisado, evaluado y socializados, una vez que nos incorporemos a clase * Thales de Mileto * Sir Willian Gilbert * Charles du Fay * Charles Agustin Coulomb * Alessandro Volta * George Ohm * Cristian Oersted * Michael Faraday * Joseph Henry * James Joule * Yoichiro Nambu * Makoto Kobayashi * Toshihide Maskaw * Joseph Thomsom * Benjamin Franklin * Stephen Gray

2 ACTIVIDAD # 2 Obj2.2 Realizar los siguientes ejercicios con la ayuda del cuaderno dadas en clase. 1. Calcular la fuerza electromotriz del generador. 1,5A 10Ω 20Ω 15Ω 30Ω 30Ω 60Ω E =? Ri= 1Ω Resp: E= 48 Voltios 2. En la figura adjunta, calcular el valor de cada una de las resistencias así como la fuerza electromotriz del generador R1 144watios 10Ω R2 96watios R3 48watios 12A E =? Ri= 1Ω Resp: E= 156 Voltios R1= 4Ω ; R2= 6Ω ; R3= 12Ω 3. En la figura adjunta calcular el valor de R 30Ω 10Ω 2A R Resp: R= 60 Ω 180 volt

3 4. La diferencia de potencial entre los puntos A Y C es de 48 voltios. Calcular la intensidad que circula por cada resistencia y la fuerza electromotriz del generador i2 6Ω i4 12Ω 4Ω i5 18Ω i3 12Ω i6 36Ω i1 E =? Ri=1Ω Resp: E= 90 Voltios i1= 6 amp ; i2= 4 amp ; i3= 2 amp ; i4= 3 amp; i5= 2 amp; i6= 1 amp 5. Calcular la Resistencia total de la figura adjunta sabiendo que cada resistencia vale 6Ω

4 U.E. COLEGIO LOS PIRINEOS DON BOSCO Cátedra Física 5 Año Docente: Nerika Suelta. Secciones A-B-C Obj2.3 LEYES DE KIRCHHOFF RECORDAR: RED ELÉCTRICA: Consiste en general en un circuito complejo, en el cual figuran resistencias, motores, condensadores y otros elementos. Aquí sólo consideramos redes con resistencias Óhmicas y Fuerzas Electromotrices. RESISTENCIAS (R): Es la oposición que presenta un conductor al flujo de corriente (R). SÍMBOLO: Ó UNIDAD: Ohmios ó Ω FUERZA ELECTROMOTRIZ Ó PILA (fem ó E): La Fuerza Electromotriz (E) de un generador es la energía (E) que suministra el dispositivo por cada unidad de carga eléctrica (Q) que recorre el circuito. SÍMBOLO: + : Polo Negativo SENTIDO: Va siempre de + a + : Polo Positivo UNIDAD: Voltios ó volt Referencias Bibliográficas: Física 2 de Ciencias Camero y Crespo Pág Física 2 de 5 año de Educación Media Santillana Pág Física II año E.M.D.P Jupiter Figuera Yibirín Pág

5 Las Leyes de Kirchhoff las cuales permiten analizar sistemáticamente las redes eléctricas. LEY DE LOS NUDOS La suma algebraica de las corrientes en un nudo es igual a cero. NUDO: Es el punto de la red donde concurren tres ó más conductores Nudo Nudo Conductores A : Representa el nombre del nudo y es recomendable utilizar letras mayúsculas. En un nudo cualquiera la suma de la intensidades de las corrientes que llegan es igual a la suma de las intensidades de las corrientes que salen. Ejemplo: I1 + I2 = I3 Ó I1 + I2 I3 = 0 Entran sale NOTA: a. Se consideran como positive las Corrientes que llegan a un nudo. I1 A I2

6 b. Se consideran como negativa las corrientes que salen de un nudo. I3 LEY DE LAS MALLAS La suma algebraica de los voltajes en cualquier recorrido cerrado de un circuito es igual a cero. MALLA: Es todo circuito cerrado, es decir que empieza y termina en el mismo nudo. Ejemplo: e R1 i1 A i2 R2 d Malla E1 R3 i3 E3 Malla + E2 + f B c A y B = Son Nudos Nudo A y Nudo B Malla A B f e Malla A B c d

7 RAMALES Ó RAMAL: Es la parte de la red por la que circula la misma intensidad e R1 i1 A i2 R2 d Rama i3 R3 E1 E2 E3 Rama + Ri Ri + Ri f i1 B i2 c Recorrido de la corriente i1, i2, i3 por donde pasa se llama ramal En una malla, la suma algebraica de los productos de las resistencias, incluso las resistencias incluso las resistencias internas por las intensidades (I * R + Ri) que pasan por ellas es igual a la suma algebraica de las fuerzas electromotrices en la misma malla. Se aplica la ley de ohm en cada resistencia tomando en cuenta el sentido de la malla done va a circular y se debe tomar dicho sentido en las agujas del reloj o en contra de las agujas del reloj. en forma arbitraria. MALLA 1 ABFeA i3 ( R3 + Ri3 ) + i1 ( R1 + Ri1 ) = E1 E2 MALLA 2 AdcBA -i2 ( R2 + Ri2 ) - i3 ( R3 + Ri3 ) = E2 - E3

8 En la malla 1 las Corrientes son positivas porque la circulación de la malla tiene el mismo sentido que la dirección de las corrientes i1 y i3. i1 + + i3 En la malla 2 las corrientes son negativas porque la circulación de la malla tiene diferente el sentido que la dirección de las corrientes i2 y i3 i3 i2 - - Referencias Bibliográficas: Física 2 de Ciencias Camero y Crespo Pág Física 2 de 5 año de Educación Media Santillana Pág Física II año E.M.D.P Jupiter Figuera Yibirín Pág El procedimiento a seguir para resolver una red eléctrica, mediante el uso de las leyes de Kirchhoff, es conveniente tener en cuenta los siguientes aspectos: Propuesto Calcular las corrientes I1, I2 e I3 en cada uno de los ramales del circuito de la figura.

9 Paso 1 Se asigna con letras mayúsculas los nudos, que existen en dichas mallas, en forma arbitraria (se elige cualquier letra del abecedario) : ( S,T) Nudo S Nudo T Paso 2 Se identifica los polos de las pilas o fuerzas eléctricas y el sentido por medio de flechas la dirección de la fuerza electromotriz de + a : Polo Negativo el lado más corto + : Polo Positivo el lado más largo Paso 3 Se asigna direcciones arbitrarias a las corrientes en las distintas ramas de la red por medio de flechas, teniendo en cuenta que un nudo no puede entrar todas las intensidades ni tampoco salir todas ellas.

10 Se asigna en un solo otro nudo (en forma nudo y luego se hace el recorrido al arbitraria) Nudo S: i1 S i3 i2 + i3 = i1 i2 entra sale Nudo T: i1 = i2 + i3 i2 entra sale i1 T i3 Paso 4 Se asigna por medio de flechas en forma arbitraria el sentido de cada malla o circulación para recorrer una malla (sentido del movimiento de las agujas del reloj o en sentido opuesto y se nombra con números romanos o arábicos cada malla) El sentido de circulación de la malla puede ser igual o diferente.

11 Paso 5 Las intensidades de la corriente se consideran positivas, cuando el sentido de circulación que se eligió coincide con el de la flecha que indica el sentido de la corriente. En caso contrario se consideran negativas( cuando se apliquen las leyes de Kirchhoff) Paso 6 En los generadores las fuerzas electromotrices se consideran positivas cuando al recorrer una malla en el sentido de circulación que se eligió encontramos primero el polo negativo y después el polo positivo. En caso contrario las fuerzas electromotrices son negativas (cuando se apliquen las leyes de Kirchhoff). E = + E = + E = + E = + Malla I Malla II

12 Paso 7 Cuando al resolver un problema de red, nos dé una intensidad negativa, significa que su sentido es contrario al que se le asigno. Nota: Ya signado el sentido de las intensidades y la circulación de las mallas aplicamos las leyes de Kirchhoff. LEY DE LOS NUDOS Nudo S: corrientes que entran es igual a la que salen. i2 + i3 = i1 entra sale Nudo T: corriente que entra es igual a las que salen. i1 = i2 + i3

13 entra sale LEY DE LAS MALLAS Malla I i1 ( R1 + 0,1Ω) + i2 (R2) = 5V + 0V Se ordena la ecuación sustituyendo los valores. i1 ( 3Ω + 0,1Ω) + i2 (1Ω) = 5V + 0V 3,1 i1 + i2 = 5V Malla II -i2 (R2) + i3 (R3 + 0,1 Ω) = 0V + 7V Se ordena la ecuación sustituyendo los valores. -i2 (1Ω ) + i2 (2Ω + 0,1Ω) = 0V + 7V -i2 + 2,1 i3 = 7V Agrupamos las ecuaciones de la primera ley y la segunda ley para aplicar el método de determinantes: Nudo S Nota: i2 + i3 = i1 se complementa -i1 + i2 + i3 = 0 con cero donde no 3,1 i1 + i2 + 0 i3 = 5 ECUACIONES aparezca valores 0 i1 i2 + 2,1 i3 = 7 En forma matricial, el sistema anterior puede representarse como: Columnas C1 al C5 : se llama columnas , ,1 I1 I2 = I C1 C2 C3 C4 C5 Filas Se toma los coeficientes que acompañan a las intensidades. Ejemplo: las ecuaciones -i1 + i2 + i3

14 -i1 = -1 i2 = 1 i3 = 1 3,1i1 + i2 + 0i3 = 5 i1 = 3,1 i2 = 1 i3 = 0 0i1 i2 + 2,1i3 = 7 i1 = 0 -i2 = -1 i3 = 2,1 El determinante se obtiene agregando las dos primeras columnas al lado derecho como se muestra en la figura = 3, , , Columnas Luego se multiplica las diagonales bajando: = 3, , , = -2, ,1 Se multiplican las diagonales subiendo, siempre se coloca signo negativo antes = 3, , , = -2, ,1 ( ,51 ) Siempre se coloca el signo negativo = 5,2 ( 6,1) = 5,2 6,51 = 11,71 Los valores de I1, I2 e I3, se calculan a continuación: Se toma c2, c3 y c5 para calcular las intensidad I1, c5,c2 y c3( son columnas)

15 Se procede a copiar la columna 5: (C5) I1= Luego se copia la columna 2 (C2) después de la columna 5 (C5) I1 = Seguido de estas dos columnas C5, C2 se copia C I1 = ,1 Se agrega las dos primeras columnas al lado derecho como se muestra en la figura. I1 = , = Se multiplica las diagonales subiendo, siempre se coloca signo negativo antes. I1 = , = ( ,5 ) 7 1 = -5 - ( 17,5) = -22,5 Se divide el valor de I1 entre la determinante I1 = 22,5 I1= 1.29A = 22, Para calcular I2 se procede a copiar la columna C5 y por último la columna C3 como se muestra a continuación:

16 I2 = , ,1 Se agrega las dos primeras columnas al lado derecho como se muestra en la figura. I2 = , , ,1 5 = -10, ,7 0 7 Se multiplican las diagonales subiendo, siempre se coloca signo negativo antes. I2 = , , ,1 5 = -10, ,7 ( ) 0 7 = - 10,5 + 21,7 = 11,2 Se divide el valor de I2 entre la determinante I2 = 11,2 = 11,2 11,7 I2 = - 0,95 A Para calcular I3 se procede a copiar la columna C1, seguida de C2 y por ultimo C5 como se muestra a continuación: I3 = , Se agregaron las dos primeras columnas al lado derecho como se muestra en la figura. I3 = , , = Se multiplica las diagonales subiendo, siempre se coloca signo negativo antes I3 = , , = ( ,7 ) = -7 ( 26,7)

17 = -33,7 Se divide el valor de I3 entre la determinante I3 = 33,7 I3 = 2,88 A = 33,7 11,71 ACTIVIDAD Realizar los siguientes ejercicios con la ayuda de la guía didáctica en tu cuaderno. Nota: La actividad anterior se debe realizar solo 3 aportes de cada científico, los ejercicios deben resolverse en su respectivo cuaderno de la materia junto con la segunda actividad, la cual será evaluada una vez que nos incorporemos.

Electrotecnia. Tema 7. Problemas. R-R -N oro

Electrotecnia. Tema 7. Problemas. R-R -N oro R-R -N oro R 22 0^3 22000 (+-) 00 Ohmios Problema.- Calcular el valor de la resistencia equivalente de un cubo cuyas aristas poseen todas una resistencia de 20 Ω si se conecta a una tensión los dos vértices

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 7: REGLAS DE KIRCHHOFF Comprobar experimentalmente que en un

Más detalles

Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias.

Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias. 38 6. LEY DE OHM. REGLAS DE KIRCHHOFF Objetivo Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias. Material Tablero de conexiones, fuente de tensión

Más detalles

La anterior ecuación se puede también expresar de las siguientes formas:

La anterior ecuación se puede también expresar de las siguientes formas: 1. LEY DE OHM GUÍA 1: LEYES ELÉCTRICAS El circuito eléctrico es parecido a un circuito hidráulico ya que puede considerarse como el camino que recorre la corriente (el agua) desde un generador de tensión

Más detalles

CORRIENTE ELECTRICA. Presentación extraída de Slideshare.

CORRIENTE ELECTRICA. Presentación extraída de Slideshare. FISICA II CORRIENTE ELECTRICA Presentación extraída de Slideshare. 1.1 CORRIENTE ELECTRICA CORRIENTE ELECTRICA Moviemiento ordenado y permanente de las partículas cargadas en un conductor, bajo la influencia

Más detalles

MÉTODOS DE RESOLUCIÓN DE CIRCUITOS

MÉTODOS DE RESOLUCIÓN DE CIRCUITOS MÉTODOS DE RESOLUCIÓN DE CIRCUITOS Un circuito eléctrico está formado por elementos activos (generadores) y pasivos (resistencias, condensadores, y bobinas). En muchas ocasiones estos elementos forman

Más detalles

TEMA 1 Nociones básicas de Teoría de Circuitos

TEMA 1 Nociones básicas de Teoría de Circuitos TEMA 1 Nociones básicas de Teoría de Circuitos http://www.el.uma.es/marin/ ÍNDICE 1.1. MAGNITUDES ELÉCTRICAS Y CONCEPTOS FUNDAMENTALES: Conceptos básicos de circuitos. Leyes de Kirchoff. Potencia Eléctrica.

Más detalles

FEM y Circuitos de corriente directa, CD tomado de Ohanian/Markert, 2009

FEM y Circuitos de corriente directa, CD tomado de Ohanian/Markert, 2009 FEM y Circuitos de corriente directa, CD tomado de Ohanian/Markert, 2009 Los circuitos eléctricos instalados en automóviles, casas, fábricas conducen uno de los dos tipos de corriente: Corriente directa

Más detalles

Física II CF-342 Ingeniería Plan Común.

Física II CF-342 Ingeniería Plan Común. Física II CF-342 Ingeniería Plan Común. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Física

Más detalles

1. COMPONENTES DE UN CIRCUITO.

1. COMPONENTES DE UN CIRCUITO. . COMPONENTES DE UN CIRCUITO. Los circuitos eléctricos son sistemas por los que circula una corriente eléctrica. Un circuito eléctrico esta compuesto por los siguientes elementos: INTENSIDAD DE CORRIENTE

Más detalles

CORRIENTE CONTINUA. Es una propiedad de la materia. Puede ser positiva o negativa según el cuerpo tenga defecto o exceso de electrones.

CORRIENTE CONTINUA. Es una propiedad de la materia. Puede ser positiva o negativa según el cuerpo tenga defecto o exceso de electrones. CORRENTE CONTNU CONTENDOS. 1.- Carga eléctrica. Conservación. 2.- Corriente continua. Diferencia de potencial. ntensidad. 3.- Ley de Ohm. 4.- Fuerza electromotriz suministrada por un generador. 5.- Fuerza

Más detalles

TEMA: CIRCUITOS ELÉCTRICOS

TEMA: CIRCUITOS ELÉCTRICOS TEMA: CIRCUITOS ELÉCTRICOS ÍNDICE 1. INTRODUCCIÓN 2 2. LA ELECTRICIDAD 2 3. EL CIRCUITO ELÉCTRICO 2 a) Generador de corriente 3 b) Conductor 3 c) Receptores 3 d) Controladores 3 4. TIPOS DE CIRCUITOS 3

Más detalles

Corriente continua (Repaso)

Corriente continua (Repaso) Fundamentos de Tecnología Eléctrica (º ITIM) Tema 0 Corriente continua (epaso) Damián Laloux, 004 Índice Magnitudes esenciales Tensión, corriente, energía y potencia Leyes fundamentales Ley de Ohm, ley

Más detalles

CONFIGURACIONES BÁSICAS DE CIRCUITOS

CONFIGURACIONES BÁSICAS DE CIRCUITOS INSTITUCIÓN EDUCATIVA JOSÉ EUSEBIO CARO ÁREA DE TECNOLOGÍA E INFORMÁTICA 2016 DOCENTE JESÚS EDUARDO MADROÑERO RUALES CORREO jesus.madronero@hotmail.com GRADO ONCE FECHA 02 DE MAYO DE 2016 CONFIGURACIONES

Más detalles

Aplicar la ley de ohm, en el desarrollo de ejercicios..

Aplicar la ley de ohm, en el desarrollo de ejercicios.. Corriente eléctrica Aplicar la ley de ohm, en el desarrollo de ejercicios.. En términos simples, la electricidad corresponde al movimiento de cargas eléctricas. Las cargas que pueden moverse son los electrones

Más detalles

Electrostática. Ley de Coulomb. Campo eléctrico. Líneas de campo. Potencial eléctrico creado por una carga puntual

Electrostática. Ley de Coulomb. Campo eléctrico. Líneas de campo. Potencial eléctrico creado por una carga puntual Electricidad Ley de Coulomb Electrostática Sistemas de unidades d Campo eléctrico. Líneas de campo Potencial eléctrico creado por una carga puntual Estructura atómica Electrones Núcleo: protones y neutrones

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Corriente directa

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Corriente directa Corriente directa La corriente alterna es muy útil para transmitir la energía eléctrica, pues presenta menos pérdidas disipativas, y permite una fácil conversión entre voltaje y corriente por medio de

Más detalles

Es el flujo de cargas eléctricas (electrones, protones, iones) a través de un medio conductor.

Es el flujo de cargas eléctricas (electrones, protones, iones) a través de un medio conductor. Corriente Eléctrica Es el flujo de cargas s (electrones, protones, iones) a través de un medio conductor. Los metales están constituidos por una red cristalina de iones positivos. Moviéndose a través de

Más detalles

CAPITULO X LEYES DE LOS CIRCUITOS ELÉCTRICOS

CAPITULO X LEYES DE LOS CIRCUITOS ELÉCTRICOS LEYES DE LOS CIRCUITOS ELECTRICOS CAPITULO X LEYES DE LOS CIRCUITOS ELÉCTRICOS Con estas leyes podemos hallar las corrientes y voltajes en cada una de las resistencias de los diferentes circuitos de CD.

Más detalles

Qué difewrencia de potencial hay que aplicar a un reóstato de 30 ohmios para que circulen a través de él 5 amperios?

Qué difewrencia de potencial hay que aplicar a un reóstato de 30 ohmios para que circulen a través de él 5 amperios? 1. CÁLCULO DE LA RESISTENCIA MEDIANTE LA LEY DE OHM. Hállese la resistencia de una estufa que consume 3 amperios a una tensión de 120 voltios. 2. CÁLCULO DE LA TENSIÓN DE UN CONDUCTOR Qué difewrencia de

Más detalles

Tema 1. Dpto. Ingeniería Eléctrica Escuela Politécnica Superior Universidad de Sevilla. Curso 2010/2011

Tema 1. Dpto. Ingeniería Eléctrica Escuela Politécnica Superior Universidad de Sevilla. Curso 2010/2011 Tema 1 Fundamentos de Teoría de Circuitos Tecnología Eléctrica Dpto. Ingeniería Eléctrica Escuela Politécnica Superior Universidad de Sevilla Curso 2010/2011 Tecnología Eléctrica (EPS) Tema 1 Curso 2010/2011

Más detalles

E.E.S. I. Universidad Abierta Interamericana Facultad de Tecnología Informática. Trabajo de Investigación. Cristian La Salvia

E.E.S. I. Universidad Abierta Interamericana Facultad de Tecnología Informática. Trabajo de Investigación. Cristian La Salvia Universidad Abierta Interamericana Facultad de Tecnología Informática E.E.S. I Trabajo de Investigación Alumno: Profesor: Cristian La Salvia Lic. Carlos Vallhonrat 2009 Descripción de la investigación...

Más detalles

Tema 4: Electrocinética

Tema 4: Electrocinética Tema 4: Electrocinética 4.1 Corriente eléctrica y densidad de corriente 4.2 Conductividad, resistividad, resistencia y Ley de Ohm 4.3 Potencia disipada y Ley de Joule 4.4 Fuerza electromotriz y baterías

Más detalles

La corriente eléctrica. Juan Ángel Sans Tresserras

La corriente eléctrica. Juan Ángel Sans Tresserras La corriente eléctrica Juan Ángel Sans Tresserras E-mail: juasant2@upv.es Índice Corriente eléctrica y densidad de corriente Resistencia y ley de Ohm Asociación de resistencias Energía, potencia y ley

Más detalles

5 Aplicaciones de ED de segundo orden

5 Aplicaciones de ED de segundo orden CAPÍTULO 5 Aplicaciones de ED de segundo orden 5.3 Circuitos eléctricos Desde hace más de un siglo, la humanidad ha utilizado en su beneficio la energía eléctrica. Actualmente usamos diferentes aparatos

Más detalles

5.3 La energía en los circuitos eléctricos.

5.3 La energía en los circuitos eléctricos. CAPÍTULO 5 Corriente eléctrica y circuitos de corriente continua Índice del capítulo 5 51 5.1 Corriente eléctrica. 5.2 esistencia y la ley de Ohm. 5.3 La energía en los circuitos eléctricos. 5.4 Asociaciones

Más detalles

CIRCUITOS Y MEDICIONES ELECTRICAS

CIRCUITOS Y MEDICIONES ELECTRICAS Laboratorio electrónico Nº 2 CIRCUITOS Y MEDICIONES ELECTRICAS Objetivo Aplicar los conocimientos de circuitos eléctricos Familiarizarse con la instalaciones eléctricas Realizar mediciones de los parámetros

Más detalles

Tema 5 Electricidad. Cómo medimos el valor de la carga eléctrica? Pues la unidad en la que se mide es el Culombio, C, que equivale a:

Tema 5 Electricidad. Cómo medimos el valor de la carga eléctrica? Pues la unidad en la que se mide es el Culombio, C, que equivale a: Tema 5 Electricidad 5.1.- INTRODUCCIÓN. LA CARGA ELÉCTRICA Los materiales están formados por átomos que se componen a su vez de: - Electrones: son partículas con carga eléctrica negativa. - Protones: son

Más detalles

UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4

UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4 UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4 APLICACIONES DE LAS MATEMATICAS A LOS CIRCUITOS ELECTRICOS (RC, RL, RLC) Profesor: Cristian Castillo

Más detalles

Bolilla 9: Corriente Eléctrica

Bolilla 9: Corriente Eléctrica Bolilla 9: Corriente Eléctrica Bolilla 9: Corriente Eléctrica Corriente eléctrica es el flujo de cargas a lo largo de un conductor. Las cargas se mueven debido a una diferencia de potencial aplicada a

Más detalles

ACTIVIDADES ELECTRICIDAD

ACTIVIDADES ELECTRICIDAD 1.- INTRODUCCIÓN. ACTIVIDADES ELECTRICIDAD 1.1.- Observa los dos montajes, razona la respuesta que creas que es correcta. a) La pila A es más nueva. b) Son iguales, pero la A se acabará antes. c) Las bombillas

Más detalles

Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra

Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra Unidad Didáctica 1: Corriente Continua. 1.- Naturaleza de la electricidad El átomo es la parte más pequeña que puede existir de un cuerpo simple o elemento. Está constituido por un núcleo y una corteza.

Más detalles

Capítulo 4: Circuitos de corriente continua

Capítulo 4: Circuitos de corriente continua Capítulo 4: Circuitos de corriente continua Corriente promedio: carga que pasa por A por unidad de tiempo Corriente Instantánea [ I ] = C/s = A (Ampere) J = q n v d Ley de Ohm George Simon Ohm (1789-1854)

Más detalles

CORRIENTE CONTINUA II

CORRIENTE CONTINUA II CORRIENTE CONTINUA II Efecto Joule. Ya vimos en la primera parte de estos apuntes que en todos los conductores y dispositivos se produce una disipación calorífica de la energía eléctrica. En una resistencia

Más detalles

Electrotecnia General

Electrotecnia General Universidad Nacional de Mar del Plata Departamento de Ingeniería Eléctrica Área Electrotecnia Electrotecnia General (para la Carrera Ingeniería Industrial) Leyes Fundamentales Profesor Adjunto: Ingeniero

Más detalles

Inducción electromagnética. M del Carmen Maldonado Susano

Inducción electromagnética. M del Carmen Maldonado Susano Inducción electromagnética M del Carmen Maldonado Susano Cuando las intensidades de corriente son del mismo sentido existen entre ellas fuerzas atractivas; cuando las intensidades de corriente son de sentido

Más detalles

ÍNDICE OBJETIVOS... 3 INTRODUCCIÓN... 4

ÍNDICE OBJETIVOS... 3 INTRODUCCIÓN... 4 5 CIRCUITOS ELÉCTRICOS. LEYES Y TEOREMAS Electrónica Analógica ÍNDICE OBJETIVOS... 3 INTRODUCCIÓN... 4 1.1. CIRCUITO EQUIVALENTE... 5 1.. leyes de hirchhoff... 9 1.3. teorema de thevenin... 11 1.4. teorema

Más detalles

ELECTRODINAMICA. Nombre: Curso: CONEXIÓN DE RESISTENCIAS ELÉCTRICAS

ELECTRODINAMICA. Nombre: Curso: CONEXIÓN DE RESISTENCIAS ELÉCTRICAS 1 ELECTRODINAMICA Nombre: Curso: CONEXIÓN DE RESISTENCIAS ELÉCTRICAS.Las resistencias eléctricas pueden conectarse o asociarse de tres maneras diferentes. 1. En serie 2. En paralelo o derivación 3. Mixto

Más detalles

ASIGNATURA: FÍSICA III

ASIGNATURA: FÍSICA III UAP FACULTAD DE INGENIERIAS Y ARQUITECTURA ESCUELA PROFESIONAL INGENIERÍA A AMBIENTAL ASIGNATURA: FÍSICA III CÓDIGO: 24-211, IV CICLO, 2HR. TEÓRICAS Y 2HR. PRÁCTICAS SESIÓN : 8 (SEMANA 8) TEMA: ELECTRODINÁMICA.

Más detalles

UNIDAD TEMÁTICA 3: ELECTRÓNICA. 10. Dibuja los esquemas simbólicos de los siguientes circuitos.

UNIDAD TEMÁTICA 3: ELECTRÓNICA. 10. Dibuja los esquemas simbólicos de los siguientes circuitos. 10. Dibuja los esquemas simbólicos de los siguientes circuitos. 11. Sobre los esquemas dibujados en el ejercicio anterior indica mediante flechas el sentido de la corriente eléctrica: (considera que los

Más detalles

9 La corriente eléctrica

9 La corriente eléctrica Solucionario 9 La corriente eléctrica EJERCICIOS PROPUESTOS 9. Identifica qué tipo de corriente (continua o alterna) circula por los siguientes aparatos y dispositivos: a) Una linterna de pilas. b) Una

Más detalles

GUIA DE EJRCICIOS CIRCUITOS 2os AÑOS

GUIA DE EJRCICIOS CIRCUITOS 2os AÑOS GUIA DE EJRCICIOS CIRCUITOS 2os AÑOS 1. Tres resistencias de 10, 20 y 30 ohm se conectan en serie a una fuente de 25 volts, encuentra: a) La resistencia total del circuito. b) La corriente que fluye por

Más detalles

Unidad 12. Circuitos eléctricos de corriente continua

Unidad 12. Circuitos eléctricos de corriente continua Unidad 12. Circuitos eléctricos de corriente continua 1. El circuito eléctrico 2. Magnitudes eléctricas 3. Elementos de un circuito 4. Resolución de problemas complejos 5. Distribución de la energía eléctrica

Más detalles

Objetivo de la actividad

Objetivo de la actividad Tema 7. Métodos de análisis de mallas Objetivo de la actividad Al finalizar la actividad serás capaz de: Aplicar el método de mallas al análisis de circuitos. 1 Temas Introducción alanálisis de Mallas

Más detalles

Circuitos con fuentes independientes de corriente y resistencias, circuitos R, I

Circuitos con fuentes independientes de corriente y resistencias, circuitos R, I MÉTODO DE LOS NUDOS Es un método general de análisis de circuitos que se basa en determinar los voltajes de todos los nodos del circuito respecto a un nodo de referencia. Conocidos estos voltajes se pueden

Más detalles

B Acumuladores de corriente eléctrica

B Acumuladores de corriente eléctrica 1 B Acumuladores de corriente eléctrica Condensadores Distintos tipos de condensadores. 2 3 Configuraciones para acoplar condensadores. Pilas y baterías a) Características de las pilas y baterías: Resistencia

Más detalles

Corriente eléctrica. I = Intensidad de corriente [A] Q = Carga [C] t = Tiempo [s] Sentido de circulación de la corriente eléctrica

Corriente eléctrica. I = Intensidad de corriente [A] Q = Carga [C] t = Tiempo [s] Sentido de circulación de la corriente eléctrica Unidad Nº 2:CORRIENTE ELECTRICA Intensidad de corriente eléctrica. Resistencia eléctrica. Resistividad. Conductancia. Ley de Ohm. Variación de la resistencia con la temperatura. Fuerza electromotriz. Tensión

Más detalles

1. Los conductores eléctricos. Las resistencias fijas y variables.

1. Los conductores eléctricos. Las resistencias fijas y variables. 1. Los conductores eléctricos. Las resistencias fijas y variables. La corriente eléctrica continua (DC), se puede explicar como el flujo de electrones por un conductor. Para definir este transporte, se

Más detalles

1 Teoría de Circuitos

1 Teoría de Circuitos 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos: Thevenin y Norton. 1.6 Fuentes reales dependientes.

Más detalles

GUSTAVO ROBERTO KIRCHHOFF

GUSTAVO ROBERTO KIRCHHOFF Los circuitos eléctricos que no tienen componentes ni en serie, ni en paralelo, ni mixto, se solucionan según la regla de se aplican métodos más generales, en lo que el físico alemán GUSTAVO ROBERTO KIRCHHOFF

Más detalles

Breve tendiendo a brevísima Historia de la Electricidad

Breve tendiendo a brevísima Historia de la Electricidad Electrotecnia Prof. Ing. G. Belliski ELECTRICIDAD: HISTORIA DESCUBRIMIENTOS Y SU EXPLICACIÓN EXPERIENCIAS DE AMPERE LEY DE FARADAY LEYES DE KIRCHHOFF MÉTODOS DE RESOLUCIÓN Breve tendiendo a brevísima Historia

Más detalles

CORRIENTE CONTINUA. 1 KV (kilovoltio) = 10 3 V 1 mv (milivoltio) = 10-3 V A = Amperio 1 ma (miliamperio) = ua (microamperio) = 10-6

CORRIENTE CONTINUA. 1 KV (kilovoltio) = 10 3 V 1 mv (milivoltio) = 10-3 V A = Amperio 1 ma (miliamperio) = ua (microamperio) = 10-6 CORRIENTE CONTINUA 1. CIRCUITOS BÁSICOS 1.1 LEY DE OHM La ley de ohm dice que en un conductor el producto de su resistencia por la corriente que pasa por él es igual a la caída de voltaje que se produce.

Más detalles

-CORRIENTE ELÉCTRICA

-CORRIENTE ELÉCTRICA -CARGA ELÉCTRICA -El origen de los fenómenos eléctricos es LA CARGA ELÉCTRICA: una propiedad de las partículas elementales que las hace atraer (si tienen signos opuestos) o repeler (si tienen signos iguales).

Más detalles

EL CIRCUITO ELÉCTRICO

EL CIRCUITO ELÉCTRICO EL CIRCUITO ELÉCTRICO -ELEMENTOS DE UN CIRCUITO -MAGNITUDES ELÉCTRICAS -LEY DE OHM -ASOCIACIÓN DE ELEMENTOS -TIPOS DE CORRIENTE -ENERGÍA ELÉCTRICA. POTENCIA -EFECTOS DE LA CORRIENTE ELÉCTRICA 1. EL CIRCUITO

Más detalles

Circuitos de Corriente Continua

Circuitos de Corriente Continua Fundamentos Físicos y Tecnológicos de la Informática Circuitos de Corriente Continua Análisis de circuitos en corriente continua. Agustín Álvarez Marquina Departamento de Arquitectura y Tecnología de Sistemas

Más detalles

Capítulo 1 P O L I T E C N I C O Revisión de electricidad. 1 f T Corriente Continua (CC o DC) Corriente Alterna (CA o AC)

Capítulo 1 P O L I T E C N I C O Revisión de electricidad. 1 f T Corriente Continua (CC o DC) Corriente Alterna (CA o AC) Capítulo. Revisión de electricidad.. Corriente Continua (CC o DC) Llamaremos así a aquella tensión o corriente que no cambie de sentido o bien no cambie de signo. Estas magnitudes podrán ser constantes,

Más detalles

CORRIENTE CONTINUA (I) CONCEPTOS BÁSICOS. IES La Magdalena. Avilés. Asturias. l R = ρ. Símil de la corriente eléctrica

CORRIENTE CONTINUA (I) CONCEPTOS BÁSICOS. IES La Magdalena. Avilés. Asturias. l R = ρ. Símil de la corriente eléctrica OENTE ONTNU () ONEPTOS ÁSOS ES La Magdalena. vilés. sturias enominamos corriente eléctrica a un flujo de cargas eléctricas entre dos puntos conectados físicamente mediante una sustancia conductora. Para

Más detalles

3º ESO TECNOLOGÍA, PROGRAMACIÓN Y ROBÓTICA TEMA ELECTRICIDAD

3º ESO TECNOLOGÍA, PROGRAMACIÓN Y ROBÓTICA TEMA ELECTRICIDAD 3º ESO Tecnología, programación y robótica Tema Electricidad página 1 de 12 3º ESO TECNOLOGÍA, PROGRAMACIÓN Y ROBÓTICA TEMA ELECTRICIDAD 1.Circuito eléctrico...2 2.MAGNITUDES ELÉCTRICAS...2 3.LEY de OHM...3

Más detalles

PROGRAMA DE ESTUDIOS: LICENCIATURA EN INGENIERÍA EN SOFTWARE

PROGRAMA DE ESTUDIOS: LICENCIATURA EN INGENIERÍA EN SOFTWARE UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO UNIDAD ACADÉMICA PROFESIONAL TIANGUISTENCO PROGRAMA DE ESTUDIOS: LICENCIATURA EN INGENIERÍA EN SOFTWARE UNIDAD DE APRENDIZAJE: FÍSICA Unidad de competencia III.

Más detalles

UNIDAD 8.ELECTRICIDAD

UNIDAD 8.ELECTRICIDAD UNIDAD 8.ELECTRICIDAD CORRIENTE ELÉCTRICA CIRCUITOS ELÉCTRICOS MAGNITUDES ELÉCTRICAS FUNDAMENTALES LEY DE OHM DEPARTAMENTO TECNOLOGÍA IES AVENIDA DE LOS TOREROS UD. 8: ELECTRICIDAD - 1 ELECTRICIDAD Por

Más detalles

El circuito eléctrico es el recorrido preestablecido por el que se desplazan las cargas eléctricas.

El circuito eléctrico es el recorrido preestablecido por el que se desplazan las cargas eléctricas. EL CIRCUITO ELÉCTRICO 1.- El circuito eléctrico elemental. El circuito eléctrico es el recorrido preestablecido por el que se desplazan las cargas eléctricas. Circuito elemental Las cargas eléctricas que

Más detalles

PROBLEMAS Y EJERCICIOS RESUELTOS SOBRE FUERZA ELECTROMOTRIZ, FUERZA CONTRAELECTROMOTRIZ, CIRCUITOD DE CORRIENTE CONTINUA A C B

PROBLEMAS Y EJERCICIOS RESUELTOS SOBRE FUERZA ELECTROMOTRIZ, FUERZA CONTRAELECTROMOTRIZ, CIRCUITOD DE CORRIENTE CONTINUA A C B Ejercicio resuelto Nº 1 Dado el circuito de la figura adjunta: ε = 15 V A r i = 0,5 Ω B R 2 R 1 A C B R 3 R 4 R 1 = 2 Ω ; R 2 = 1 Ω ; R 3 = 2 Ω ; R 4 = 3 Ω Determinar: a) Intensidad de corriente que circula

Más detalles

CIRCUITOS ELECTRICOS DE CORRIENTE CONTINUA (C.C.)

CIRCUITOS ELECTRICOS DE CORRIENTE CONTINUA (C.C.) .E.S. ZOCO (Córdoba) º Bachillerato. eoría. Dpto. de ecnología CCUOS ELECCOS DE COENE CONNU (C.C.) CCUO ELÉCCO: Es el conjunto de receptores y de fuentes de energía eléctrica conectados mediante conductores

Más detalles

A.- Electrones fluyendo por un buen conductor eléctrico, que ofrece baja resistencia.

A.- Electrones fluyendo por un buen conductor eléctrico, que ofrece baja resistencia. DEPARTAMENTO DE ORIENTACIÓN: TECNOLOGÍA 4E_F Primer trimestre Curso: 2014/2015 TEMA II: ELECTRICIDAD Y ELECTRÓNICA La electrónica forma parte de nuestra vida cotidiana.- Los electrodomésticos, los medios

Más detalles

Los tubos fluorescentes contienen un gas que tiene la propiedad de producir luz al paso de la corriente eléctrica.

Los tubos fluorescentes contienen un gas que tiene la propiedad de producir luz al paso de la corriente eléctrica. TEMA VI. ELECTRICIDAD 1. CONCEPTO La electricidad es un fenómeno físico originado por cargas eléctricas estáticas o en movimiento. La circulación de cargas eléctricas a través de un conductor se le llama

Más detalles

Electrotecnia. Circuitos de Corriente Continua

Electrotecnia. Circuitos de Corriente Continua ESCELA TÉCNCA SPEO DE NGENEÍA Departamento de Electrotecnia y Sistemas Electrotecnia CCTOS DE COENTE CONTNA Circuitos de Corriente Continua 1. Terminología 2. Leyes de Kirchhoff 3. Elementos lineales de

Más detalles

1 Leyes y magnitudes fundamentales de los circuitos eléctricos

1 Leyes y magnitudes fundamentales de los circuitos eléctricos 1 Leyes y magnitudes fundamentales de los circuitos eléctricos 1.1 Tensión Se denomina tensión eléctrica a la diferencia de potencial existente entre dos puntos de un circuito eléctrico. Su unidad de medida

Más detalles

Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua

Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua Instalaciones y Servicios Parte II Introducción Electricidad- Análisis en C.C. Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua Instalaciones y Servicios Parte II- UD1 CONTENIDO

Más detalles

3º ESO TECNOLOGÍA, PROGRAMACIÓN Y ROBÓTICA Curso TEMA ELECTRICIDAD

3º ESO TECNOLOGÍA, PROGRAMACIÓN Y ROBÓTICA Curso TEMA ELECTRICIDAD 3º ESO Tecnología, programación y robótica Tema Electricidad página 1 de 11 NOMBRE Y APELLIDOS: CURSO: 3º ESO TECNOLOGÍA, PROGRAMACIÓN Y ROBÓTICA Curso 2016-17 TEMA ELECTRICIDAD 1.Circuito eléctrico...2

Más detalles

Algunas Aplicaciones de Sistemas de Ecuaciones Lineales

Algunas Aplicaciones de Sistemas de Ecuaciones Lineales Universidad Central de Venezuela Facultad de Ingeniería Departamento de Matemática Aplicada Álgebra Lineal Prof. Norma Guzmán Algunas Aplicaciones de Sistemas de Ecuaciones Lineales 1. Modelo Insumo-Producto

Más detalles

Circuitos eléctricos TECNOLOGÍA - ESO

Circuitos eléctricos TECNOLOGÍA - ESO Circuitos eléctricos TECNOLOGÍA - ESO 2009-0 Índice:. Componentes de un circuito 2. Circuitos. Tipos de circuito 3. Ejemplos numéricos de tipos de circuito. 3. En serie 3.2 En paralelo 4. Simbología colores

Más detalles

APLICACIÓN DE LA LEY DE OHM (II)

APLICACIÓN DE LA LEY DE OHM (II) APLICACIÓN DE LA LEY DE OHM (II) MEDIDA DE RESISTENCIAS / PUENTE DE WHEATSTONE / MEDIDA DE LA RESISTIVIDAD 1. OBJETIVO Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad

Más detalles

Circuitería Básica, Leyes de Kirchhoff y Equivalente Thévenin

Circuitería Básica, Leyes de Kirchhoff y Equivalente Thévenin Circuitos de Corriente Continua Circuitería Básica, Leyes de Kirchhoff y Equivalente Thévenin 1. OBJETIVOS - Estudiar las asociaciones básicas de elementos resistivos en corriente continua: conexiones

Más detalles

Colegio La Florida. Proyectos de Ciencias Electricidad. Proyectos de Física: Electricidad M.C. Alfonso Cuervo C.

Colegio La Florida. Proyectos de Ciencias Electricidad. Proyectos de Física: Electricidad M.C. Alfonso Cuervo C. Colegio La Florida Proyectos de Ciencias Electricidad. CARGA Y CORRIENTE ELÉCTRICA Tipos de cargas Conductores y aisladores Interacciones eléctricas Métodos de electrización Voltaje Corriente eléctrica

Más detalles

ρ = = 2 x 10 : 100 = 0,2 Ω.mm2/m (ohmios por milímetro cuadrado por cada metro)

ρ = = 2 x 10 : 100 = 0,2 Ω.mm2/m (ohmios por milímetro cuadrado por cada metro) Materiales conductores. En general existen dos tipos: de primera y de segunda clase. Los primeros son los que al ser recorridos por la corriente eléctrica no sufren cambios químicos en su constitución.

Más detalles

EXAMEN DE AUTOEVALUACION DEL PRIMER BIMESTRE GRADO 1 GRUPO I TECNOLOGIA: ELECTRONICA

EXAMEN DE AUTOEVALUACION DEL PRIMER BIMESTRE GRADO 1 GRUPO I TECNOLOGIA: ELECTRONICA Averigua lo que sabes La corriente eléctrica es: La agitación de los átomos de un objeto. EXAMEN DE AUTOEVALUACION DEL PRIMER BIMESTRE GRADO 1 GRUPO I TECNOLOGIA: ELECTRONICA El movimiento ordenado de

Más detalles

Se insta a los estudiantes a estudiar y, en caso que corresponda, completar los ejercicios del material publicado anteriormente:

Se insta a los estudiantes a estudiar y, en caso que corresponda, completar los ejercicios del material publicado anteriormente: Material de apoyo para la realización de las actividades correspondientes a la preparación para el primer examen quimestral de la asignatura Física II. Parte A El presente material sirve de apoyo para

Más detalles

:: OBJETIVOS [6.1] :: PREINFORME [6.2]

:: OBJETIVOS [6.1] :: PREINFORME [6.2] :: OBJETIVOS [6.1] Estudiar la influencia que ejerce la resistencia interna de una pila sobre la diferencia de potencial existente entre sus bornes y medir dicha resistencia interna. :: PREINFORME [6.2]

Más detalles

ELECTRICIDAD Y MAGNETISMO

ELECTRICIDAD Y MAGNETISMO 28-10-2011 UNAM ELECTRICIDAD Y MAGNETISMO TEMA TRES ING. SANTIAGO GONZALEZ LOPEZ CIRCUITOS ELECTRICOS OBJETIVO CARGAS ELECTRICAS EN REPOSO: ELECTROSTATICA CARGAS ELECTRICAS EN MOVIMIENTO: CORRIENTE ELECTRICAS

Más detalles

Inducción electromagnética. 1. Flujo de campo magnético

Inducción electromagnética. 1. Flujo de campo magnético Inducción electromagnética 1. Flujo de campo magnético 2. Inducción electromagnética 2.1 Experiencia de Henry 2.2 Experiencias de Faraday 2.3 Ley de Faraday-Henry 2.4 Ley de Faraday- Lenz 3. Otros caso

Más detalles

TEMA VENTAJAS DEL USO DE SISTEMAS TRIFÁSICOS. Se usan 3 ó 4 hilos (3 fases + neutro). 400 Posibilidad de 2 tensiones.

TEMA VENTAJAS DEL USO DE SISTEMAS TRIFÁSICOS. Se usan 3 ó 4 hilos (3 fases + neutro). 400 Posibilidad de 2 tensiones. TEMA 10 SSTEMAS TRFÁSCOS. 10.1.- VENTAJAS DE USO DE SSTEMAS TRFÁSCOS. Se usan ó 4 hilos ( fases + neutro). 400 Posibilidad de 2 tensiones. 20 Tensiones entre fases es veces mayor que entre fase y neutro.

Más detalles

IES VILLALBA HERVAS. Se dice que entre ellos hay una, pero este concepto se conoce más como eléctrica o y se mide en.

IES VILLALBA HERVAS. Se dice que entre ellos hay una, pero este concepto se conoce más como eléctrica o y se mide en. Electricidad La materia está formada por constituidos por tres tipos de partículas:, y. Los protones tienen carga eléctrica. Están en el. Los electrones tienen carga eléctrica y giran alrededor del núcleo

Más detalles

ELECTRÓNICA BÁSICA UNIDAD DIDÁCTICA SEGUNDO PERIODO ( PERIODO 2)

ELECTRÓNICA BÁSICA UNIDAD DIDÁCTICA SEGUNDO PERIODO ( PERIODO 2) ELECTRÓNICA BÁSICA UNIDAD DIDÁCTICA SEGUNDO PERIODO ( PERIODO 2) CONTENIDO Simbología General. Conceptos y descripción de elementos eléctricos y electrónicos. Conceptos de Voltaje, corriente, Resistencia

Más detalles

Introducción unidades eléctricas. leyes de la electricidad (Ohm y Kirchhoff) Circuitos en serie y en paralelo Corriente alterna

Introducción unidades eléctricas. leyes de la electricidad (Ohm y Kirchhoff) Circuitos en serie y en paralelo Corriente alterna Introducción unidades eléctricas corriente eléctrica leyes de la electricidad (Ohm y Kirchhoff) Circuitos en serie y en paralelo Corriente alterna Principios Básicos Inicialmente los átomos tienen carga

Más detalles

Tema 3. Iniciación a la electricidad

Tema 3. Iniciación a la electricidad Tema 3. Iniciación a la electricidad Víctor M. Acosta Guerrero José Antonio Zambrano García Departamento de Tecnología I.E.S. Maestro Juan Calero Tema 3. Iniciación a la electricidad. 1. INTRODUCCIÓN.

Más detalles

UNIDAD 5.- LA ELECTRICIDAD

UNIDAD 5.- LA ELECTRICIDAD UNIDAD 5.- LA ELECTRICIDAD 5.1. CONCEPTOS GENERALES. 5.2. CORRIENTE ELÉCTRICA. 5.3. CIRCUITO ELÉCTRICO: SIMBOLOGÍA 5.4. MAGNITUDES ELÉCTRICAS: LA LEY DE OMH 5.5. ASOCIACIÓN DE RECEPTORES 5.1. CONCEPTOS

Más detalles

I = t C. La intensidad de corriente eléctrica se mide en Amperios, esto es,. s

I = t C. La intensidad de corriente eléctrica se mide en Amperios, esto es,. s 4. ELECTOMAGNETISMO 4.. CICUITOS DE COIENTE ELÉCTICA CONTINUA En este apartado nos ocuparemos de la fenomenología relacionada con las cargas eléctricas en movimiento, es decir, con la corriente eléctrica

Más detalles

Práctica 6. Circuitos de Corriente Continua

Práctica 6. Circuitos de Corriente Continua Práctica 6. Circuitos de Corriente Continua OBJETIOS Estudiar las asociaciones básicas de elementos resistivos en corriente continua: conexiones en serie y en paralelo. Comprobar experimentalmente las

Más detalles

Electricidad. Electricidad. Tecnología

Electricidad. Electricidad. Tecnología Electricidad Tecnología LA CARGA ELÉCTRICA Oxford University Press España, S. A. Tecnología 2 Oxford University Press España, S. A. Tecnología 3 Oxford University Press España, S. A. Tecnología 4 Oxford

Más detalles

Análisis de redes eléctricas de baterías y resistencias (una aplicación de sistemas de ecuaciones lineales)

Análisis de redes eléctricas de baterías y resistencias (una aplicación de sistemas de ecuaciones lineales) Análisis de redes eléctricas de baterías y resistencias (una aplicación de sistemas de ecuaciones lineales) Objetivos. Conocer una aplicación de sistemas de ecuaciones lineales al análisis de redes eléctricas

Más detalles

ELECTRICIDAD QUE ES MAGNITUDES BÁSICAS_CIRCUITOS ELÉCTRICOS SERIE_PARALELO

ELECTRICIDAD QUE ES MAGNITUDES BÁSICAS_CIRCUITOS ELÉCTRICOS SERIE_PARALELO ELECTRICIDAD QUE ES MAGNITUDES BÁSICAS_CIRCUITOS ELÉCTRICOS SERIE_PARALELO QUÉ ES? La electricidad se manifiesta por la presencia de cargas eléctricas ( negativas o positivas) tanto si están estáticas

Más detalles

BLOQUE.- ELECTRICIDAD - GRUPO: 2º E.S.O. ALUMNO-A:

BLOQUE.- ELECTRICIDAD - GRUPO: 2º E.S.O. ALUMNO-A: BLOQUE.- ELECTRICIDAD - GRUPO: 2º E.S.O. ALUMNO-A: 1.- Completa la siguiente tabla. En la columna función escoge alguna de las siguientes expresiones. controla paso de corriente-proporciona energía-utiliza

Más detalles

MEDIDA DE RESISTENCIAS Puente de Wheatstone

MEDIDA DE RESISTENCIAS Puente de Wheatstone MEDIDA DE ESISTENCIAS Puente de Wheatstone. OBJETIVO Comprobación experimental de las leyes de Kirchhoff. 2. DESAOLLO TEÓICO Leyes de Kirchhoff La primera ley de Kirchhoff, también conocida como ley de

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. / L.O.C.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. / L.O.C.E PRUEBS DE CCESO UNIVERSIDD.O.G.S.E. /.O.C.E CURSO 2003-2004 - CONVOCTORI: JUNIO EECTROTECNI E UMNO EEGIRÁ UNO DE OS DOS MODEOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje

Más detalles

ANALISIS DE CIRCUITOS ELECTRICOS. Mg. Amancio R. Rojas Flores

ANALISIS DE CIRCUITOS ELECTRICOS. Mg. Amancio R. Rojas Flores ANALISIS DE CIRCUITOS ELECTRICOS Mg. Amancio R. Rojas Flores INTRODUCCION La existencia de fenómenos de tipo eléctrico era conocida desde la época de la Grecia clásica, pero hasta que el italiano volta

Más detalles

ALUMNO-A: CURSO: 2º ESO

ALUMNO-A: CURSO: 2º ESO UNIDAD: ELECTRICIDAD. CONOCIENDO LA ELECTRICIDAD ALUMNO-A: CURSO: 2º ESO 1.- INTRODUCCIÓN Hoy en día la energía eléctrica es imprescindible, gracias a ella funcionan infinidad de aparatos, máquinas, fábricas,

Más detalles

U.D. 0: REPASO CONTENIDOS BÁSICOS DE ELECTRICIDAD

U.D. 0: REPASO CONTENIDOS BÁSICOS DE ELECTRICIDAD INSTITUTO DE ENSEÑANZA SECUNDARIA VILLA DE MAZO CONSEJERÍA DE EDUCACIÓN CULTURA DEPORTE GOBIERNO DE CANARIAS DEPARTAMENTO DE TECNOLOGÍA. U.D. 0: REPASO CONTENIDOS BÁSICOS DE ELECTRICIDAD Definición Se

Más detalles

ELECTRICIDAD MATERIALES CONDUCTORES Y AISLANTES. que se fabrican con estos materiales? COMPOMENTES DE UN CIRCUITO ELÉCTRICO

ELECTRICIDAD MATERIALES CONDUCTORES Y AISLANTES. que se fabrican con estos materiales? COMPOMENTES DE UN CIRCUITO ELÉCTRICO ELECTRICIDAD MATERIALES CONDUCTORES Y AISLANTES 1. Completa las siguientes frases a. Las partículas con carga positiva de los átomos se llaman - b. Las partículas con carga negativa de los átomos se llaman

Más detalles

FÍSICA 3 TEMA 2 Resumen teórico. Electricidad y magnetismo

FÍSICA 3 TEMA 2 Resumen teórico. Electricidad y magnetismo Electricidad y magnetismo CORRIENTE ELÉCTRICA Diferencia de potencial, resistencia e intensidad La palabra corriente se utiliza para expresar movimiento de. La corriente de un río, por ejemplo, nos expresa

Más detalles

CIRCUITOS ELECTRICOS, COMPONENTES ELECTRÓNICOS, Y APARATOS DE MEDIDA

CIRCUITOS ELECTRICOS, COMPONENTES ELECTRÓNICOS, Y APARATOS DE MEDIDA CIRCUITOS ELECTRICOS, COMPONENTES ELECTRÓNICOS, Y APARATOS DE MEDIDA Joaquín Agulló Roca 3º ESO CIRCUITOS ELECTRICOS MAGNITUDES ELECTRICAS La carga eléctrica (q) de un cuerpo expresa el exceso o defecto

Más detalles