Física general de fluidos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Física general de fluidos"

Transcripción

1 Física general de fluidos 1. Hidrostática. Principio de Pascal. Principio de Arquímedes. Conceptos básicos de hidrodinámica: Una importante propiedad de una sustancia es la densidad, que la definiremos como el cociente de la masa y el volumen, En la mayoría de los materiales, incluida el agua, las densidades varían con la temperatura. Una unidad de volumen muy utilizada es el litro (L): Cuando un cuerpo se sumerge en un fluido, éste ejerce una fuerza perpendicular a la superficie del cuerpo en cada punto de la superficie. Definiremos presión del fluido como esta fuerza por unidad de área La unidad en el SI es el Newton por metro cuadrado, que recibe el nombre de Pascal: Una de la unidades también común cuando se habla de presión, es la atmósfera (atm), que es aproximadamente la presión del aire a nivel del mar. Prof. Jesús Olivar Página 1

2 Un fluido que presiona contra un cuerpo, tiende a comprimirlo. El cociente entre el cambio de presión y la disminución relativa al volumen denomina módulo de compresibilidad se Algunos valores aproximados del módulo de compresibilidad de varios materiales: Diamante: 620 Acero: 160 cobre: 140 Aluminio: 70 Plomo: 7,7 Principio de Pascal: Toda presión aplicada en un punto del fluido se trasmite a todos los puntos del fluido. Ejemplo, prensa hidráulica o elevador hidráulico. Donde una fuerza ejercida sobre el émbolo o pistón pequeño produce una variación de presión que se trasmite por el líquido hasta el émbolo grande. Como las presiones en los pistones grande y pequeño son iguales, las fuerzas correspondientes cumplen la relación Como el área del pistón grande es mucho mayor que el del pistón pequeño, la fuerza sobre el pistón grande es mucho mayor que Ecuación fundamental de la hidrostática Supongamos dos alturas y en un fluido; la ecuación fundamental de la hidrostática es Prof. Jesús Olivar Página 2

3 para constante, y donde es el valor de la gravedad, y las correspondientes alturas. Una expresión más general de esta ecuación es Principio de Arquímedes (250 a.c.) Todo cuerpo parcial o totalmente sumergido en un fluido, experimenta un empuje ascensional igual al peso del fluido desplazado. Consecuencia del principio fundamental de la hidrostática. Este principio también explica por qué un objeto sumergido en el agua, su peso aparente es menor que si lo pesamos en el aire. En la deducción de este principio, la fuerza neta de la presión solo depende de la posición (geometría del objeto y de la profundidad). En el caso del fluido dentro del fluido (equilibrio), la fuerza neta de la presión tiene que ser igual al peso del fluido contenido en el volumen considerado. 2. Tensión superficial. Capilaridad. Ley de Jurin Tensión superficial Hacer pasar una molécula del interior de un líquido a la superficie del líquido cuesta energía. En el interior del líquido, la molécula está rodeada de otras moléculas en todas las direcciones, de manera en que la fuerza neta es nula. Cerca de la superficie, la molécula solo está rodeada parcialmente de otras moléculas del líquido, de manera que esto provoca una fuerza atractiva neta hacia dentro del líquido. Para extraer la molécula, hace falta hacer un trabajo (tensión superficial, si la llevamos a la superficie; evaporación, la extraemos del todo). Prof. Jesús Olivar Página 3

4 Sea el alcance de la fuerza, y la fuerza molecular mediana, el trabajo será igual al producto de estos, Ampliar el área superficial de un líquido, también cuesta energía donde es el trabajo y el área. Ejemplos de valores de tensión superficial en diferentes fluidos Consecuencia: Agua a 273 K: 75,5 N/m Agua a 373 K: 58,9 N/m Etanol: 22,3 N/m Aceite de oliva: 32,0 N/m Mercurio: 465,0 N/m Observaciones: Insectos que caminan sobre el agua, detergentes (la reducción de la tensión superficial mejora el rendimiento de limpieza). Ley de Laplace: diferencia de presiones entre el exterior y el interior de una gota (o un depósito). La tensión superficial aumenta la presión dentro de una gota del líquido. La presión interna P, que balancea la fuerza de tensión superficial de una pequeña gota esférica de radio r Trabajo necesario para atomizar una masa de líquido Prof. Jesús Olivar Página 4

5 Fuerzas cohesivas y adhesivas. Capilaridad Los líquidos poseen las propiedades de cohesión y adhesión debido a la atracción molecular. Debido a la propiedad de cohesión, los líquidos pueden resistir pequeñas fuerzas de tensión en la interfase entre el líquido y aire, conocida como tensión superficial. La cohesión permite al líquido resistir esfuerzos de tracción, mientras que la adhesión permite que se adhiera a otros cuerpos. Si las moléculas líquidas tienen mayor adhesión que cohesión, entonces el líquido se pega a las paredes del recipiente con el cual está en contacto, resultando en un aumento (elevación) de la capilaridad de la superficie del líquido; un predominio de la cohesión causa por el contrario una depresión de la capilaridad. Esta imagen del menisco nos muestra, las fuerzas que actúan sobre una molécula en un fluido contenido en un recipiente, vemos que las tres fuerzas que actúan son: la fuerza de líquido - sólido, la fuerza del aire - líquido, y la fuerza de líquido - líquido. Prof. Jesús Olivar Página 5

6 El ángulo de contacto (depende exclusivamente de las fuerzas adhesivas y cohesivas). Ejemplos: ángulo de contacto de Agua-vidrio: 0^o, ángulo de contacto de Mercurio-vidrio: 140^o. Para estudiar el ascenso o el descenso de líquidos en conductos finos, nos preguntaremos primeramente a que distancia puede subir o bajar el líquido. Analicemos las fuerzas que intervienen arriba y abajo en igualar las dos fuerzas obtenemos 3. Hidrodinámica. Ecuación de continuidad. Fluido perfecto. Ecuación de Bernoulli. Para el movimiento de fluidos supondremos fluidos incompresibles, consideraremos dos variables: velocidad y presión, y conoceremos la geometría del conducto. Necesitaremos dos ecuaciones para describir el movimiento de los fluidos bajo las condiciones comentadas anteriormente Ecuación de continuidad (conservación de la masa). Ecuación de Bernoulli (conservación de la energía). Ecuación de continuidad y conservación de la masa. Prof. Jesús Olivar Página 6

7 Volumen que entra o sale en un intervalo de tiempo Podemos observar que si aumenta disminuye. Ecuación de Bernoulli La ecuación de Bernoulli solo vale para fluidos perfectos, es decir, fluidos sin viscosidad. Ejemplo de la ecuación de Bernoulli en un conducto horizontal y de sección constante. y otra ecuación más general Nótese que cuando la velocidad es 0, recuperamos la ecuación fundamental de la hidrostática. Si el área es constate (velocidad constante) y altura constante que la presión tendría que ser constante, pero se observa que el fluido pierde presión. Esto se explica por la presencia de las fuerzas de resisténcia (fuerzas viscosas) que no han estado tenidas en cuenta en la deducción de la ecuación de Bernoulli. Un buen ejemplo de esto es observar el vuelo de los aviones. En los cuales, si nos fijamos en el ala del avión, veremos que el aire que fluye por encima del ala y el que fluye por debajo del ala tarda el mismo tiempo aunque el espacio recorrido no es el mismo; asi pues, Prof. Jesús Olivar Página 7

8 , por eso se genera una fuerza de sustentación que hace que el ala planee, pero este tema ya lo comentaremos más adelante. Efecto Venturi: Cuando aumenta la velocidad de un fluido, desciende su presión. 4. Fluido viscoso. Ley de Poiseuille. Número de Reynolds. Turbulencia. Ley de Newton de la viscosidad Fuerzas de viscosidad: fricción interna del fluido. donde es el coeficiente de viscosidad que depende del fluido. No todos los fluidos satisfacen exactamente esta ley (ejemplo: la sangre, el petróleo, suspensiones, pinturas,...) que son fluidos no newtonianos; y su viscosidad depende del gradiente de la velocidad. En algunos, la viscosidad disminuye cuando el gradiente de la velocidad aumenta (ejemplo: pinturas, suspensiones,...) Aplicaciones: flujo en conductos cilíndricos. Ecuación de Poiseuille Supongamos un cilindro de radio contenido en otro cilindro de radio y longitud. Sobre el cilindro considerado actúan las siguientes fuerzas Prof. Jesús Olivar Página 8

9 Igualamos las fuerzas y obtenemos la diferencia de presiones es lo que hace mover el fluido. Aislando tendremos el perfil parabólico de velocidades Para calcular el caudal utilizaremos esta expresión Ecuación de Poiseuille(1835) En función del coeficiente de viscosidad, se puede demostrar que la caída de presión para un flujo estacionario en una longitud de un tubo circular de radio es La Ley de Poiseuille se aplica sólo al flujo laminar (no turbulento) de un fluido de viscosidad constante que es independendiente de la velocidad del fluido. La sangre es un fluido complejo formado por partículas sólidas de diferentes formas suspendidas en un líquido. Los glóbulos rojos de la sangre, por ejemplo, son corpúsculos de forma de disco que están orientados al azar a velocidades bajas pero que resultan orientados a velocidades altas para facilitar el flujo. Así pues, la viscosidad de la sangre disminuye cuando aumenta la velocidad de flujo, de forma que la ley no es estrictamente válida. Sin embargo, dicha ley es una buena aproximación que es muy útil a la hora de obteneter una comprensión cualitativa del flujo sanguíneo. Prof. Jesús Olivar Página 9

10 Analogía con el corriente eléctrico (Ley de Ohm). Importancia del exponente 4 en la regulación del caudal sanguíneo (ya que, pequeñas modificaciones del radio influyen mucho en el caudal). Aplicaciones prácticas Permeabilidad de membranas: canales cilíndricos de radios y de longitud (grueso de la membrana). donde es el caudal que traviesa la membrana. En algunas ocasiones, desconocemos y ; así que nos hace falta alguna otra ecuación para poder determinar separadamente las dos magnitudes. Flujo de agua o de petróleo en terrenos donde es la permeabilidad del terreno que depende del tipo de roca, arena, sedimento,... Potencia necesaria para impulsar un fluido en un conducto (Ejemplos: Oleoducto, distribución de agua, sistema circulatorio,...) Importante la analogía con el caso eléctrico Turbulencia La aparición de las turbulencias limita la ecuación de Poiseuille como vimos anteriormente. Hay dos tipos de flujos, el flujo de régimen laminar de carácter suave y ordenado; y el flujo turbulento de caracter irregular y desordenado. Prof. Jesús Olivar Página 10

11 Dentro del fenómeno de la turbulencia se originan muchas colisiones, mucha fricción y un aumento considerable de la resistencia. Número de Reynolds Cuando la velocidad de flujo de un fluido resulta que es suficientemente grande, se rompe el flujo laminar y se establece la turbulencia. La velocidad crítica por encima de la cual el flujo a través de un tubo resulta turbulenta depende de la densidad y de la viscosidad del fluido y del radio del tubo. El flujo de un fluido puede caracterizarse mediante un número adimensional al que denominamos número de Reynolds que se define Se observa que cuando Y cuando Número de Reynolds el régimen del flujo puede ser laminar o turbulento. 5. Movimiento de sólidos en fluidos. Ley de Stokes. Resistencia hidrodinámica Cuando un objeto se mueve en un fluido, existen fuerzas entre el fluido y el objeto que dependen de la velocidad. Recordemos que, entonces Prof. Jesús Olivar Página 11

12 Movimiento de una esfera a. Ley de Stokes El origen de la fuerza es la fricción viscosa. el factor vale para la esfera, es la viscosidad. Velocidad de sedimentación Consideremos esta aplicación para una esfera sumergida en un fluido, entonces las fuerzas que actúan son donde es la densidad del fluido, y es la densidad del objeto. Se llega a velocidad constante de sedimentación cuando Y aislando de la ecuación, tendremos la velocidad de sedimentación El mismo caso, pero bajo la acción de una aceleración centrífuga como en el caso de una centrifugación vale Prof. Jesús Olivar Página 12

13 En este caso podemos observar que puede ser mucho más grande que, hasta veces más grande! la velocidad de sedimentación aumenta mucho respecto de la que produciría la gravedad. Electroforesi: En este caso en lugar de eléctrico, actúa una fuerza eléctrica debida a un campo Movimiento de objetos a A medida que va aumentando el, aparecen inestabilidades (vórtices), además de haber mucha turbulencia en la zona posterior del objeto. en este caso se genera una fuerza donde es la proyección de área frontal, y el coeficiente de resistencia aerodinámica que depende de la forma del objeto. De hecho en muchas ocasiones, una de las caracteristicas importantes a la hora de escoger un automóbil es este coeficiente aerodinámico, ya que mientras menor sea su coeficiente, menor será la fuerza de resistencia. Algunos ejemplos son: Opel Corsa(0,36), Ford Escort (0,38), Audi 100 (0,30), Mercedes 190 (0,33), y los peces desde(0,06) hasta (0,25). Prof. Jesús Olivar Página 13

14 Potencia consumida Fuerza de sustentación. Potencia de vuelo Cuando los objetos son asimétricos, hay una fuerza perpendicular a la velocidad, denominada fuerza de sustentación. Un buen ejemplo es el ala de los aviones. Son objetos asimétricos, de manera que el flujo del fluido cuando el ala se mueve con velocidad se separa, supongamos que sea el flujo de aire que pasa por la zona de arriba del ala, y la velocidad del flujo del aire que pasa por la parte de abajo del ala. Como el objeto no es simétrico, y la parte de arriba del ala es mayor (ya que es curbada)que la de abajo, y el tiempo que tardan en recorrer ese espacio es el mismo, tenemos que y De manera que la fuerza de resistencia es y la fuerza de sustentación es Prof. Jesús Olivar Página 14

15 con y coeficientes de resistencia y sustentación correspondientes que dependen de la forma del objeto. Y con y el área de la proyección vertical y horizontal del objeto. Leyes de escala de velocidad y potencia: túnel de viento Para simular el vuelo de los aviones y su velocidad, antes se estudia con maquetas de aviones haciendolas pasar por un túnel de viento. Representemos esto como una maqueta de avión el cual va con una velocidad y que tiene dos alas. De manera que las fuerzas que actúan son: la fuerza de sustentación de cada ala, y la fuera de resistencia en sentido opuesto al movimiento, y en este caso al de la velocidad. Nos queda lo siguiente y aislando la velocidad de la ecuación y para la potencia Prof. Jesús Olivar Página 15

16 de manera que en aeronáutica, las leyes de escala en la relación maqueta/prototipo seria, por ejemplo Prof. Jesús Olivar Página 16

Estática y Dinámica de Fluidos

Estática y Dinámica de Fluidos Estática y Dinámica de Fluidos 1. Hidrostática. Principio de Pascal. Principio de Arquímedes. Conceptos básicos de hidrodinámica: Una importante propiedad de una sustancia es la densidad, que la definiremos

Más detalles

2do cuatrimestre 2005 Turno FLUIDOS * Hidrostática. , con ρ 1

2do cuatrimestre 2005 Turno FLUIDOS * Hidrostática. , con ρ 1 Teorema Fundamental FLUIDOS * Hidrostática 1. En un tubo en U, hay dos líquidos inmiscibles (no se mezclan) de densidades ρ 1 y ρ 2, con ρ 1 > ρ 2. Si el nivel del punto B, respecto a la superficie que

Más detalles

1. 2º EXAMEN. 2. Investigación 11. Fluidos. Contenido:

1. 2º EXAMEN. 2. Investigación 11. Fluidos. Contenido: SESIÓN 21 17 OCTUBRE 1. 2º EXAMEN 2. Investigación 11. Fluidos. Contenido: Estados de la materia. Características moleculares de sólidos, líquidos y gases. Fluido. Concepto de fluido incompresible. Densidad

Más detalles

COLEGIO DE BACHILLERES DEL ESTADO DE QUERÉTARO Plantel No. 7 El Marqués GUIA DE REGULARIZACIÓN DE FÍSICA II UNIDAD 1

COLEGIO DE BACHILLERES DEL ESTADO DE QUERÉTARO Plantel No. 7 El Marqués GUIA DE REGULARIZACIÓN DE FÍSICA II UNIDAD 1 UNIDAD 1 I. INTRODUCCIÓN 1. Investiga y resume los siguientes conceptos: a. HIDRODINÁMICA: b. HIDROSTÁTICA: c. HIDRÁULICA 2. Investiga y resume en qué consiste cada una de las características de los fluidos

Más detalles

Física General II. Guía N 2: Hidrodinámica y Viscosidad

Física General II. Guía N 2: Hidrodinámica y Viscosidad Física General II Guía N 2: Hidrodinámica y Viscosidad Problema 1: Ley de Torricelli. La figura muestra un líquido que está siendo descargado de un tanque a través de un orificio que se encuentra a una

Más detalles

Mecánica de fluidos. Fis 018- Ref. Capitulo 10 Giancoli Vol II. 6ta ed. 23 de octubre de 2016

Mecánica de fluidos. Fis 018- Ref. Capitulo 10 Giancoli Vol II. 6ta ed. 23 de octubre de 2016 Mecánica de fluidos Fis 018- Ref. Capitulo 10 Giancoli Vol II. 6ta ed. 23 de octubre de 2016 ESTATICA DE FLUIDOS 1. Estados de la materia 2. Propiedades de los fluidos 3. Volumen, densidad y peso específico,

Más detalles

Fluidos. Cualquier sustancia que tiene la capacidad de fluir es un fluido. Liquido Gas Plasma

Fluidos. Cualquier sustancia que tiene la capacidad de fluir es un fluido. Liquido Gas Plasma Fluidos Cualquier sustancia que tiene la capacidad de fluir es un fluido. Liquido Gas Plasma Entonces muchos de la teoría se puede aplicar tanto a gases como líquidos. Estados de la materia Sólido Líquido

Más detalles

Los Fluidos. Su forma no cambia, salvo por la acción de fuerzas externas. Sólido. Líquido. Estados de la materia

Los Fluidos. Su forma no cambia, salvo por la acción de fuerzas externas. Sólido. Líquido. Estados de la materia Estados de la materia { Sólido } Líquido Gas Plasma FLUIDOS Su forma no cambia, salvo por la acción de fuerzas externas. Tienen la propiedad de adoptar la forma del recipiente que los contiene. Líquidos:

Más detalles

Unidad 5. Fluidos (Dinámica)

Unidad 5. Fluidos (Dinámica) Unidad 5 Fluidos (Dinámica) Tipos de Movimiento (Flujos) Flujo Laminar o aerodinámico: el fluido se mueve de forma ordenada y suave, de manera que las capas vecinas se deslizan entre si, y cada partícula

Más detalles

Dinámica de Fluidos. Mecánica y Fluidos VERANO

Dinámica de Fluidos. Mecánica y Fluidos VERANO Dinámica de Fluidos Mecánica y Fluidos VERANO 1 Temas Tipos de Movimiento Ecuación de Continuidad Ecuación de Bernouilli Circulación de Fluidos Viscosos 2 TIPOS DE MOVIMIENTO Régimen Laminar: El flujo

Más detalles

HIDRODINÁMICA. Profesor: Robinson Pino H.

HIDRODINÁMICA. Profesor: Robinson Pino H. HIDRODINÁMICA Profesor: Robinson Pino H. 1 CARACTERÍSTICAS DEL MOVIMIENTO DE LOS FLUIDOS Flujo laminar: Ocurre cuando las moléculas de un fluido en movimiento siguen trayectorias paralelas. Flujo turbulento:

Más detalles

1. Tipos de flujo. 2. Caudal. 3. Conservación de la energía en fluidos. 4. Roce en fluidos

1. Tipos de flujo. 2. Caudal. 3. Conservación de la energía en fluidos. 4. Roce en fluidos 1. Tipos de flujo. Caudal 3. Conservación de la energía en fluidos 4. Roce en fluidos Tipos de flujos Existen diversos tipos de flujos en donde se distinguen: Flujo laminar: Ocurre cuando las moléculas

Más detalles

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli.

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Presión de un fluido Presión depende de la profundidad P = ρ

Más detalles

1. Fuerza. Leyes de Newton (Gianc )

1. Fuerza. Leyes de Newton (Gianc ) Tema 1: Mecánica 1. Fuerza. Leyes de Newton. 2. Movimiento sobreamortiguado. 3. Trabajo y energía. 4. Diagramas de energía. 5. Hidrostática: presión. 6. Principio de Arquímedes. 7. Hidrodinámica: ecuación

Más detalles

Unidad 5. Fluidos (Estática)

Unidad 5. Fluidos (Estática) Unidad 5 Fluidos (Estática) Estados agregación de la materia Materia es todo aquello que tiene masa y ocupa un lugar en el espacio. La materia está formada por partículas muy pequeñas (átomos, iones o

Más detalles

PROBLEMAS TEMA I: ESTÁTICA DE FLUIDOS Y FENÓMENOS DE SUPERFICIE

PROBLEMAS TEMA I: ESTÁTICA DE FLUIDOS Y FENÓMENOS DE SUPERFICIE PROBLEMAS TEMA I: ESTÁTICA DE FLUIDOS Y FENÓMENOS DE SUPERFICIE Curso 2016-2017 1. Desde una bolsa de goteo colocada 1.6 m por encima del brazo de un paciente fluye plasma de 1.06 g/cm 3 de densidad por

Más detalles

Hidrodinámica. Gasto o caudal (Q) se define como el volumen de fluido que pasa a través de cierta sección transversal en la unidad de tiempo.

Hidrodinámica. Gasto o caudal (Q) se define como el volumen de fluido que pasa a través de cierta sección transversal en la unidad de tiempo. C U R S O: FÍSICA MENCIÓN MATERIAL: FM-5 Hidrodinámica Hasta ahora, nuestro estudio se ha restringido a condiciones de reposo, que son considerablemente más sencillas que el estudio de fluidos en movimiento.

Más detalles

Tipos de fluidos. Fluido IDEAL. No posee fricción interna. Dinámica de fluidos

Tipos de fluidos. Fluido IDEAL. No posee fricción interna. Dinámica de fluidos Dinámica de fluidos Cátedra de Física- FFyB-UBA Tipos de fluidos Fluido IDEAL Tipos de Fluidos INCOMPRESIBLE No varía su volumen al variar la presión al cual está sometido (δ cte) Según su variación de

Más detalles

Práctica 8: FLUIDOS. Parte1. Hidrostática 1. Teorema Fundamental

Práctica 8: FLUIDOS. Parte1. Hidrostática 1. Teorema Fundamental Práctica 8: FLUIDOS Parte. Hidrostática Teorema Fundamental. Un tubo en U contiene mercurio (ρ =3.6 g/cm 3 ). Se echan 20 cm de agua en la rama derecha y se espera a que el sistema esté nuevamente en equilibrio.

Más detalles

TECNOLOGIA 1º Año Colegio Sagrado Corazón. Hidrostática y la tecnología.

TECNOLOGIA 1º Año Colegio Sagrado Corazón. Hidrostática y la tecnología. Hidrostática y la tecnología. Hidrostática es una rama de la física que estudia a los líquidos en equilibrio (que se encuentran en reposo) en el interior de recipientes. Introducción y revisión de conocimientos

Más detalles

Guía 6: Fluídos. Hidrostática

Guía 6: Fluídos. Hidrostática Guía 6: Fluídos Hidrostática 1. En un tubo en U, hay dos líquidos inmiscibles (no se mezclan) de densidades 1 y 2, con 1 > 2. Si el nivel del punto B, respecto a la superficie que separa a los dos líquidos

Más detalles

FLUIDOS. sólido líquido gas

FLUIDOS. sólido líquido gas FLUIDOS sólido líquido gas INTRODUCCIÓN La materia puede clasificarse por su forma física como un sólido, un líquido o un gas. Las moléculas de los solidos a temperaturas y presiones ordinarias tienen

Más detalles

Contenido CAPÍTULO 1 LA DE DE LOS FLUIDOS Y EL CAPÍTULO 2 DE

Contenido CAPÍTULO 1 LA DE DE LOS FLUIDOS Y EL CAPÍTULO 2 DE t CAPÍTULO LA DE..2.3.4.5.6.7.8.9.0..2 DE LOS FLUIDOS Y EL Panorama Objetivos 3 Conceptos fundamentales introductorios 3 El sistema internacional de unidades (SI) 4 El sistema tradicional de unidades de

Más detalles

ESTADOS DE AGREGACIÓN DE LA MATERIA FLUIDOS

ESTADOS DE AGREGACIÓN DE LA MATERIA FLUIDOS FLUIDOS LÍQUIDOS ESTADOS DE AGREGACIÓN DE LA MATERIA FLUIDOS CONCEPTO DE FLUIDO Los líquidos y los gases son fluidos porque las partículas están dispuestas de forma más desordenada que en los sólidos,

Más detalles

Son fluidos tanto los líquidos como los gases, y su forma puede cambiar fácilmente por escurrimiento debido a la acción de fuerzas pequeñas.

Son fluidos tanto los líquidos como los gases, y su forma puede cambiar fácilmente por escurrimiento debido a la acción de fuerzas pequeñas. HIDROSTÁTICA La hidrostática es la rama de la mecánica de fluidos que estudia los fluidos en estado de reposo; es decir, sin que existan fuerzas que alteren su movimiento o posición. Reciben el nombre

Más detalles

Dinámica de los Fluídos

Dinámica de los Fluídos Dinámica de los Fluídos Flujos Fluídos Sustancias que no transmiten esfuerzos Se deforman cuando se les aplica una fuerza Incluye, agua y gases Fuerzas actuan en todo el fluido Propiedades de los Fluidos

Más detalles

FLUIDOS (v.0.2) Fuerza de rozamiento sólido-fluido.

FLUIDOS (v.0.2) Fuerza de rozamiento sólido-fluido. FLUIDOS (v.0.2) Fuerza de rozamiento sólido-fluido. Cuando un sólido se desplaza en el seno de un fluido, la resistencia del fluido va frenando al solido, por tanto esta fuerza irá en sentido contrario

Más detalles

Guía 9: Fluidos. Hidrostática

Guía 9: Fluidos. Hidrostática Guía 9: Fluidos Hidrostática Unidades de presión: [P] = [F]/[S] : [MKS] Pascal (Pa), 1Pa =1N/m 2 ; [CGS] bar, 1bar = 10 6 dyn/ cm 2 =10 5 Pa (Atmosfera:at) 1at =760 mmhg=760 Torr= 1,033 kg/ m 2 = 1,01325

Más detalles

MECÁNICA DE FLUIDOS: VISCOSIDAD Y TURBULENCIA. Fís. Carlos Adrián Jiménez Carballo Escuela de Física Instituto Tecnológico de Costa Rica

MECÁNICA DE FLUIDOS: VISCOSIDAD Y TURBULENCIA. Fís. Carlos Adrián Jiménez Carballo Escuela de Física Instituto Tecnológico de Costa Rica MECÁNICA DE FLUIDOS: VISCOSIDAD Y TURBULENCIA Fís. Carlos Adrián Jiménez Carballo Escuela de Física Instituto Tecnológico de Costa Rica 1 / 23 Objetivos Al finalizar esta sección el estudiante deberá ser

Más detalles

Flujo. v 1 v 2. V 1 = constante. V 2 = constante

Flujo. v 1 v 2. V 1 = constante. V 2 = constante Hidrodinámica Flujo Can2dad de masa (o de fluido) que atraviesa una (pequeña) superficie por unidad de 2empo y superficie. Si en un punto del fluido la densidad es ρ y la velocidad es v el flujo está dado

Más detalles

FLUIDOS (v.0.4) Fuerza de rozamiento sólido-fluido.

FLUIDOS (v.0.4) Fuerza de rozamiento sólido-fluido. FLUIDOS (v.0.4) Fuerza de rozamiento sólido-fluido. Cuando un sólido se desplaza en el seno de un fluido, la resistencia del fluido va frenando al solido, por tanto esta fuerza irá en sentido contrario

Más detalles

L L Area = $(diametro) 2 /4 = =Y$ = Y$

L L Area = $(diametro) 2 /4 = =Y$ = Y$ Universidad de Oriente Núcleo de Bolívar - Unidad de Estudios Básicos Departamento de Ciencias - Área de Física Física Medica secc 03-I-2017 Prof. Ricardo Nitsche C. Primera parte - Sólidos (Esfuerzo y

Más detalles

L L Area = $(diametro) 2 /4 = =Y$ = Y$

L L Area = $(diametro) 2 /4 = =Y$ = Y$ Universidad de Oriente Núcleo de Bolívar - Unidad de Estudios Básicos Departamento de Ciencias - Área de Física - Física Medica secc 03-II-2014 Prof. Ricardo Nitsche C. Primera parte - Sólidos (Esfuerzo

Más detalles

INDICE Capitulo 1. Introducción Capitulo 2. Propiedades de los Fluidos Capitulo 3. Estática de Fluidos

INDICE Capitulo 1. Introducción Capitulo 2. Propiedades de los Fluidos Capitulo 3. Estática de Fluidos INDICE Prólogo XV Lista de Símbolos XVII Lista de abreviaturas XXI Capitulo 1. Introducción 1 1.1. Ámbito de la mecánica de fluidos 1 1.2. Esquemas históricos del desarrollo de la mecánica de fluidos 2

Más detalles

1. Tipos de flujo. 2. Caudal. 3. Conservación de la energía en fluidos. 4. Roce en fluidos

1. Tipos de flujo. 2. Caudal. 3. Conservación de la energía en fluidos. 4. Roce en fluidos 1. Tipos de flujo. Caudal 3. Conservación de la energía en fluidos 4. Roce en fluidos Tipos de flujos Existen diversos tipos de flujos en donde se distinguen: Flujo laminar: Ocurre cuando las moléculas

Más detalles

ESTÁTICA DE FLUIDOS ÍNDICE

ESTÁTICA DE FLUIDOS ÍNDICE ESTÁTICA DE FLUIDOS ÍNDICE 1. Concepto de fluido 2. Densidad 3. Presión en un fluido estático 4. Medida de la presión 5. Fuerza sobre una presa 6. Principio de Arquímedes BIBLIOGRAFÍA: Cap. 13 del Tipler

Más detalles

MARCO TEORICO. Hay que tener en cuenta que el marco teórico que se abarcará en este documento.

MARCO TEORICO. Hay que tener en cuenta que el marco teórico que se abarcará en este documento. MARCO TEORICO Para la realización del cohete hidráulico se debe tener en cuenta los siguientes conceptos físicos clave con el fin de hacer el experimento más efectivo, e igualmente para analizar y entender

Más detalles

DINÁMICA DE FLUIDOS REALES. Asignatura: Operaciones Unitarias Profesor: Jimmy Walker Alumnos: Giovanni Ramirez Luis Cabrera Antonio Marín

DINÁMICA DE FLUIDOS REALES. Asignatura: Operaciones Unitarias Profesor: Jimmy Walker Alumnos: Giovanni Ramirez Luis Cabrera Antonio Marín DINÁMICA DE FLUIDOS REALES Asignatura: Operaciones Unitarias Profesor: Jimmy Walker Alumnos: Giovanni Ramirez Luis Cabrera Antonio Marín Viscosidad Consideraciones Fluido ideal Viscosidad =0 Fluido real

Más detalles

Flujo estacionario laminar

Flujo estacionario laminar HIDRODINÁMICA Hidrodinámica Es una disciplina parte de la física cuyo objetivo es explicar el comportamiento de los fluidos en movimiento, para lo cual se hace necesario definir algunos conceptos importantes:

Más detalles

Para el estudio de la hidrodinámica normalmente se consideran tres aproximaciones importantes:

Para el estudio de la hidrodinámica normalmente se consideran tres aproximaciones importantes: Hidrodinámica Para el estudio de la hidrodinámica normalmente se consideran tres aproximaciones importantes: Que el fluido es un líquido incompresible, es decir, que su densidad no varía con el cambio

Más detalles

Tema 1. Mecánica de sólidos y fluidos. John Stanley

Tema 1. Mecánica de sólidos y fluidos. John Stanley Tema 1 Mecánica de sólidos y fluidos John Stanley Tema 1: Mecánica de sólidos y fluidos 1. Sólidos, líquidos y gases: densidad 2. Elasticidad en sólidos: tensión y deformación Elasticidad en fluidos: presión

Más detalles

TEMA7 : Fluidos Capitulo 1. Fluidos en equilibrio

TEMA7 : Fluidos Capitulo 1. Fluidos en equilibrio TEMA7 : Fluidos Capitulo 1. Fluidos en equilibrio TEMA7 : Fluidos Capitulo 1. Fluidos en equilibrio Fluidos, líquidos y gases Presión, unidades de presión Ecuación fundamental de la hidrostática Variación

Más detalles

Dinámica de los Fluídos

Dinámica de los Fluídos Dinámica de los Fluídos Flujos Fluídos Sustancias que no transmiten esfuerzos Se deforman cuando se les aplica una fuerza Incluye, agua y gases Fuerzas actuan en todo el fluido Propiedades de los Fluidos

Más detalles

Problemas de Practica: Fluidos AP Física B de PSI. Preguntas de Multiopción

Problemas de Practica: Fluidos AP Física B de PSI. Preguntas de Multiopción Problemas de Practica: Fluidos AP Física B de PSI Nombre Preguntas de Multiopción 1. Dos sustancias; mercurio con una densidad de 13600 kg/m 3 y alcohol con una densidad de 0,8kg/m 3 son seleccionados

Más detalles

SOLUCIONARIO GUÍA ELECTIVO Fluidos I: el principio de Pascal y el principio de Arquímedes

SOLUCIONARIO GUÍA ELECTIVO Fluidos I: el principio de Pascal y el principio de Arquímedes SOLUCIONARIO GUÍA ELECTIVO Fluidos I: el principio de Pascal y el principio de Arquímedes SGUICEL014FS11-A16V1 Solucionario guía Fluidos I: el principio de Pascal y el principio de Arquímedes Ítem Alternativa

Más detalles

HIDROSTÁRICA-HIDRODINÁMICA GUIA DE PROBLEMAS Nº6: HIDROSTÁTICA- HIDRODINÁMICA

HIDROSTÁRICA-HIDRODINÁMICA GUIA DE PROBLEMAS Nº6: HIDROSTÁTICA- HIDRODINÁMICA Premisa de Trabajo: GUIA DE PROBLEMAS Nº6: HIDROSTÁTICA- HIDRODINÁMICA En la resolución de cada ejercicio debe quedar manifiesto: Las características del fluido y del flujo del fluido, la expresión de

Más detalles

Física I. Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador)

Física I. Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador) Física I Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador) Webpage: http://paginas.fisica.uson.mx/qb 2015 Departamento

Más detalles

HIDRODINAMICA Fluidos en movimiento

HIDRODINAMICA Fluidos en movimiento HIDRODINAMICA Fluidos en movimiento Principio de la conservación de la masa y de continuidad. Ecuación de Bernoulli. 3/0/0 Yovany Londoño Flujo de fluidos Un fluido ideal es o o Incompresible si su densidad

Más detalles

Problemas de Mecánica y Ondas II. Boletín nº 2. (Fluidos) Es incompresible? Existe la función de corriente? Determínela en caso afirmativo.

Problemas de Mecánica y Ondas II. Boletín nº 2. (Fluidos) Es incompresible? Existe la función de corriente? Determínela en caso afirmativo. Problemas de Mecánica y Ondas II. oletín nº 2. (Fluidos) 15. Considere un flujo cuyas componentes de la velocidad son 3 2 u = 0 v = y 4 z w=3y z Es incompresible? Existe la función de corriente? Determínela

Más detalles

en otro. Ya que el flujo a través de A 1 se tiene Q A 1 y 1 y 2 A 2 y A 2

en otro. Ya que el flujo a través de A 1 se tiene Q A 1 y 1 y 2 A 2 y A 2 142 FÍSICA GENERAL FLUIDOS EN MOVIMIENTO 14 FLUJO O DESCARGA DE UN FLUIDO (Q): Cuando un fluido que llena un tubo corre a lo largo de este tubo con rapidez promedio y, el fl ujo o descarga Q es Q Ay donde

Más detalles

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS TUTORIAL BÁSICO DE MECÁNICA FLUIDOS El tutorial es básico pues como habréis visto en muchos de ellos es haceros entender no sólo la aplicación práctica de cada teoría sino su propia existencia y justificación.

Más detalles

TEMA I ESTÁTICA DE FLUIDOS Y FENÓMENOS DE SUPERFICIE

TEMA I ESTÁTICA DE FLUIDOS Y FENÓMENOS DE SUPERFICIE TEMA I ESTÁTICA DE FLUIDOS Y FENÓMENOS DE SUPERFICIE ESTÁTICA DE FLUIDOS Y FENÓMENOS DE SUPERFICIE INTRODUCCIÓN ESTÁTICA DE FLUIDOS FENÓMENOS DE SUPERFICIE 2 INTRODUCCIÓN Sólidos Estados de la materia

Más detalles

GUIA DE PROBLEMAS Nº6: HIDROSTÁTICA- HIDRODINÁMICA. Premisa de Trabajo:

GUIA DE PROBLEMAS Nº6: HIDROSTÁTICA- HIDRODINÁMICA. Premisa de Trabajo: GUIA DE PROBLEMAS Nº6: HIDROSTÁTICA- HIDRODINÁMICA Premisa de Trabajo: En la resolución de cada ejercicio debe quedar manifiesto: Las características del fluido y del flujo del fluido, la expresión de

Más detalles

Sugerencias para la incorporación de la fuerza de rozamiento viscoso en el estudio del movimiento de un cuerpo en un fluido.

Sugerencias para la incorporación de la fuerza de rozamiento viscoso en el estudio del movimiento de un cuerpo en un fluido. Sugerencias para la incorporación de la fuerza de rozamiento viscoso en el estudio del movimiento de un cuerpo en un fluido. Tipo de regimenes y número de Reynolds. Cuando un fluido fluye alrededor de

Más detalles

Unidad I: Estática de Fluidos

Unidad I: Estática de Fluidos Unidad I: Estática de Fluidos Peso específico: es el cociente entre el peso del cuerpo y su volumen. Densidad o masa específica: es una magnitud escalar referida a la cantidad de masa contenida en un determinado

Más detalles

Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras

Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras DEPARTAMENTO DE CIENCIAS Y TECNOLOGÍA MISS YORMA RIVERA M. PROF. JONATHAN CASTRO F. Estados de la materia Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras H i d r o s t

Más detalles

Física I. Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador)

Física I. Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador) Física I Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador) Webpage: http://paginas.fisica.uson.mx/qb 2015 Departamento

Más detalles

Fluidodinámica: Estudio de los fluidos en movimiento

Fluidodinámica: Estudio de los fluidos en movimiento Universidad Tecnológica Nacional Facultad Regional Rosario Curso Promoción Directa Física I Año 013 Fluidodinámica: Estudio de los fluidos en movimiento Ecuaciones unitarias en el flujo de fluidos Ecuación

Más detalles

Física 1 (Paleontólogos) Curso de Verano Guía 1 - Hidrodinámica: fluidos ideales, ecuación de Bernoulli

Física 1 (Paleontólogos) Curso de Verano Guía 1 - Hidrodinámica: fluidos ideales, ecuación de Bernoulli Guía 1 - Hidrodinámica: fluidos ideales, ecuación de Bernoulli 1. Un túnel de agua tiene una sección transversal circular que pasa un diámetro de 3.6 m a un diámetro de 1.2 m en la sección de prueba. Si

Más detalles

DEPARTAMENTO DE CIENCIAS Y TECNOLOGÍA MISS YORMA RIVERA M. PROF. JONATHAN CASTRO F. HIDRODINÁMICA. NOMBRE ALUMNO(a): CURSO:

DEPARTAMENTO DE CIENCIAS Y TECNOLOGÍA MISS YORMA RIVERA M. PROF. JONATHAN CASTRO F. HIDRODINÁMICA. NOMBRE ALUMNO(a): CURSO: DEPARTAMENTO DE CIENCIAS Y TECNOLOGÍA MISS YORMA RIVERA M. PROF. JONATHAN CASTRO F. HIDRODINÁMICA NOMBRE ALUMNO(a): CURSO: 1. Fluidos en movimiento En la naturaleza es mucho más frecuente encontrar fluidos

Más detalles

Física I. Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos Dr. Ezequiel Rodríguez Jáuregui Dr. Santos Jesús Castillo

Física I. Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos Dr. Ezequiel Rodríguez Jáuregui Dr. Santos Jesús Castillo Física I Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos Dr. Ezequiel Rodríguez Jáuregui Dr. Santos Jesús Castillo Webpage: http://paginas.fisica.uson.mx/qb 2016 Departamento

Más detalles

Guía de estudio y prueba de conocimientos sobre: CAPITULO 4: Fluidos Hidrostáticos

Guía de estudio y prueba de conocimientos sobre: CAPITULO 4: Fluidos Hidrostáticos Guía de estudio y prueba de conocimientos sobre: CAPITULO 4: Fluidos Hidrostáticos Sección 901. Nombre: Cuenta: Nombre: Cuenta: Instrucciones: Contesta lo que se te pide clara y ordenadamente, si necesitas

Más detalles

Bases Físicas del Medio Ambiente. Fenómenos de Superficie

Bases Físicas del Medio Ambiente. Fenómenos de Superficie Bases Físicas del Medio Ambiente Fenómenos de Superficie Programa III. FENÓMENOS DE SUPERFICIE.( 2h) Fuerzas intermoleculares. Cohesión. Tensión superficial. Energía superficial. Presión debida a la curvatura

Más detalles

Fluídos: Es toda sustancia que tiene la capacidad de fluir y pueden ser LÍQUIDOS O GASES.

Fluídos: Es toda sustancia que tiene la capacidad de fluir y pueden ser LÍQUIDOS O GASES. Fluídos: Es toda sustancia que tiene la capacidad de fluir y pueden ser LÍQUIDOS O GASES. Mecánica de Fluidos Un fluido es un líquido o un gas. La característica principal de un fluido es su incapacidad

Más detalles

Guía 2 - Hidrodinámica: fluidos ideales, ecuación de Bernoulli

Guía 2 - Hidrodinámica: fluidos ideales, ecuación de Bernoulli Física (Paleontólogos) - do Cuatrimestre 05 Guía - Hidrodinámica: fluidos ideales, ecuación de Bernoulli. Un túnel de agua tiene una sección transversal circular que pasa un diámetro de 3.6 m a un diámetro

Más detalles

Bases Físicas de la Hemodinamia

Bases Físicas de la Hemodinamia Bases Físicas de la Hemodinamia ESFUNO UTI: Cardiovascular - Respiratorio Biofísica Facultad de Enfermería 1 Sistema Cardiovascular Bomba Energía Tubuladuras Colección Tubuladuras Distribución Vasos finos

Más detalles

-Al analizar el flujo reptante alrededor de una esfera vimos que el arrastre tiene dos contribuciones: el arrastre de forma y la fricción de piel.

-Al analizar el flujo reptante alrededor de una esfera vimos que el arrastre tiene dos contribuciones: el arrastre de forma y la fricción de piel. SEPARACIÓN DE LA CAPA LIMITE -Al analizar el flujo reptante alrededor de una esfera vimos que el arrastre tiene dos contribuciones: el arrastre de forma y la fricción de piel. -La fricción de piel siempre

Más detalles

Prof. Jorge Rojo Carrascosa MECÁNICA DE FLUIDOS ESTÁTICA DE FLUIDOS

Prof. Jorge Rojo Carrascosa MECÁNICA DE FLUIDOS ESTÁTICA DE FLUIDOS MECÁNICA DE FLUIDOS Se denominan fluidos a aquellos estados de agregación de la materia que no tienen volumen propio, es decir, líquidos y gases. Su estudio ha abierto nuevos campos de la física y en ellos

Más detalles

Guía N 3: Fluidos Hidrostática DEPARTAMENTO DE CIENCIAS - II Semestre NOMBRE: CURSO: 3 Medio FECHA: UNIDAD N 1: Fluidos FLUIDOS HIDROSTÁTICA

Guía N 3: Fluidos Hidrostática DEPARTAMENTO DE CIENCIAS - II Semestre NOMBRE: CURSO: 3 Medio FECHA: UNIDAD N 1: Fluidos FLUIDOS HIDROSTÁTICA 1983 2017 3 Medio Prof. Ingrid Fuentes N. COLEGIO SANTA SABINA - CONCEPCION EDUCACION DE CALIDAD CON PROYECCION DE FUTURO LLEUQUE 1477 VILLA UNIVERSIDAD DE CONCEPCION - FONO FAX 2388924 www.colegiosantasabina.cl

Más detalles

EXPERIMENTO DE ROBERT ANDREWS MILLIKAN Determinación de la carga del electrón

EXPERIMENTO DE ROBERT ANDREWS MILLIKAN Determinación de la carga del electrón EXPERIMENTO DE ROBERT ANDREWS MILLIKAN Determinación de la carga del electrón Desarrollo matemático: Cuando la gota de aceite cargada negativamente se encuentra en caída libre, se ejercen sobre ella diferentes

Más detalles

Cuarta Lección. Principios de la física aplicados al vuelo.

Cuarta Lección. Principios de la física aplicados al vuelo. Capítulo II. Termodinámica y Física de los Fluidos aplicadas a procesos naturales. Tema. El proceso de vuelo de las aves y de los ingenios alados. Cuarta Lección. Principios de la física aplicados al vuelo.

Más detalles

Presión Hidrostática en Superficies Sumergidas

Presión Hidrostática en Superficies Sumergidas Presión Hidrostática en Superficies Sumergidas 1 OBJETIVOS a) Determinar experimentalmente la magnitud de la fuerza de presión hidrostática que actúa sobre una superficie plana sumergida. b) Estimar el

Más detalles

3. Según el modelo de Atmósfera Estándar Internacional, si en la troposfera aumenta la altura:

3. Según el modelo de Atmósfera Estándar Internacional, si en la troposfera aumenta la altura: Preguntas de teoría 1. La Organización de Aviación Civil Internacional (OACI) se crea a) en 1944 a raíz de la firma del Convenio de la Haya. b) en 1944 a raíz de la firma del Convenio de Chicago. c) en

Más detalles

Universidad Nacional de General San Martin. FISICA I Bachillerato Universitario en Ciencias BUC (2 do Cuatrimestre 2000)

Universidad Nacional de General San Martin. FISICA I Bachillerato Universitario en Ciencias BUC (2 do Cuatrimestre 2000) Universidad Nacional de General San Martin FISICA I Bachillerato Universitario en Ciencias BUC (2 do Cuatrimestre 2000) Profesores: Drs. G. García Bemúdez, y S. Gil. Las preguntas, ejercicios y problemas

Más detalles

Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile

Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 4: Mecánica de fluidos Martes 25 de Septiembre, 2007

Más detalles

Presión hidrostática

Presión hidrostática LOS FLUIDOS Fluidos en Equilibrio. El terminó de Fluidos incluye tanto a los líquidos como los gases y que sus propiedades, al contrario que las de los sólidos, son las siguientes: - No poseen forma propia.

Más detalles

(a) El número de capilares y el caudal en cada uno de ellos. (b) La velocidad de la sangre en la aorta y en cada uno de los capilares.

(a) El número de capilares y el caudal en cada uno de ellos. (b) La velocidad de la sangre en la aorta y en cada uno de los capilares. Guía - Hidrodinámica. Conservación del caudal. Un túnel de agua tiene una sección transversal circular que pasa un diámetro de 3.6 m a un diámetro de. m en la sección de prueba. Si la velocidad del agua

Más detalles

ESTÁTICA DE FLUIDOS 1

ESTÁTICA DE FLUIDOS 1 ESTÁTICA DE FLUIDOS INTRODUCCIÓN Cualquier magnitud que caracteria a un sistema se llama propiedad si cumple la condición siguiente: sus variaciones en cualquier proceso dependen sólo del estado inicial

Más detalles

Flujos laminares, turbulentos o una transición entre ambos

Flujos laminares, turbulentos o una transición entre ambos Flujos laminares, turbulentos o una transición entre ambos Cap. Eduardo O. Gilardoni La mayoría de las personas piensan que la presión atmosférica aumenta en una tormenta, un tornado o un huracán, pero

Más detalles

Fluidos. Repaso. Problemas.

Fluidos. Repaso. Problemas. Fluidos. Repaso. Problemas. Resumen: Fluidos. 1. La presión en un fluido es la fuerza por unidad de área que un fluido ejerce sobre un superficie. Se mide: 1 pascal = 1 newton /metro 2 2. La presión en

Más detalles

Fluidos Problemas de Practica

Fluidos Problemas de Practica Slide 1 / 44 Fluidos Problemas de Practica Slide 2 / 44 Multiopcion 1 os sustancias; mercurio con una densidad de 13600 kg/m 3 y alcohol con una densidad de 0,8kg/m 3 son seleccionados para un experimento.

Más detalles

Estática de fluidos. 7. Si se llena con agua una presa de anchura 100 m hasta una altura de 30 m, determinar la fuerza que ejerce el agua sobre ésta.

Estática de fluidos. 7. Si se llena con agua una presa de anchura 100 m hasta una altura de 30 m, determinar la fuerza que ejerce el agua sobre ésta. Estática de fluidos 1. Para elevar un automóvil de 13300 N de peso se utiliza una bomba hidráulica con un pistón de 15 cm de diámetro. Qué fuerza debe aplicarse al otro pistón de 5 cm de diámetro, conectado

Más detalles

Dinámica de fluidos: Fundamentos

Dinámica de fluidos: Fundamentos Capítulo 2 Dinámica de fluidos: Fundamentos Los fluidos, como genéricamente llamamos a los líquidos y los gases, nos envuelven formando parte esencial de nuestro medio ambiente. El agua y el aire son los

Más detalles

TEMA 2: PROPIEDADES FÍSICAS DE LOS FLUIDOS

TEMA 2: PROPIEDADES FÍSICAS DE LOS FLUIDOS Manual para el diseño de una red hidráulica de climatización 3 A ntes de comenzar a estudiar cualquier problema de flujo, es necesario conocer algunas características y propiedades físicas de los fluidos,

Más detalles

Numero de Reynolds y Radio Hidráulico.

Numero de Reynolds y Radio Hidráulico. UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÀREA DE TECNOLOGÌA PROGRAMA DE INGENIERÍA QUÌMICA CATEDRA: FENÒMENOS DE TRANSPORTE PROFESOR: Ing. Alejandro Proaño Numero de Reynolds y Radio Hidráulico.

Más detalles

TEMA 4 (Parte II) Ley de Darcy. Flujos hidráulicos a través de terrenos.

TEMA 4 (Parte II) Ley de Darcy. Flujos hidráulicos a través de terrenos. TEMA 4 (Parte II) Ley de Darcy. Flujos hidráulicos a través de terrenos. Φ = Φ( x, y, z, t) CAMPO HIDRÁULICO CAMPO ESCALAR: - superficies equipotenciales hidráulicas: Φ constante - Gradiente del potencial

Más detalles

La estática de fluidos estudia el equilibrio de fluidos. obtiene la ecuación fundamental de la hidrostática.

La estática de fluidos estudia el equilibrio de fluidos. obtiene la ecuación fundamental de la hidrostática. FLUIDOS ESTÁTICA DE FLUIDOS La estática de fluidos estudia el equilibrio de fluidos. A partir de los conceptos de densidad y de presión se obtiene la ecuación fundamental de la hidrostática. Principio

Más detalles

LABORATORIO DE FENÓMENOS COLECTIVOS

LABORATORIO DE FENÓMENOS COLECTIVOS LABORATORIO DE FENÓMENOS COLECTIVOS LA VISCOSIDAD DE LOS LÍQUIDOS CRUZ DE SAN PEDRO JULIO CÉSAR RESUMEN La finalidad de esta práctica es la determinación de la viscosidad de diferentes sustancias (agua,

Más detalles

INDICE. Capitulo I. Introducción

INDICE. Capitulo I. Introducción INDICE Capitulo I. Introducción I 1.1. La mecánica de fluidos en la ingeniera 1 1.2. Los fluidos y la hipótesis del continuo 22 1.2.1. El modelo del continuo 4 1.3. Propiedades de los fluidos 1.3.1. Densidad,

Más detalles

Mecánica de Fluidos y Máquinas Hidráulicas

Mecánica de Fluidos y Máquinas Hidráulicas Mecánica de Fluidos y Máquinas Hidráulicas Tema 02. Está-ca de Fluidos Severiano F. Pérez Remesal Carlos Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica bajo Licencia:

Más detalles

Examen: FÍSICA. 5. A que temperatura tienen el mismo valor la escala Centígrada y la escala Fahrenheit? A) -57 C B) 17.7 C C) 32 C D) -40 C

Examen: FÍSICA. 5. A que temperatura tienen el mismo valor la escala Centígrada y la escala Fahrenheit? A) -57 C B) 17.7 C C) 32 C D) -40 C Examen: FÍSICA 1. En un recipiente de paredes adiabáticas se mezclan 4.5 kg de agua a 37 ºC, 62 kg de agua a 2 ºC y 17 kg de agua a 47 ºC. Si se desprecian cualquier tipo de vaporización, la temperatura

Más detalles

Fenómenos de superficie

Fenómenos de superficie Fenómenos de superficie - Una diferencia fundamental entre gases y líquidos es la existencia de una superficie libre en éstos. - Gran variedad de fenómenos físicos están asociados a la existencia de esta

Más detalles

Física para Ciencias: Fluidos

Física para Ciencias: Fluidos Física para Ciencias: Fluidos Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Fluidos Cualquier sustancia que tiene la capacidad de fluir es un fluidos (Líquido, Gas, Plasma) Muchos aspectos de

Más detalles