Fenómenos implicados en el enfriamiento del fuel-oil. CIEMAT, Dep. Combustibles Fósiles

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Fenómenos implicados en el enfriamiento del fuel-oil. CIEMAT, Dep. Combustibles Fósiles"

Transcripción

1 Fenómenos implicados en el enfriamiento del fuel-oil. CIEMAT, Dep. Combustibles Fósiles Resumen: La dinámica del proceso de enfriamiento del fuel-oil contenido en los tanques está controlada por la pared vertical externa del casco que, en pocas horas, genera un chorro delgado de fuel-oil frío descendente y pone en movimiento al resto del fuel-oil del tanque. Al mismo tiempo, el fuel-oil bajo la cubierta del buque desarrolla también corrientes convectivas adicionales que lo mantienen en movimiento en un espesor asimismo relativamente delgado. En el interior del tanque, el fuel-oil se mantiene a una temperatura uniforme cuya diferencia con la temperatura del agua va disminuyendo según la potencia t 4 del tiempo transcurrido. Concretamente, al cabo de unos 4 meses el espesor de la capa fría de fuel-oil bajo la cubierta sería inferior a 10 cm, mientras que la mayor parte del fuel-oil se mantendría aún a temperaturas en torno a 10 ºC o superiores, es decir, mantendría buenas condiciones de fluidez. Las consideraciones que se realizan en lo que sigue están argumentadas basándose en resultados bien establecidos de termo - hidrodinámica que pueden encontrarse en muchos de los textos clásicos de esta materia, como por ejemplo en los libros: - Landau & Lifchitz Mécanique des Fluides, Edit. MIR, Moscú, 1971, Cap. y 5. - Rosenhead ( Edit.) Laminar Boundary Layers, Dover, Nueva York, 1988, Cáp. 9. Durante el trayecto de 14 días del buque Prestige desde su punto de carga hasta el de su hundimiento, el fuel-oil contenido en los tanques se fue enfriando por contacto del casco y cubierta con la atmósfera y el agua del mar. El proceso de enfriamiento dentro de los tanques tuvo lugar por pérdidas conductivas localizadas en las paredes, pero el movimiento inducido en la carga de fuel-oil por el cabeceo del barco y el calentamiento regular al que se le somete, para mantener condiciones de bombabilidad a la llegada a puerto, hicieron que, en el momento del hundimiento, la temperatura del fuel-oil fuera bastante uniforme y se encontrara todavía muy próxima a la de carga que, según quedó registrado, fue en torno a 50 ºC. A partir del hundimiento del barco, comienza a enfriarse paulatinamente el fueloil de los tanques por transferencia térmica a través del casco del buque. Por otra parte, como ya hemos dicho, el enfriamiento conduce intrínsecamente a la formación de corrientes convectivas que aceleran el proceso. Estas corrientes necesitan para su establecimiento de un transitorio que es básicamente conductivo, en el que el enfriamiento ocurre en la vecindad de las paredes, donde la temperatura es T a = 3 ºC, y hacia donde se conduce calor desde el interior, inicialmente a temperatura T i = 50 ºC. La distribución inestacionaria de temperatura que se establece a lo largo de la coordenada normal a cada una de las paredes, está controlada por la difusión de calor. La diferencia característica de temperaturas en el interior del tanque está impuesta por la temperatura inicial del fuel-oil y la exterior del agua, T = T i T a = 47 ºC. El balance entre la variación temporal de temperatura y la conducción de calor permite establecer la dependencia temporal del espesor l T de la zona de fuel-oil enfriada alrededor de las paredes T T ~ χ, t l T donde χ es la difusividad térmica del fuel-oil. De modo que la temperatura es prácticamente igual a T i en todo el espacio dentro de los tanques, excepto en una capa,

2 adyacente a las paredes, de espesor creciente con el tiempo l T ~ χt, donde la temperatura desciende a T a. El aumento de la densidad, que induce en el fuel-oil la contracción térmica al enfriarse, provoca fuerzas de flotación que inicialmente ponen en movimiento las capas de fuel-oil cercanas a la pared de mayor densidad, generando un descenso del fuel-oil en la proximidad de las paredes. Después, el movimiento se trasmite por arrastre viscoso al resto del volumen. El motor de este efecto es el enfriamiento del fuel-oil a través de las paredes verticales de los tanques. Allí las corrientes convectivas vienen caracterizadas por el balance entre la fuerza de flotación y los esfuerzos viscosos en el espesor térmico, es decir, u ν ~, lt ρ de modo que las velocidades inducidas son de orden lt u ~. ρν A posteriori, puede comprobarse que los términos convectivos e inestacionario de la ecuación del momento vertical, que no se han tenido en cuenta, son Pr veces más pequeños que la fuerza de flotación y, por lo tanto, pueden ser despreciados. Así, en el transitorio inicial, la intensidad de las corrientes aumenta linealmente con el tiempo, al irse ensanchado la capa térmica, a razón de: u ~ t ρ Pr El número de Prandtl (Pr = ν/χ) del fuel-oil varía en los tanques desde valores del orden de 10 4 en el interior hasta 10 7 cerca de las paredes, que es donde se produce la aceleración del fuel-oil. Debido a estos grandes valores, dicha aceleración es pequeña y los movimientos convectivos se inician muy lentamente, siendo de orden 1 gβ T 3 10 ~ ~ m/s, ρ Pr Pr Pr 1 ρ donde β = es el coeficiente de dilatación térmica, que en el caso del fuel-oil es ρ T del orden de 10 3 K 1. Este transitorio termina cuando la convección de calor llega a hacerse del mismo orden que el término inestacionario, es decir, T T ~ u, t h siendo h la altura de los tanques (de cerca de 0 m). Utilizando aquí el valor de u, esta expresión proporciona el tiempo de relajación ρh Pr t ~ En las condiciones consideradas, esta expresión da un tiempo de varias horas (de una a diez horas según el valor de Pr). Así pues, al cabo de algunas horas de haber llegado al fondo, en la proximidad de las paredes verticales de los tanques se estableció un flujo de estructura cuasiestacionaria, caracterizado por un espesor térmico de orden

3 ρνχh l T ~, que, en las condiciones consideradas, supone l T ~ 3 cm. Por otra parte, la velocidad de las corrientes verticales desarrolladas es: hg ρ u ~, ρ Pr que es del orden de los milímetros por segundo. Mientras que la ecuación de continuidad proporciona el orden de magnitud de las corrientes horizontales, 1/ 4 1/ 4 l v 1/ ~ T u ~ χ. h ρ hpr que son tan pequeñas como 10 6 m/s. Estas velocidades se trasmiten por arrastre viscoso sobre distancias de orden l v dadas por el balance difusivo convectivo en la región isoterma lejos de las paredes, Es decir, u u ~ ν. h νh l v ~. u Introduciendo aquí la expresión para u, se obtiene la siguiente relación entre la longitud viscosa y la térmica: 1/ l v ~ Pr lt. Dados los grandes valores del número de Prandtl (10 4 en la región de alta temperatura), este resultado indica que el espesor térmico es muy pequeño frente al viscoso de modo que, aunque las diferencias de temperatura están confinadas en una capa de espesor l T pegada a la pared, el movimiento se trasmite sobre distancias del orden de 10 veces ésta, es decir, a varios metros de la pared. Nótese que todas estas cantidades, l T, l v, u y v, presentarán una variación lenta con el tiempo a través de ρ, que irá disminuyendo de magnitud al irse igualando la temperatura media del tanque con la del agua. Así pues, una vez alcanzado el régimen estacionario, el flujo medio de calor q a través de la pared vertical es directamente proporcional a la diferencia entre la temperatura media en la zona isoterma del tanque T y la temperatura exterior T a, e inversamente proporcional al espesor térmico l T, T Ta q ~ λ lt siendo λ la conductividad térmica del fuel-oil. Puesto que la magnitud del enfriamiento de los tanques está dominada por las pérdidas a través de las paredes verticales, podemos escribir una ecuación para la evolución de la temperatura promedia del tanque, suponiendo que está controlada por el flujo anterior, es decir, igualar la variación de toda la energía térmica del fuel-oil en el tanque (de dimensión transversal h l) con el flujo de calor a través de la superficie de la pared vertical, dt T Ta hlρc = Cλ h dt lt donde c es el calor específico del fuel-oil y C una constante fenomenológica que ha de ser ajustada con datos o cálculos numéricos. l v

4 La integración de la ecuación anterior con la condición inicial, T(0) = T i, da: T Ta 1 = 4 T 1/ 4 i Ta χ( G Pr) 1 + C t 4 lh donde G es el número de Grashof definido con la altura h, 3 gβh T G =. ν Este resultado predice que la relajación de la temperatura media de los tanques hacia la temperatura del agua exterior sigue una ley potencias, t -4, a tiempos largos y no, por ejemplo, una ley exponencial. La siguiente figura es la representación gráfica de la ley de enfriamiento para tres valores de orden unidad del parámetro C. Hay que tener en cuenta que tanto el enfriamiento adicional a través de la pared del fondo del casco como el enfriamiento a través de la cubierta pueden añadir complicaciones adicionales a la descripción anterior, ocasionando perturbaciones de difícil evaluación. En efecto, el enfriamiento del fuel-oil bajo la cubierta crea una capa pesada sobre el resto del fuel-oil, más caliente y por tanto más ligero. Esta estratificación es de naturaleza inestable y para valores del correspondiente número de Rayleigh Ra superiores a cierto valor crítico Ra c, que depende de las condiciones impuestas pero que típicamente es del orden de 10 3, se desarrolla una estructura convectiva, con periodicidad espacial, que altera la transferencia térmica, aumentándola con respecto al estado de reposo. El número de Rayleigh se define como: 3 gβlt T Ra =, νχ donde l T ~ χt es el espesor térmico de la capa que se desarrolla con el tiempo, verticalmente hacia abajo, en el fuel-oil colindante con la cubierta. Por lo tanto, cuando este espesor alcanza el valor

5 νχ l ~ T g T Ra, β c se inicia un movimiento con periodicidad espacial, en el fuel-oil de la capa térmica, que forma rollos convectivos de tamaño proporcional a l T. Adicionamente, las corrientes inducidas en el tanque por el enfriamiento de la pared vertical transportan los rollos convectivos y dan a la inestabilidad un carácter de onda progresiva. El tiempo al cabo del cual se desencadena la convección es νra c t ~, 1/ χ gβ T que resulta ser del orden de 10 3 s. Este tiempo, de horas, es comparable al tiempo del transitorio para el establecimiento del régimen estacionario en torno a la pared vertical, que se ha discutido antes. El acoplo entre ambas estructuras convectivas complica extraordinariamente la descripción cuantitativa del enfriamiento del tanque, al exigir la consideración simultánea de varias escalas espacio-temporales dispares entre sí. En cualquier caso, la aparición de la convección de Rayleigh tiene la virtud de detener el desarrollo de la capa térmica al cabo del tiempo corto difusivo, que corresponde al centímetro. Tal como hemos deducido, a los tiempos largos de enfriamiento del tanque, este espesor aumenta como T 1/3, según las diferencias de temperatura van disminuyendo, es decir, según la potencia t 4 del tiempo transcurrido. En particular, al cabo de unos 4 meses el espesor de la capa fría de fuel-oil bajo la cubierta sería inferior a 10 cm, mientras que la mayor parte del fuel-oil se mantendría aún a temperaturas en torno a 10 ºC o superiores, es decir, mantendría buenas condiciones de fluidez. Por lo que respecta al fondo del tanque, el enfriamiento produce en este caso una estratificación estable, con el fuel-oil frío y, por lo tanto, más denso en la parte inferior en contacto con el fondo. No obstante, el flujo convectivo descendente originado por la pared vertical provoca un flujo de retorno que afecta a todo el tanque y que, en particular, avanza sobre la pared del fondo. Cuando el cociente entre las fuerzas de flotación estabilizantes y las de inercia desestabilizantes, dado por el número de Richardson, g dρ du Θ =, ρ dn dn se hace inferior a la unidad, aparecen inestabilidades en forma de onda progresiva que desestabilizan el flujo. En la expresión del número de Richardson, n es la coordenada normal a la pared y U la velocidad del flujo. En nuestro caso, las características del flujo son las impuestas por la capa de fuel-oil que desciende por la pared vertical, resultando: g dρ g ρ ~ ρ dn ρ l T 1/ 3 du u u ~ ~ dn l Pr de modo que el número de Richardson es PrlT Pr l Θ ~ ~ ρu h / 3 v l T T

6 y, dados los grandes valores del número de Prandtl, resulta que el valor de Θ es siempre muy superior a la unidad, con lo que el flujo sobre la pared del fondo es siempre estable. A lo largo de todo este análisis se ha supuesto que las paredes externas de los tanques se mantuvieron en todo momento a la temperatura típica del océano en la zona del pecio, T a. En rigor, esa condición térmica no es correcta, pues el agua próxima al pecio sufre un proceso recíproco de calentamiento, al contacto con las paredes relativamente calientes del barco. Sin embargo, el calentamiento del agua contigua al casco va a producir su ascensión por flotación con respecto al agua fría de los alrededores. Se forma así, en torno al pecio, una pluma térmica de agua ascendente que obliga a la renovación continua del agua en contacto con las paredes del barco por agua fría de las inmediaciones, de modo que la temperatura en las paredes puede suponerse igual a T a con buena aproximación.

CONVECCION NATURAL. En la convección forzada el fluido se mueve por la acción de una fuerza externa.

CONVECCION NATURAL. En la convección forzada el fluido se mueve por la acción de una fuerza externa. CONVECCION NATURAL En la convección forzada el fluido se mueve por la acción de una fuerza externa. En convección natural el fluido se mueve debido a cambios de densidad que resultan del calentamiento

Más detalles

SIMULACIÓN NUMÉRICA DEL ENFRIAMIENTO DEL FUEL-OIL EN LOS TANQUES DEL PRESTIGE

SIMULACIÓN NUMÉRICA DEL ENFRIAMIENTO DEL FUEL-OIL EN LOS TANQUES DEL PRESTIGE SIMULACIÓN NUMÉRICA DEL ENFRIAMIENTO DEL FUEL-OIL EN LOS TANQUES DEL PRESTIGE 1. INTRODUCCIÓN Esther Hontañón Departamento de Combustibles Fósiles, CIEMAT Avenida Complutense 22; 28040 Madrid esther.hontanon@ciemat.es

Más detalles

En la convección forzada el fluido se mueve por la acción de una fuerza externa.

En la convección forzada el fluido se mueve por la acción de una fuerza externa. CONECCION NATRAL En la convección forzada el fluido se mueve por la acción de una fuerza externa. En convección natural el fluido se mueve debido a cambios de densidad que resultan del calentamiento o

Más detalles

TRANSFERENCIA DE CALOR POR CONVECCIÓN

TRANSFERENCIA DE CALOR POR CONVECCIÓN TRANSFERENCIA DE CALOR POR CONVECCIÓN Nos hemos concentrado en la transferencia de calor por conducción y hemos considerado la convección solo hasta el punto en que proporciona una posible condición de

Más detalles

XIV.- TRANSMISIÓN DE CALOR POR CONVECCIÓN CORRELACIONES PARA LA CONVECCIÓN NATURAL

XIV.- TRANSMISIÓN DE CALOR POR CONVECCIÓN CORRELACIONES PARA LA CONVECCIÓN NATURAL XIV.- TRANSMISIÓN DE CALOR POR CONVECCIÓN CORRELACIONES PARA LA CONVECCIÓN NATURAL La complejidad de la mayoría de los casos en los que interviene la transferencia de calor por convección, hace imposible

Más detalles

XIV.- TRANSMISIÓN DE CALOR POR CONVECCIÓN CORRELACIONES PARA LA CONVECCIÓN NATURAL

XIV.- TRANSMISIÓN DE CALOR POR CONVECCIÓN CORRELACIONES PARA LA CONVECCIÓN NATURAL XIV.- TRANSMISIÓN DE CALOR POR CONVECCIÓN CORRELACIONES PARA LA CONVECCIÓN NATURAL La complejidad de la mayoría de los casos en los que interviene la transferencia de calor por convección, hace imposible

Más detalles

CAPÍTULO 2 CONVECCION NATURAL SOBRE PLACAS HORIZONTALES. La transferencia de calor es la ciencia que busca predecir la transferencia de energía

CAPÍTULO 2 CONVECCION NATURAL SOBRE PLACAS HORIZONTALES. La transferencia de calor es la ciencia que busca predecir la transferencia de energía CAPÍTULO 2 CONVECCION NATURAL SOBRE PLACAS HORIZONTALES 2.1 Transferencia de Calor La transferencia de calor es la ciencia que busca predecir la transferencia de energía que puede tener lugar entre dos

Más detalles

CAPÍTULO 4 RESULTADOS Y DISCUSIÓN

CAPÍTULO 4 RESULTADOS Y DISCUSIÓN CAPÍTULO 4 RESULTADOS Y DISCUSIÓN 4.1 Verificación del código numérico Para verificar el código numérico, el cual simula la convección natural en una cavidad abierta considerando propiedades variables,

Más detalles

CAPÍTULO 2 ANTECEDENTES. La transferencia de calor es la energía que se transfiere de un. sistema a otro con menor temperatura, debido únicamente a la

CAPÍTULO 2 ANTECEDENTES. La transferencia de calor es la energía que se transfiere de un. sistema a otro con menor temperatura, debido únicamente a la CAPÍTULO 2 ANTECEDENTES 2.1 Transferencia de calor. La transferencia de calor es la energía que se transfiere de un sistema a otro con menor temperatura, debido únicamente a la diferencia de temperaturas.

Más detalles

XI.- TRANSMISIÓN DE CALOR POR CONVECCIÓN FLUJO EN CONDUCTOS

XI.- TRANSMISIÓN DE CALOR POR CONVECCIÓN FLUJO EN CONDUCTOS XI.- TANSMISIÓN DE CALO PO CONVECCIÓN FLUJO EN CONDUCTOS XI.1.- FLUJO ISOTÉMICO EN CONDUCTOS CICULAES En un flujo laminar la corriente es relativamente lenta y no es perturbada por las posibles protuberancias

Más detalles

TRANSFERENCIA DE CALOR POR CONVECCIÓN

TRANSFERENCIA DE CALOR POR CONVECCIÓN MARZO, 2016 REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NACIONAL BOLIVARIANA CÁTEDRA: TRANSFERENCIA

Más detalles

CONVECCIÓN. ING ROXSANA ROMERO Febrero 2013

CONVECCIÓN. ING ROXSANA ROMERO Febrero 2013 CONVECCIÓN ING ROXSANA ROMERO Febrero 2013 CONVECCION El tipo de flujo, ya sea laminar o turbulento, del fluido individual, ejerce un efecto considerable sobre el coeficiente de transferencia de calor

Más detalles

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección convección El modo de transferencia de calor por convección se compone de dos mecanismos de transporte, que son, la transferencia de energía debido al movimiento aleatorio de las moléculas (difusión térmica)

Más detalles

Transferencia de Calor Cap. 4. Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D.

Transferencia de Calor Cap. 4. Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D. Transferencia de Calor Cap. 4 Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D. Conducción de calor en régimen transitorio Consideraremos la variación de la temperatura con el tiempo así como con la posición,

Más detalles

Inestabilidad Térmica en Capas Horizontales de Fluidos CAPÍTULO 4 INESTABILIDAD TÉRMICA EN CAPAS HORIZONTALES DE FLUIDOS

Inestabilidad Térmica en Capas Horizontales de Fluidos CAPÍTULO 4 INESTABILIDAD TÉRMICA EN CAPAS HORIZONTALES DE FLUIDOS CAPÍTULO 4 INESTABILIDAD TÉRMICA EN CAPAS HORIZONTALES DE FLUIDOS 4.1 Comportamiento físico en capas horizontales de fluidos. Como se vio anteriormente el movimiento del fluido en convección natural se

Más detalles

Transferencia de Calor Cap. 6. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D.

Transferencia de Calor Cap. 6. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Transferencia de Calor Cap. 6 Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Introducción a la convección la conducción: mecanismo de transferencia de calor a través de un sólido o fluido en reposo. la

Más detalles

OPERACIONES UNITARIAS

OPERACIONES UNITARIAS OPERACIONES UNITARIAS 2016 TEMA 2 - CALOR INTRODUCCION MECANISMOS DE TRANSFERENCIA DE CALOR Prácticamente en todas las operaciones que realiza el ingeniero interviene la producción o absorción de energía

Más detalles

Caídas de presión en tuberías horizontales

Caídas de presión en tuberías horizontales Caídas de presión en tuberías horizontales PROBLEMAS 1. Obtener las ecuaciones fenomenológicas que muestre la dependencia de la caída de presión con: Longitud Diámetro Velocidad del fluido Para las siguientes

Más detalles

3. Según el modelo de Atmósfera Estándar Internacional, si en la troposfera aumenta la altura:

3. Según el modelo de Atmósfera Estándar Internacional, si en la troposfera aumenta la altura: Preguntas de teoría 1. La Organización de Aviación Civil Internacional (OACI) se crea a) en 1944 a raíz de la firma del Convenio de la Haya. b) en 1944 a raíz de la firma del Convenio de Chicago. c) en

Más detalles

Solar Fototérmica. Libro de texto: F.P. Incropera, D.P. de Witt, T.L. Bergman y A. S. Lavine Fundamentals of Heat Mass Transfer Willey 6a Edición.

Solar Fototérmica. Libro de texto: F.P. Incropera, D.P. de Witt, T.L. Bergman y A. S. Lavine Fundamentals of Heat Mass Transfer Willey 6a Edición. Temario para el examen de admisión Solar Fototérmica Libro de texto: F.P. Incropera, D.P. de Witt, T.L. Bergman y A. S. Lavine Fundamentals of Heat Mass Transfer Willey 6a Edición. Incropera 1. Conducción

Más detalles

UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERIA TRANSFERENCIA DE CALOR PROF.. FRANZ RAIMUNDO

UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERIA TRANSFERENCIA DE CALOR PROF.. FRANZ RAIMUNDO UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERIA TRANSFERENCIA DE CALOR PROF.. FRANZ RAIMUNDO CONTENIDO: INTRODUCCIÓN Qué es la transferencia de calor? Cómo se transfiere el calor? Modos de transferencia

Más detalles

Conducción en régimen transitorio

Conducción en régimen transitorio Conducción en régimen transitorio 1.1. Ejemplo: Calefacción de una casa Se propone el estudio de la transferencia de calor entre una casa y el medio que la rodea en régimen estacionario y en régimen transitorio.

Más detalles

CONDUCCIÓN DE CALOR EN ESTADO INESTABLE

CONDUCCIÓN DE CALOR EN ESTADO INESTABLE CONDUCCIÓN DE CALOR EN ESADO INESABLE FLUJO DE CALOR RANSIORIO Y PERIODICO SE ANALIZARÁN PROBLEMAS QUE PUEDEN SIMPLIFICARSE SUPONIENDO QUE LA EMPERAURA ES UNA FUNCIÓN DEL IEMPO Y ES UNIFORME A RAVÉS DEL

Más detalles

Circulación general de la atmósfera

Circulación general de la atmósfera Circulación general de la atmósfera Altura de la tropopausa Ecuación hipsométrica: ecuacion de estado + ecuación hidrostática. Relaciona distribución de masa en altura con temperatura de la columna atmosférica.

Más detalles

Tema 6. Convección natural y forzada

Tema 6. Convección natural y forzada 1. CONCEPTOS BÁSICOS. COEFICIENTES INIVIUALES E TRANSMISIÓN E CALOR.1. Cálculo de los coeficientes individuales de transmisión de calor.1.1. Flujo interno sin cambio de fase: Convección forzada A.- Conducciones

Más detalles

ASPECTOS AVANZADOS EN MECÁNICA DE FLUIDOS SOLUCIONES EXACTAS

ASPECTOS AVANZADOS EN MECÁNICA DE FLUIDOS SOLUCIONES EXACTAS Problema 1 Un fluido de propiedades constantes (densidad ρ, viscosidad µ, conductividad térmica k y calor específico c) se encuentra confinado entre dos paredes horizontales infinitas separadas una distancia

Más detalles

Transmisión de Calor. Aplicaciones a sistemas disipativos y de intercambio calorífico.

Transmisión de Calor. Aplicaciones a sistemas disipativos y de intercambio calorífico. ASIGNATURA: TRANSMISION DEL CALOR Código: 141213009 Titulación: Ingeniero Industrial Curso: 3º Profesor(es) responsable(s): - Nicolás Madrid García - Departamento: Física Aplicada Tipo (T/Ob/Op): Ob Créditos

Más detalles

P1.- Torre de perdigones.

P1.- Torre de perdigones. P.- Torre de perdigones. Los líquidos en ausencia de gravedad tienden a adoptar la forma esférica debido a los efectos de la tensión superficial. Este es el caso de las gotas de un líquido en caída libre

Más detalles

Planificaciones Transf. de Calor y Masa. Docente responsable: D ADAMO JUAN GASTON LEONEL. 1 de 6

Planificaciones Transf. de Calor y Masa. Docente responsable: D ADAMO JUAN GASTON LEONEL. 1 de 6 Planificaciones 6731 - Transf. de Calor y Masa Docente responsable: D ADAMO JUAN GASTON LEONEL 1 de 6 OBJETIVOS Lograr un adecuado nivel de formación científica y técnica para la resolución y análisis

Más detalles

TEMA 7: Procesos adiabáticos. y estabilidad atmosférica

TEMA 7: Procesos adiabáticos. y estabilidad atmosférica TEMA 7: Procesos adiabáticos y estabilidad atmosférica 1 Procesos adiabáticos Los movimientos verticales del aire, aún siendo de menor escala que los movimientos horizontales, juegan un papel muy importante

Más detalles

MECÁNICA DE FLUIDOS II / Capa límite

MECÁNICA DE FLUIDOS II / Capa límite INTRODUCCIÓN En un movimiento a altos números de Reynolds, los efectos viscosos son despreciables. La presencia de un obstáculo obliga a imponer la condición de velocidad nula en el mismo, pero esto no

Más detalles

PRÁCTICA 1: ECUACIÓN TÉRMICA DE ESTADO DE UNA SUSTANCIA PURA

PRÁCTICA 1: ECUACIÓN TÉRMICA DE ESTADO DE UNA SUSTANCIA PURA TERMODINÁMICA TÉCNICA Y TRANSMISION DE CALOR E.I.I. Valladolid Departamento de Ingeniería Energética y Fluidomecánica Curso 2012-2013 PRÁCTICA 1: ECUACIÓN TÉRMICA DE ESTADO DE UNA SUSTANCIA PURA OBJETIVOS:

Más detalles

TRANSFERENCIA DE CALOR. MI31A-Fenómenos de Transporte en Metalurgia Extractiva Prof. Tanai Marín 10 Abril 2007 Clase #8

TRANSFERENCIA DE CALOR. MI31A-Fenómenos de Transporte en Metalurgia Extractiva Prof. Tanai Marín 10 Abril 2007 Clase #8 TRANSFERENCIA DE CALOR MI31A-Fenómenos de Transporte en Metalurgia Extractiva Prof. Tanai Marín 10 Abril 2007 Clase #8 Transferencia de calor por convección Hasta ahora hemos discutido el fenómeno de transferencia

Más detalles

Bloque II. TRANSMISIÓN DEL CALOR

Bloque II. TRANSMISIÓN DEL CALOR Bloque II. TRANSMISIÓN DEL CALOR TEMA 4. MECANISMOS BÁSICOS DE TRANSMISIÓN DEL CALOR 4.1 Transmisión del calor: concepto. Modos de transmisión del calor. 4.2 Conducción. Ley de Fourier. 4.3 Convección.

Más detalles

Dinámica de la atmósfera y los océanos

Dinámica de la atmósfera y los océanos Dinámica de la atmósfera y los océanos Ecuaciones de movimiento Ecuación de conservación de masa Ecuación de conservación de energía y salinidad (para el océano) Las ecuaciones de conservación de momento

Más detalles

XVIII.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA

XVIII.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA XVIII.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA XVIII..- EFICACIA DE LOS INTERCAMBIADORES DE CALOR En muchas situaciones lo único que se conoce es la descripción física del intercambiador, como

Más detalles

7. FACHADA VENTILADA CON MATERIAL PCM

7. FACHADA VENTILADA CON MATERIAL PCM 7. FACHADA VENTILADA CON MATERIAL PCM 7.1. DESCRIPCIÓN Y MODO DE FUNCIONAMIENTO A continuación se abordará el estudio detallado del sistema pasivo de acumulación de energía de una cámara ventilada con

Más detalles

TRANSFERENCIA DE CALOR EN UN RECINTO RECTANGULAR INCLINADO Y PARTICIONADO

TRANSFERENCIA DE CALOR EN UN RECINTO RECTANGULAR INCLINADO Y PARTICIONADO Ogeâpkec"Eqorwvcekqpcn"qn"ZZK."rr353-3546 Ugtikq"C"Gncumct."Gnxkq"C"Rknqvvc."Igtoâp"C"Vqttgu"Gfu Eôtfqdc."Ctigpvkpc."Qevwdtg"49 TRANSFERENCIA DE CALOR EN UN RECINTO RECTANGULAR INCLINADO PARTICIONADO Esteban,

Más detalles

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR El calor: Es una forma de energía en tránsito. La Termodinámica y La Transferencia de calor. Diferencias. TERMODINAMICA 1er. Principio.Permite determinar

Más detalles

GRADO: INGENIERÍA MECÁNICA CURSO: 3º CUATRIMESTRE: 1º PLANIFICACIÓN SEMANAL DE LA ASIGNATURA

GRADO: INGENIERÍA MECÁNICA CURSO: 3º CUATRIMESTRE: 1º PLANIFICACIÓN SEMANAL DE LA ASIGNATURA DENOMINACIÓN ASIGNATURA: TRANSFERENCIA DE CALOR GRADO: INGENIERÍA MECÁNICA CURSO: 3º CUATRIMESTRE: 1º PLANIFICACIÓN SEMANAL DE LA ASIGNATURA SEMANA SESIÓN 1 1 DESCRIPCIÓN DEL CONTENIDO DE LA SESIÓN Presentación

Más detalles

Dinámica de los Fluídos

Dinámica de los Fluídos Dinámica de los Fluídos Flujos Fluídos Sustancias que no transmiten esfuerzos Se deforman cuando se les aplica una fuerza Incluye, agua y gases Fuerzas actuan en todo el fluido Propiedades de los Fluidos

Más detalles

Problemas de Mecánica y Ondas II. Boletín nº 2. (Fluidos) Es incompresible? Existe la función de corriente? Determínela en caso afirmativo.

Problemas de Mecánica y Ondas II. Boletín nº 2. (Fluidos) Es incompresible? Existe la función de corriente? Determínela en caso afirmativo. Problemas de Mecánica y Ondas II. oletín nº 2. (Fluidos) 15. Considere un flujo cuyas componentes de la velocidad son 3 2 u = 0 v = y 4 z w=3y z Es incompresible? Existe la función de corriente? Determínela

Más detalles

FENÓMENOS DE TRASPORTE EN METALURGIA EXTRACTIVA Clase 03/06 Transporte de Calor

FENÓMENOS DE TRASPORTE EN METALURGIA EXTRACTIVA Clase 03/06 Transporte de Calor FENÓMENOS DE TRASPORTE EN METALURGIA EXTRACTIVA Clase 03/06 Transporte de Calor Prof. Leandro Voisin A, MSc., Dr. Académico Universidad de Chile. Jefe del Laboratorio de Pirometalurgia. Investigador Senior

Más detalles

GRADO: INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES CURSO: 3º CUATRIMESTRE: 1º PLANIFICACIÓN SEMANAL DE LA ASIGNATURA

GRADO: INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES CURSO: 3º CUATRIMESTRE: 1º PLANIFICACIÓN SEMANAL DE LA ASIGNATURA DENOMINACIÓN ASIGNATURA: TRANSFERENCIA DE CALOR GRADO: INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES CURSO: 3º CUATRIMESTRE: 1º PLANIFICACIÓN SEMANAL DE LA ASIGNATURA SEMANA SESIÓN 1 1 DESCRIPCIÓN DEL CONTENIDO

Más detalles

Temperatura del aire CATEDRA DE CLIMATOLOGÍA Y FENOLOGÍA GRÍCOLAS

Temperatura del aire CATEDRA DE CLIMATOLOGÍA Y FENOLOGÍA GRÍCOLAS Temperatura del aire CATEDRA DE CLIMATOLOGÍA Y FENOLOGÍA GRÍCOLAS Temperatura del aire Temperatura no es lo mismo que calor. El calor, es una forma de energía y temperatura es la medida (o grado) del calor.

Más detalles

Física General II. Guía N 2: Hidrodinámica y Viscosidad

Física General II. Guía N 2: Hidrodinámica y Viscosidad Física General II Guía N 2: Hidrodinámica y Viscosidad Problema 1: Ley de Torricelli. La figura muestra un líquido que está siendo descargado de un tanque a través de un orificio que se encuentra a una

Más detalles

GRADO: INGENIERÍA MECÁNICA CURSO: 3º CUATRIMESTRE: 1º PLANIFICACIÓN SEMANAL DE LA ASIGNATURA

GRADO: INGENIERÍA MECÁNICA CURSO: 3º CUATRIMESTRE: 1º PLANIFICACIÓN SEMANAL DE LA ASIGNATURA DENOMINACIÓN ASIGNATURA: TRANSFERENCIA DE CALOR GRADO: INGENIERÍA MECÁNICA CURSO: 3º CUATRIMESTRE: 1º PLANIFICACIÓN SEMANAL DE LA ASIGNATURA SEMANA SESIÓN 1 1 DESCRIPCIÓN DEL CONTENIDO DE LA SESIÓN Presentación

Más detalles

Temperatura de suelo y del aire

Temperatura de suelo y del aire Temperatura de suelo y del aire Objetivos: - Conocer la importancia meteorológica y agrometeorológica de la T del suelo y el aire. - Comprender la forma de transmisión de calor en el suelo y en el aire

Más detalles

En las clases anteriores consideramos una circulación atmosférica invariante. Claramente ese no es el caso en la Tierra y debemos entender de donde

En las clases anteriores consideramos una circulación atmosférica invariante. Claramente ese no es el caso en la Tierra y debemos entender de donde Por qué existe el tiempo? En las clases anteriores consideramos una circulación atmosférica invariante. Claramente ese no es el caso en la Tierra y debemos entender de donde aparecen las fluctuaciones

Más detalles

La distinción entre ambas se puede realizar de manera muy básica de la siguiente manera:

La distinción entre ambas se puede realizar de manera muy básica de la siguiente manera: TUTORIAL TRANSMISIÓN DE CALOR Seguro que este tutorial os resultará de importante utilidad puesto que resulta de gran aplicación para numerosas aplicaciones en la industria. Quizás se pueda calificar el

Más detalles

INSTITUTO TECNOLÓGICO DE DURANGO DEPARTAMENTO DE INGENIERÍAS QUÍMICA Y BIOQUÍMICA SEMESTRE AGOSTO-DICIEMBRE 2006

INSTITUTO TECNOLÓGICO DE DURANGO DEPARTAMENTO DE INGENIERÍAS QUÍMICA Y BIOQUÍMICA SEMESTRE AGOSTO-DICIEMBRE 2006 Problema 0B. Conducción de calor desde una esfera hacia un fluido estacionario Una esfera de radio R se encuentra suspendida en un fluido estacionario. Se desea estudiar la conducción de calor en el fluido

Más detalles

XVI.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA

XVI.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA XVI.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA XVI..- EFICACIA DE LOS INTERCAMBIADORES DE CALOR En muchas situaciones lo único que se conoce es la descripción física del intercambiador, como el

Más detalles

Transferencia de Calor Cap. 3. Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D.

Transferencia de Calor Cap. 3. Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D. Transferencia de Calor Cap. 3 Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D. Conducción de calor en estado estacionario Con frecuencia es de interés la razón de transferencia de calor a través de un medio,

Más detalles

9 Geodinamos numéricos. p. 1

9 Geodinamos numéricos. p. 1 9 Geodinamos numéricos p. 1 9.1.1 Las ecuaciones del núcleo Esta sección presenta las ecuaciones para un núcleo girando, con convección, fuerzas de flotabilidad, y un sistema magnetohidrodinámica, que

Más detalles

Sistemas termodinámicos: Temperatura Temperatura: lo que medimos con un termómetro, Calor: energía que se transfiere por causa de una diferencia de

Sistemas termodinámicos: Temperatura Temperatura: lo que medimos con un termómetro, Calor: energía que se transfiere por causa de una diferencia de Sistemas termodinámicos: Temperatura Temperatura: lo que medimos con un termómetro, Calor: energía que se transfiere por causa de una diferencia de temperatura. La descripción microscópica de una pequeña

Más detalles

Fenómenos atmosféricos

Fenómenos atmosféricos Fenómenos atmosféricos Escalas horizontales y temporales de fenómenos atmosféricos Fenómenos oceánicos Dinámica de la atmósfera y los océanos Ecuaciones de movimiento Ecuacion de conservacion de masa

Más detalles

Dinámica de los Fluídos

Dinámica de los Fluídos Dinámica de los Fluídos Flujos Fluídos Sustancias que no transmiten esfuerzos Se deforman cuando se les aplica una fuerza Incluye, agua y gases Fuerzas actuan en todo el fluido Propiedades de los Fluidos

Más detalles

Soluciones Analíticas de Navier Stokes.

Soluciones Analíticas de Navier Stokes. 1 Soluciones Analíticas de Navier Stokes. Problema 1 Un fluido newtoniano fluye en el huelgo formado por dos placas horizontales. La placa superior se mueve con velocidad u w, la inferior está en reposo.

Más detalles

Miguel Hermanns. 4 de diciembre de 2006

Miguel Hermanns. 4 de diciembre de 2006 niversidad Politécnica de Madrid, España la 4 de diciembre de 2006 Si el número de Reynolds es grande L Re = ρl µ 1 Σ ρ, µ y constantes se obtienen las ecuaciones de Euler incompresibles v = 0, ρv v =

Más detalles

Convección Problemas de convección 1.1. PROBLEMAS DE CONVECCIÓN 1

Convección Problemas de convección 1.1. PROBLEMAS DE CONVECCIÓN 1 1.1. PROBLEMAS DE CONVECCIÓN 1 Convección 1.1. Problemas de convección Problema 1 Una placa cuadrada de 0,1 m de lado se sumerge en un flujo uniforme de aire a presión de 1 bar y 20 C con una velocidad

Más detalles

Cuáles son las características escenciales de los fluídos geofísicos?

Cuáles son las características escenciales de los fluídos geofísicos? Circulación general de la atmósfera Cuáles son las características escenciales de los fluídos geofísicos? 1) Estratificación y densidad dependiente de la temperatura - Si la densidad no dependiera de T

Más detalles

Convección Natural Casos de estudio. Luis M. de la Cruz DCI- DGSCA - UNAM

Convección Natural Casos de estudio. Luis M. de la Cruz DCI- DGSCA - UNAM Convección Natural Casos de estudio Luis M. de la Cruz DCI- DGSCA - UNAM Colaboradores Eduardo Ramos, CIE-UNAM Víctor Godoy, DGSCA-UNAM Alejandro Salazar, DGSCA-UNAM Humberto Muñoa, DGSCA-UNAM Contenido

Más detalles

Transferencia de Calor Cap. 2. Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D.

Transferencia de Calor Cap. 2. Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D. Transferencia de Calor Cap. 2 Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D. Ecuación de la conducción de calor. Ecuación de la conducción de calor. Objetivos Entender la multidimensionalidad y la dependencia

Más detalles

Información útil 1 Constantes... 1 Símbolos utilizados Prefacio 9

Información útil 1 Constantes... 1 Símbolos utilizados Prefacio 9 Índice general Información útil 1 Constantes.............................. 1 Símbolos utilizados.......................... 4 Prefacio 9 1. La Atmósfera 11 1.1. Problemas Resueltos......................

Más detalles

8º CONGRESO IBEROAMERICANO DE INGENIERIA MECANICA Cusco, 23 al 25 de Octubre de 2007

8º CONGRESO IBEROAMERICANO DE INGENIERIA MECANICA Cusco, 23 al 25 de Octubre de 2007 8º CONGRESO IBEROAMERICANO DE INGENIERIA MECANICA Cusco, 23 al 2 de Octubre de 27 Estudio numérico de la convección natural en una cavidad triangular calentada por abajo RESUMEN Palacios G., Lacoa U.*

Más detalles

Introducción a la Dinámica del Océano. Convección: Figuras clases Convección y Circulación de la Atmósfera

Introducción a la Dinámica del Océano. Convección: Figuras clases Convección y Circulación de la Atmósfera Convección: Figuras clases Convección y Circulación de la Atmósfera 1 2 Conceptos importantes: La atmósfera está compuesta por capas cuya existencia es consecuencia de la absorción por diferentes gases.

Más detalles

-Al analizar el flujo reptante alrededor de una esfera vimos que el arrastre tiene dos contribuciones: el arrastre de forma y la fricción de piel.

-Al analizar el flujo reptante alrededor de una esfera vimos que el arrastre tiene dos contribuciones: el arrastre de forma y la fricción de piel. SEPARACIÓN DE LA CAPA LIMITE -Al analizar el flujo reptante alrededor de una esfera vimos que el arrastre tiene dos contribuciones: el arrastre de forma y la fricción de piel. -La fricción de piel siempre

Más detalles

TIEMPOS Y CLIMAS EXTREMOS. 4º Curso ESPECIALIDADES

TIEMPOS Y CLIMAS EXTREMOS. 4º Curso ESPECIALIDADES TEMA 4 LOS MOVIMIENTOS VERTICALES DE LA ATMÓSFERA Recapitulación Proceso tridimensional simplificado: Componente vertical: entre diferentes niveles de la atmósfera Componente horizontal: paralelo a la

Más detalles

3. Convección interna forzada

3. Convección interna forzada Tubos circulares resisten grandes diferencias de presión dentro y fuera del tubo (Equipos de transferencia) Tubos no circulares costos de fabricación e instalación más bajos (Sistemas de calefacción) Para

Más detalles

2do cuatrimestre 2005 Turno FLUIDOS * Hidrostática. , con ρ 1

2do cuatrimestre 2005 Turno FLUIDOS * Hidrostática. , con ρ 1 Teorema Fundamental FLUIDOS * Hidrostática 1. En un tubo en U, hay dos líquidos inmiscibles (no se mezclan) de densidades ρ 1 y ρ 2, con ρ 1 > ρ 2. Si el nivel del punto B, respecto a la superficie que

Más detalles

Centro de Preparación de Ingenieros

Centro de Preparación de Ingenieros C) Ríos Rosas nº 34, 8003 Madrid Teléfono: 91 546139-915593300 www.academiacpi.es Curso: 017-018 Tema 1: ANÁLISIS DIMENSIONAL VÍDEO 1: (1.1, 1., 1.3.) ECUACIÓN DE DIMENSIONES (Duración 9,40 m) PROBLEMA

Más detalles

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera 1. ey de Fourier ué flujo de calor es necesario hacer pasar a través de una barra circular de madera de 5 cm de diámetro y 10 cm de longitud, cuya temperatura en los extremos es de 50 C y 10 C en sus extremos?

Más detalles

transitorio y como sistema de capacidad.

transitorio y como sistema de capacidad. 5. Análisis comparativo entre conducción en régimen transitorio y como sistema de capacidad. En esta sección se ha procedido a la realización de un análisis comparativo entre la transferencia de calor

Más detalles

INGENIERÍA QUÍMICA Problemas propuestos Pág. 1 CONCEPTOS FUNDAMENTALES

INGENIERÍA QUÍMICA Problemas propuestos Pág. 1 CONCEPTOS FUNDAMENTALES Problemas propuestos Pág. 1 CONCEPTOS FUNDAMENTALES Problema nº 1) [01-07] Por una tubería fluyen 100 lb de agua a razón de 10 ft/s. Cuánta energía cinética (E = ½ mav 2 ) tiene el agua, expresada en unidades

Más detalles

Ecuaciones de Navier-Stokes. Fenómenos Turbulentos.

Ecuaciones de Navier-Stokes. Fenómenos Turbulentos. Capítulo 3 Ecuaciones de Navier-Stokes. Fenómenos Turbulentos. 3.1. Ecuaciones de Navier-Stokes. 3.1.1. ntroducción. Antes de obtener las ecuaciones fundamentales que gobiernan el comportamiento de los

Más detalles

FENÓMENOS DE TRANSPORTE II

FENÓMENOS DE TRANSPORTE II FENÓMENOS DE TRANSPORTE II Programa sintético FENOMENOS DE TRANSPORTE II Datos básicos Semestre Horas de teoría Horas de práctica Horas trabajo Créditos adicional estudiante VI 2 3 2 7 Objetivos El alumno

Más detalles

TEMA 4. EQUILIBRIO VERTICAL EN LA ATMÓSFERA. ESTABILIDAD.

TEMA 4. EQUILIBRIO VERTICAL EN LA ATMÓSFERA. ESTABILIDAD. TEMA 4. EQUILIBRIO VERTICAL EN LA ATMÓSFERA. ESTABILIDAD. EQUILIBRIO ESTÁTICO Y BALANCE HIDROSTÁTICO. GRADIENTE VERTICAL DE TEMPERATURA. ESTABILIDAD VERTICAL Y CONVECCIÓN. MÉTODO DE LA BURBUJA. CRITERIOS

Más detalles

TUTORIAL PROPIEDADES MATERIALES

TUTORIAL PROPIEDADES MATERIALES TUTORIAL PROPIEDADES MATERIALES Ya se habló sobre transmisión de calor en otro de los tutoriales de la sección (8/11/2015). En esta fecha nuestra entrada se relaciona notablemente con aquella pues se analizan

Más detalles

FORMATO CONTENIDO DE CURSO O SÍLABO

FORMATO CONTENIDO DE CURSO O SÍLABO 1. INFORMACIÓN GENERAL DEL CURSO Facultad Ingeniería Fecha de Actualización 25/09/2015 Programa Ingeniería Química Semestre V Nombre Fenómenos de Transporte Código 72104 Prerrequisitos 22147 Créditos 3

Más detalles

r 2 r r 4πṁ = 4π 3 ρ da 3

r 2 r r 4πṁ = 4π 3 ρ da 3 VAPORIZACIÓN DE Y CONDENSACIÓN EN GOTAS Formulación General Supondremos que no hay movimiento relativo de la gota y el medio ambiente, o bien que el número de Reynolds asociado a este movimiento relativo

Más detalles

CAPÍTULO 5 ANÁLISIS Y EVALUACIÓN DE LA CAPA LÍMITE TÉRMICA. Como se menciono anteriormente la capa limite térmica es la región donde los

CAPÍTULO 5 ANÁLISIS Y EVALUACIÓN DE LA CAPA LÍMITE TÉRMICA. Como se menciono anteriormente la capa limite térmica es la región donde los CAPÍTULO 5 ANÁLISIS Y EVALUACIÓN DE LA CAPA LÍMITE TÉRMICA 5.1 Capa Límite Térmica Como se menciono anteriormente la capa limite térmica es la región donde los gradientes de temperatura están presentes

Más detalles

La radiación es la energía de calor transferida por radiación electromagnética. Depende del medio en el que ocurra, de las temperaturas relativas y

La radiación es la energía de calor transferida por radiación electromagnética. Depende del medio en el que ocurra, de las temperaturas relativas y RADIACIÓN La radiación es la energía de calor transferida por radiación electromagnética. Depende del medio en el que ocurra, de las temperaturas relativas y la superficie que absorba o emita la energía.

Más detalles

UNIVERSIDAD POLITÉCNICA DE MADRID. ESCUELA DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO

UNIVERSIDAD POLITÉCNICA DE MADRID. ESCUELA DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO UNIVERSIDAD POLITÉCNICA DE MADRID. ESCUELA DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO Mecánica de Fluidos I Examen 6 04 2013 La figura representa dos depósitos cilíndricos de radio H que contienen agua de

Más detalles

Cuáles son las características escenciales de los fluídos geofísicos?

Cuáles son las características escenciales de los fluídos geofísicos? Circulación general de la atmósfera Cuáles son las características escenciales de los fluídos geofísicos? 1) Estratificación y densidad dependiente de la temperatura - Si la densidad no dependiera de T

Más detalles

TRANSFERENCIA DE CANTIDAD DE MOVIMIENTO

TRANSFERENCIA DE CANTIDAD DE MOVIMIENTO TRANSFERENCIA DE CANTIDAD DE MOVIMIENTO Clasificación de los fluidos Un fluido es una sustancia o medio continuo que se deforma continuamente en el tiempo ante la aplicación de una solicitación o tensión

Más detalles

Simulación del Recorrido de un Fluido Térmico a través de un Serpentín

Simulación del Recorrido de un Fluido Térmico a través de un Serpentín Simulación del Recorrido de un Fluido Térmico a través de un Serpentín Areli Arcos 1,2, Jorge Pineda 1, Miguel A. Hernández 1,2 (1) Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Unidad

Más detalles

METEOROLOGÍA-5. 2) La atmósfera estándar, la temperatura a nivel del mar se considera igual a: a) 0º b) 10º c) 15º d) puede variar.

METEOROLOGÍA-5. 2) La atmósfera estándar, la temperatura a nivel del mar se considera igual a: a) 0º b) 10º c) 15º d) puede variar. 1) Qué es un nimboestrato?. a) Es un nivel de gran cizalladura. b) Es una capa nubosa, que contiene gran cantidad de agua. c) Es una nube que tiene fuertes corrientes. d) Es de un proceso idéntico al de

Más detalles

Transferencia de Masa ª

Transferencia de Masa ª Transferencia de Masa 213-5-16 14ª # Coeficiente de transferencia de masa de largo alcance k g. # Introducción; # Modelo de la película estancada; # Modelo de Higbie teoría de penetración; # Modelo de

Más detalles

Principios de la termodinámica

Principios de la termodinámica Física aplicada a procesos naturales Tema I.- Balance de Energía: Primer principio de la Termodinámica. Lección 1. Principios de la termodinámica Equilibrio térmico. Define el método de medida de la temperatura

Más detalles

Estructura de Materia 1 Verano Práctica 2 Leyes de conservación

Estructura de Materia 1 Verano Práctica 2 Leyes de conservación Estructura de Materia 1 Verano 2017 Práctica 2 Leyes de conservación Problema 1. Un líquido incompresible de densidad ρ 0 fluye de manera estacionaria por el interior de un conducto de longitud finita

Más detalles

TRANSFERENCIA DE MOMENTUM. MI31A-Fenómenos de Transporte en Metalurgia Extractiva Prof. Tanai Marín 16 Abril 2007 Clase #9

TRANSFERENCIA DE MOMENTUM. MI31A-Fenómenos de Transporte en Metalurgia Extractiva Prof. Tanai Marín 16 Abril 2007 Clase #9 TRANSFERENCIA DE MOMENTUM MI31A-Fenómenos de Transporte en Metalurgia Extractiva Prof. Tanai Marín 16 Abril 2007 Clase #9 Flujo de Fluidos Viscosos Para fluidos con bajo peso molecular, la propiedad física

Más detalles

Ingeniería en Alimentos - Fenómenos de Transporte - Año 2016 SITUACIONES PROBLEMÁTICAS Nº 1

Ingeniería en Alimentos - Fenómenos de Transporte - Año 2016 SITUACIONES PROBLEMÁTICAS Nº 1 Frecuentemente el hombre se convierte en aquello que cree ser. Si persevera afirmando ser incapaz de hacer determinada cosa, puede ser que eso, de hecho, acontezca. Si, al contrario, se considera capaz

Más detalles

GLOSARIO METEOROLOGICO Lic. Natalia Gattinoni

GLOSARIO METEOROLOGICO Lic. Natalia Gattinoni GLOSARIO METEOROLOGICO Lic. Natalia Gattinoni El objetivo de este glosario es dar a conocer el significado de los términos meteorológicos de uso más frecuente en la bibliografía de Eddy Covariance y mediciones

Más detalles

Formulario de Electroquímica

Formulario de Electroquímica Formulario de Electroquímica Salvador Blasco Llopis. Notación α coeficiente de transferencia de materia a e área específica del electrodo A e área del electrodo c concentración c A concentración de A en

Más detalles

Agua, clima y humedad. Geosistemas ID Juan C. Benavides

Agua, clima y humedad. Geosistemas ID Juan C. Benavides Agua, clima y humedad Geosistemas ID 026671 Juan C. Benavides Agua y vapor atmosférico Agua en la tierra Propiedades del agua Humedad Estabilidad atmosférica Nubes y niebla Historia del agua en la tierra

Más detalles

PROGRAMA ANALITICO DE LA ASIGNATURA: Fenómenos de Transporte APROBADO RESOLUCION Nº 329/98 CO. ACAD. FRRo PLAN DE ESTUDIOS ORDENANZA Nº: 1028

PROGRAMA ANALITICO DE LA ASIGNATURA: Fenómenos de Transporte APROBADO RESOLUCION Nº 329/98 CO. ACAD. FRRo PLAN DE ESTUDIOS ORDENANZA Nº: 1028 PROGRAMA ANALITICO DE LA ASIGNATURA: Fenómenos de Transporte APROBADO RESOLUCION Nº 329/98 CO. ACAD. FRRo PLAN DE ESTUDIOS ORDENANZA Nº: 1028 HORAS SEMANALES: 5 Hs. DICTADO ANUAL CORRELATIVAS: Para cursar:

Más detalles

Capa límite atmosférica

Capa límite atmosférica Capa límite atmosférica La troposfera puede dividirse en dos partes: la capa límite cerca de la superficie y la atmósfera libre por encima de ella. En la capa límite los procesos de transporte modifican

Más detalles

FENOMENOS DE TRANSPORTE

FENOMENOS DE TRANSPORTE Programa de: Hoja 1 de 6. UNIVERSIDAD NACIONAL DE CÓRDOBA FACULTAD DE CIENCIAS EXACTAS F. Y N. REPÚBLICA ARGENTINA FENOMENOS DE TRANSPORTE Código: Carrera: Ingeniería Química Plan:2004 V05 Puntos: 4 Escuela:

Más detalles

Capa Límite Superficial

Capa Límite Superficial Capa ímite Superficial Física Ambiental. ema 6. ema6. FA (prof. RAMOS 1 ema 6.- Capa ímite Superficial. Capa límite: justificación. Flujos laminar y turbulento, características físicas: números de Reynolds.

Más detalles