Tarea 3 Soluciones. persona 1, persona 2, persona 3...

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tarea 3 Soluciones. persona 1, persona 2, persona 3..."

Transcripción

1 Tarea 3 Soluciones 1. Demuestra por inducción la fórmula de Gauss. Etracto del libro Spivak: La propiedad más fundamental de los números naturales es el principio de inducción matemática. Supóngase que P() sigifica que la propiedad P se cumple para el número. Entonces el principio de inducción matemática afirma que P() es verdad para todos los números naturales siempre que: 1. P(1) sea verdad.. Si P(k) es verdad, también lo es P(k+1) Nótese que la condición () se limita a afirmar la verdad de P(k+1) bajo el supuesto de que P(k) es verdad. Esto basta para asegurar la verdad de P() para todo si también se cumple la condición (1). En efecto, si P(1) es verdad, se sigue entonces que P() es verdad [aplicando () al caso particular k = 1]. Ahora, puesto que P() es verdad, se sigue que P(3) es verdad [aplicando () al caso particular k = ]. Es evidente que todo número será alcanzado alguna vez mediante una serie de etapas de esta clase, de manera que P(k) será verdad para todos los números k. Una ilustración muy corriente del razonamiento que justifca la inducción matemática considera una fila infinita de personas, persona 1, persona, persona 3... Si cada persona ha recibido instrucciones de contar cualquier secreto que oiga a la persona que le sigue (la que tiene el número siguiente) y se cuenta un secreto a la persona 1, es evidente entonces que cada persona se enterará irremisiblemente del secreto. Si P() es el acerto de que la persona número se enterará del secreto, entonces las istrucciones dadas(contar todos los secretos que se oigan a la persona siguiente) significan que la condición () se cumple, mientras que contar el secreto a la persona 1 hace que se cumpla la condición (1). 1

2 Ahora si la solución, La fórmula de Gauss dice lo siguiente: n = n(n + 1) Para demostrar esta fórmula, Paso 1. Nótese primero que se cumple para n=1. 1 = 1(1 + 1) = 1() = 1 Paso. Supóngase ahora que para algún entero k se tiene: Entonces, k = k(k + 1) k + (k + 1) = k(k + 1) + k + 1 = k(k + 1) + k + = k + 3k + (k + 1)(k + ) = de manera que la fórmula es también verdad para k + 1. Por el principio de inducción, esto demuestra que la fórmula es válida para todos los números naturales n.. Escribe dos ejemplos de cada uno de los incisos. Función. Una función es una relación entre un conjunto dado X (el Dominio) y otro conjunto Y (el Codominio), donde a cada elemento de del dominio le corresponde un único elemento del codominio f(). Y se denota por f : A B. Ejemplos: Sean A el conjunto de las mujeres y B el conjunto de los hombres. La relación de las parejas (, y) tales que, tiene un sólo hombre correspondiente a y, es una función f : A B. Sea f : Z N dada por f(n) = n + 1 para toda n N. Es una

3 función pues cada entero que te tomes, le asignas un único natural. Otra manera de ver la función: Usualmente X y Y son conjuntos de números. Podemos comparar una función con una máquina a la cual se le introduce el elemento y cuya salida correspondiente es f(). Función Inyectiva. Una función f : X Y es inyectiva si para cuales quiera dos elementos distintos de X, le corresponden dos elementos distintos de Y, es decir, a cada elemento del conjunto X le corresponde un solo valor de Y tal que, en el conjunto X no puede haber dos o más elementos que le correspondan el mismo elemento de Y. Por ejemplo, f() = no es inyectiva pues a y les corresponde el mismo valor. Ejemplos: Sea X = {1,, 3} y Y = {a, b, c, d}, sea f : X Y tal que f(1) = a, f() = b, f(3) = c. Es una función inyectiva. Notar que puede haber elementos en Y a los cuales no les pegue la función. Sea f : Z Z dada por f(n) = n, entonces f es inyectiva porque f(n) = f(m) n = m m = n. Función Suprayectiva. Una función f : X Y es suprayectiva si cada elemento de Y es la imagen de al menos un elemento de X. Si para todo y Y X tal que f() = y. Ejemplos: Sea X = {1,, 3} y Y = {a, d}, sea f : X Y tal que f(1) = a, f() = a, f(3) = d. Es una función suprayectiva, pues para cada elemento de Y, eiste un elemento en X que le pega. Y no es inyectiva pues f(1) = f() y 1. Sea f : Z N dada por f(n) = n, es una función suprayectiva, pero no inyectiva. Función Biyectiva. Una función f : X Y es biyectiva si es inyectiva y suprayectiva. Notar que para que una función pueda ser biyectiva, el conjunto X y el conjunto Y, deben de tener el mismo número de elementos. 3

4 Ejemplos: Sea f : Z Z dada por f(n) = n, es una función biyectiva, pues es claramente inyectiva y sobre. 3. Escribe con tus palabras una definición de número primo. Sol. Decimos que un entero p distinto de ±1 es primo si sus únicos divisores son ±1 y ±p. 4. En el triángulo ABC sabemos que el ángulo CBA es el doble del ángulo BCA, el lado CA es unidades mayor que el lado AB y BC mide 5. Cuánto miden AB y CA? Definición. Semejanza de triángulos.decimos que dos triángulos ABC y A 1 B 1 C 1 son semejantes si sus ángulos respectivos son iguales y sus lados homólogos son proporcionales, es decir, ABC = A 1 B 1 C 1 ACB = A 1 C 1 B 1 Sol. BAC = B 1 A 1 C 1 AB = BC = CA A 1 B 1 B 1 C 1 C 1 A 1 1. Trazamos la bisectriz del ABC, de tal forma que corte en el punto D al segmento AC. Entonces tenemos que ABD = DBC.. Notar que el triángulo DBC es isósceles, pues DBC = BCD y DC = BD. 3. Observar que el triángulo ABC es semejante a el triángulo ADB. 4. A partir de lo anterior y lo que nos dice el problema,contamos con la siguiente información: por (3), AB AD = AC AB = BC DB 4

5 ahora sustituimos, AD = + = 5 DB sabemos que AD = + DC y por () DB = DC, sustituimos, + DC = + Usamos la última parte de la igualdad, por otro lado, 5 DC = + + DC = 5 DC DC = = 5 DC 5 + ( ) (DC) = 5( + DC) (DC) = (DC) (DC) + 5(DC) = (DC)( + 5) = 5( + ) DC = Ahora igualando (*) y (**), 5( + ) + 5 ( ) 5 + = 5( + ) + 5 ( + 5) = 5( + ) = = 4 = 4 Por lo tanto, AB = = 4 y AC = + = Tres hombres con sus esposas quieren cruzar el río en un bote en el que sólo caben dos personas al mismo tiempo. Como los maridos son muy celosos, ninguna mujer puede quedarse en companía de un hombre a menos que su esposo esté presente. Pueden cruzar el río en menos de 8 viajes? Sol. Independientemente de los celos, veamos si es posible que 6 personas vayan de un lado del río al otro en a lo más 8 viajes. Primer viaje van dos personas, se queda una y la otra hace un viaje de regreso. Así tienen que hacer otros 3 viajes (ida y regreso). Hasta este punto hay 4 personas del otro lado del rio. Y se necesita un último viaje para que las ultimas dos personas 5

6 crucen. En total fueron 9 viajes no importando quien iba con quién. Entonces no se puede cruzar el río en menos de 8 viajes. 6. Irune ordenó sus muñecos: Kuro no está junto Pelu, ni Pelu junto a Teddy, y entre Luna y Pelu hay un muñeco. Si Tigre es el segundo muñeco de izquierda a derecha, qué lugar ocupa Pelu? Sol. Supongamos que el orden, de izquierda a derecha, es Kuro, Tigre, Pelu, entonces ya no podemos colocar ni a Teddy, ni a Luna. Análogamente, si el orden fuera Kuro, Tigre, Luna, no podríamos colocar ni a Teddy, ni a Pelu. Si el orden fuera Pelu, Tigre, Luna, en el cuarto lugar puede ir Kuro y en el quinto Teddy, o viceversa. Si iniciamos con Luna Tigre, Pelu, tampoco podemos colocar a Teddy ni a Kuro. Por lo tanto, el primer muñeco es Pelu. 7. Definimos la operación como A B = A + B 3 Cuál es el valor de [(4 7) 8] [4 (7 8)]? Sol. Haciendo las operaciones, obtenemos que: 4 7 = 4+(7) = 18 = 6 y = 7+(8) = 3 6+(8). Similarmente, 6 8 = = y = = Por lo tanto, [(4 7) 8] [4 (7 8)] = Mario guarda estampas en una caja. Un día cuenta 15 estampas y a partir de ese día: cada día pone 10 estampas más en la caja, cada 4 días saca 3 estampas y se las regala a Pedro, cada 8 días saca, además, 1 estampa y se la regala a Juan. Después de cuántos días habrá 006 estampas en la caja? Sol. Después de cuatro días, habrá 37 estampas más en la caja y después de cuatro días habrá 36 estampas de más en la caja. Es decir, cada 8 días el número de estampas en la caja habrá aumentado en 73. Lo que queremos es llegar a 006 estampas, es decir, aumentar 1991 estampas a las 15 que tiene 6

7 Mario al inicio. Si dividimos 1991 entre 73, el resultado es 7 y deja residuo 0. Por lo que después de 7 8+ = 18 días habrá 006 estampas en la caja. 9. Luis, Carlos, Bruno y David se reparten 011 dulces de la siguiente manera: el primero, Luis, toma 1 dulces, el segundo Carlos, dulces, Bruno toma 3, David 4, Luis 5, etc. Si no hay suficientes dulces para que la persona tome el cuadrado, entonces toma 1 y la secuencia se vuelve a repetir. Quién toma el último dulce? Sol. Vamos a utilizar que la suma de los primeros n cuadrados es n = n(n + 1)(n + 1) 6 Luego, buscamos el mayor número n, tal que n(n+1)(n+1) Observemos que para n = 17 obtenemos, = Si aumentamos 18 = 34, tenemos que > Luego, después de 17 turnos, empieza la sucesión nuevamente. Ahora vemos que = 04, por lo cual = 1989, por lo que nos faltan 17 dulces para 006. Finalmente tenemos que = 14, lo que nos da = 003 y sólo restan 8 dulces. Hasta este momento han pasado = 8 turnos, luego el siguiente turno le corresponde a Luis que escoge 1 = 1, Carlos toma = 4 dulces y, ahora solo quedan 3 dulces, le tocas a Bruno tomar 1 1 = 1, después David toma 1 1 = 1, y finalmente, Luis toma el último dulce. 10. La esposa de Juan ronda los 40 años. Si escribes tres veces seguidas la edad de Juan se obtiene un número que es producto de su edad multiplicada por la de su mujer y la de sus 4 hijos. Qué edad tiene su hijo mayor? Sol. Denotemos la edad de Juan por ab. Entonces tenemos que: ababab = 1000ab + 100ab + ab = 10101ab 7

8 = ( )ab Por lo tanto, el hijo mayor de Juan tiene 13 años. 8

OLCOMA En un triángulo rectángulo la hipotenusa mide 6cm y el perímetro 14 cm. Entonces el área del triángulo es

OLCOMA En un triángulo rectángulo la hipotenusa mide 6cm y el perímetro 14 cm. Entonces el área del triángulo es OLCOMA 1 PARTE I: SELECCIÓN ÚNICA 1 Si x 2 + y 2 = 6xy, con x > 0, y > 0 y x > y entonces el valor de la razón x+y x y corresponde a (a) 2 (b) 3 (c) 5 (d) 6 Partiendo, x 2 + y 2 = 6xy y completando cuadrados

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Los segmentos se determinan por su longitud. Supongamos que tenemos dos

Más detalles

1. Teoremas válidos para triángulos rectángulos

1. Teoremas válidos para triángulos rectángulos 1. Teoremas válidos para triángulos rectángulos Sea ABC triángulo rectángulo en C, entonces: El lado opuesto al ángulo recto, AB, es llamado HIPOTENUSA, y los lados AC y BC, CATETOS. cateto hipotenusa

Más detalles

open green road Guía Matemática TRIÁNGULO RECTÁNGULO tutora: Jacky Moreno .cl

open green road Guía Matemática TRIÁNGULO RECTÁNGULO tutora: Jacky Moreno .cl Guía Matemática TRIÁNGULO RECTÁNGULO tutora: Jacky Moreno.cl 1. Triángulo Rectángulo Un triángulo se denomina rectángulo si uno de sus ángulos mide 90 y por ende los otros dos ángulos son agudos. Los lados

Más detalles

Triángulos (Parte 2)

Triángulos (Parte 2) Triángulos (Parte 2) APRENDIZAJES ESPERADOS Analizar en el triángulo rectángulo, los teoremas de Pitágoras y Euclides. Aplicar los diferentes teoremas y propiedades de los triángulos rectángulos, equiláteros

Más detalles

Enunciados de los problemas (1)

Enunciados de los problemas (1) Enunciados de los problemas (1) Problema 1. El peso de tres manzanas y dos naranjas es de 255 gramos. El peso de dos manzanas y tres naranjas es de 285 gramos. Si todas las manzanas son del mismo peso

Más detalles

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009 Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 009 Comisión Académica 1 Nivel Menor Problema 1. Considere un triángulo cuyos lados miden 1, r y r. Determine

Más detalles

Geometría. Congruencias y Semejanzas. Olimpiada de Matemáticas en Tamaulipas

Geometría. Congruencias y Semejanzas. Olimpiada de Matemáticas en Tamaulipas Geometría Congruencias y Semejanzas Olimpiada de Matemáticas en Tamaulipas 1. Introducción En este entrenemiento trabajaremos únicamente con triángulos. La idea central es poder detectar en un dibujo cuando

Más detalles

Seminario de problemas. Curso Hoja 20

Seminario de problemas. Curso Hoja 20 Seminario de problemas. Curso 014-15. Hoja 0 13. Dada una semicircunferencia de diámetro AB = R, se considera la cuerda CD de longitud fija c. Sea E la intersección de AC con BD y F la intersección de

Más detalles

Teoría de Números. 1. Introducción. Factorización Algebraica. Olimpiada de Matemáticas en Tamaulipas

Teoría de Números. 1. Introducción. Factorización Algebraica. Olimpiada de Matemáticas en Tamaulipas Teoría de Números Factorización Algebraica Olimpiada de Matemáticas en Tamaulipas 1. Introducción El matemático, físico y astrónomo Carl Friedrich Gauss (1777-1855) fue uno de los más importantes personajes

Más detalles

El ejercicio de la demostración en matemáticas

El ejercicio de la demostración en matemáticas El ejercicio de la demostración en matemáticas Demostración directa En el tipo de demostración conocido como demostración directa (hacia adelante) se trata de demostrar que A B partiendo de A y deduciendo

Más detalles

SEGUNDA OLIMPIADA ESTATAL DE MATEMÁTICAS

SEGUNDA OLIMPIADA ESTATAL DE MATEMÁTICAS PROBLEMAS PROPUESTOS PARA LA ETAPA DE ZONA TERCER GRADO 1. Cuánto mide el área sombreada A entre el área sombreada B en la siguiente figura? Para referenciar las argumentaciones se le inscriben letras

Más detalles

El ejercicio de la demostración en matemáticas

El ejercicio de la demostración en matemáticas El ejercicio de la demostración en matemáticas Demostración directa En el tipo de demostración conocido como demostración directa(hacia adelante) se trata de demostrar que A B partiendo de A y deduciendo

Más detalles

Seminario de problemas. Curso Hoja 5

Seminario de problemas. Curso Hoja 5 Seminario de problemas. Curso 2014-15. Hoja 5 29. Encuentra los números naturales N que cumplen las siguientes condiciones: sus únicos divisores primos son 2 y 3, y el número de divisores de N 2 es el

Más detalles

Semana 14. Carlos Hernandez. Helena de Oteyza. Alfredo.

Semana 14. Carlos Hernandez. Helena de Oteyza. Alfredo. Semana 4 Carlos Hernandez Los apuntes los encuentran en: http://wwwcimatmx/especialidadseg/documentos/algoritmospdf Helena de Oteyza http://wwwcimatmx/especialidadseg/documentos/desigualdadespdf Alfredo

Más detalles

XIII OLIMPIADA NACIONAL DE MATEMATICA... Sociedad de Matemática de Chile

XIII OLIMPIADA NACIONAL DE MATEMATICA... Sociedad de Matemática de Chile XIII OLIMPIADA NAIONAL DE MATEMATIA.... Sociedad de Matemática de hile SOLUIONES NIVEL MAYOR PRIMERA PARTE 1. Se consideran todas las fracciones positivas menores que uno, cuyo denominador es 2001 y cuyo

Más detalles

Enunciados y soluciones de los Problemas

Enunciados y soluciones de los Problemas Enunciados y soluciones de los Problemas Problema 1. Sea ABC un triángulo acutángulo y sea O su circuncentro. La línea AC intersecta al circuncírculo de AOB nuevamente en el punto X. Demuestra que la línea

Más detalles

XIII OLIMPIADA HONDUREÑA DE MATEMÁTICAS Gracias, Lempira, 31 de octubre de 2015

XIII OLIMPIADA HONDUREÑA DE MATEMÁTICAS Gracias, Lempira, 31 de octubre de 2015 XIII OLIMPIADA HONDUREÑA DE MATEMÁTICAS Gracias, Lempira, 31 de octubre de 2015 SOLUCIONES DEL NIVEL I Problema 1. Encuentre un número de dos cifras, tal que al intercambiar sus cifras se forma un nuevo

Más detalles

Solucionario Taller Nivel Básico. Tercera Capacitación Secundaria. Abril de 2012

Solucionario Taller Nivel Básico. Tercera Capacitación Secundaria. Abril de 2012 Solucionario Taller Nivel Básico. Tercera Capacitación Secundaria. Abril de 2012 1. En la biblioteca un tercio de los libros son de matemáticas.hay 30 libros de lengua castellana. Hay 24 libros de ciencias

Más detalles

I Eliminatoria Separemos la figura así: Considere la figura: el área sonbreada en esta figura es 7,5. Ahora considere la figura:

I Eliminatoria Separemos la figura así: Considere la figura: el área sonbreada en esta figura es 7,5. Ahora considere la figura: 1. Determine el área sombreada en la figura adjunta 11 (a) 15 (b) 16 (c) 17 (d) 18 Separemos la figura así: Considere la figura: el área sonbreada en esta figura es 7,5. Ahora considere la figura: 6 Su

Más detalles

(CR) Prof. Manuel López Mateos Curso de Cálculo I,

(CR) Prof. Manuel López Mateos Curso de Cálculo I, (página 81) CAPÍTULO 3 FUNCIONES REALES Función es dependencia. A velocidad fija, la distancia recorrida depende del tiempo transcurrido. El tiempo que tarda en caer una piedra depende de la altura que

Más detalles

b) Si la ficha con el número x y la ficha con el número y son de distinto color, entonces la ficha con el número x y se pinta de color rojo.

b) Si la ficha con el número x y la ficha con el número y son de distinto color, entonces la ficha con el número x y se pinta de color rojo. Sesión 1 1. Tenemos 50 fichas numeradas del 1 al 50, y hay que colorearlas de rojo o azul. Sabemos que la ficha 5 es de color azul. Para la coloración del resto de fichas se siguen las siguientes reglas:

Más detalles

V Olimpíada Matemática Centroamericana y del Caribe.

V Olimpíada Matemática Centroamericana y del Caribe. V Olimpíada Matemática Centroamericana y del Caribe. Costa Rica, 26 de Agosto de 2003. Primer día Problema 1. Dos jugadores A y B, juegan por turnos el siguiente juego: Se tiene un montón de 2003 piedras.

Más detalles

Problemas de entrenamiento

Problemas de entrenamiento Problemas de entrenamiento Revista Tzaloa, año 1, número Problema E1-6. (Principiante) Considera 50 puntos en el plano tales que no hay tres colineales. Cada uno de estos puntos se pinta usando uno de

Más detalles

Notas sobre funciones

Notas sobre funciones Notas sobre funciones Manuel Bello Sean X e Y dos conjuntos. Una función f : X Y es una correspondencia entre los conjuntos X e Y, la cual asocia a cada elemento de X un único elemento de Y. El conjunto

Más detalles

open green road Guía Matemática PROPORCIONES EN LA CIRCUNFERENCIA tutora: Jacky Moreno .cl

open green road Guía Matemática PROPORCIONES EN LA CIRCUNFERENCIA tutora: Jacky Moreno .cl Guía Matemática PROPORCIONES EN LA CIRCUNFERENCIA tutora: Jacky Moreno.cl 1. Proporcionalidad entre las cuerdas de una circunferencia En la guía anterior estudiamos los elementos que se podían trazar en

Más detalles

7.3. Nivel Capítulo 7. Tercera Fase

7.3. Nivel Capítulo 7. Tercera Fase 128 Capítulo 7. Tercera Fase 7.. Nivel 1. Una enfermedad está atacando a los habitantes de un pueblo. Hace un mes, el 20 % de los habitantes tenía la enfermedad y el 80 % restante gozaba de buena salud.

Más detalles

w 1 Sean w, x, y, z números tales que x = 0, y+z = 0, x+y+z = 0, x+y+z = 2015

w 1 Sean w, x, y, z números tales que x = 0, y+z = 0, x+y+z = 0, x+y+z = 2015 XIII PrimeraFecha 5 de Abril de 015 Soluciones Individual Primer Nivel 1 Sean, x, y, z números tales que x = 0, y+z = 0, x+y+z = 0, x+y+z = 015 016 y y+z = 1. Encuentre, sin reemplazar, x, y, z, el valor

Más detalles

VI Olimpiada Mexicana de Matemáticas Fase Hidrocálida

VI Olimpiada Mexicana de Matemáticas Fase Hidrocálida VI Olimpiada Mexicana de Matemáticas Fase Hidrocálida Primera Prueba 99 Ganadores Martha Patricia Coronado Guzmán Luis Armando Cortés López Guillermina de Lara Romo Edgar Rogelio Luévano Martínez Gabriela

Más detalles

COLEGIO LOS ARCOS Guía de trabajo #4 Segmentos proporcionales 9no grado

COLEGIO LOS ARCOS Guía de trabajo #4 Segmentos proporcionales 9no grado GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 4 - Segmentos proporcionales. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual. Sin libros, ni

Más detalles

67.- El triángulo ABC es equilátero; BD y DE son bisectrices. Entonces AED =?

67.- El triángulo ABC es equilátero; BD y DE son bisectrices. Entonces AED =? GUIA 4 MEDIO MATEMATICA UNIDAD 3: GEOMETRIA. CONTENIDOS: Calculo de ángulos NOMBRE: 65.- Fecha:.. 66.- En el triángulo ABC de la figura, AC BC. Entonces α + β =? A) 90º B) 180º C) 240º D) 270º E) 290º

Más detalles

Problemas 1 (Soluciones)

Problemas 1 (Soluciones) Problemas 1 (Soluciones) 10 de Enero del 2012 1. Cuánto mide el ángulo interior de un octágono regular? Sol. Tengo mi octágono regular y quiero calcular el ángulo señalado: Si tengo n = 8 vértices, divido

Más detalles

Modulo de aprendizaje de matemática. Semejanza de figuras planas.

Modulo de aprendizaje de matemática. Semejanza de figuras planas. Modulo de aprendizaje de matemática. Semejanza de figuras planas. Concepto de semejanza. EJEMPLO. Dos polígonos convexos son semejantes si tienen la misma forma con diferentes dimensiones. Diremos que

Más detalles

1. He escrito el No he escrito el He escrito el No he escrito el 4.

1. He escrito el No he escrito el He escrito el No he escrito el 4. º Nivel. El número que está justamente entre 8 y 0 es 80 B) 0 C) 8 E) 80. Halla la suma de todos los primos comprendidos entre y 00 que verifiquen ser múltiplos de más y múltiplos de 5 menos. 8 B) 7 C)

Más detalles

V Olimpíada Matemática Centroamericana y del Caribe.

V Olimpíada Matemática Centroamericana y del Caribe. V Olimpíada Matemática Centroamericana y del Carie. Costa Rica, 25 al 30 de Agosto de 2003. Soluciones Pruea 1 y Pruea 2 Prolema 1. Solución oficial: Mostraremos que el jugador B tiene estrategia ganadora.

Más detalles

XX OLIMPIADA NACIONAL DE MATEMÁTICA PRIMERA RONDA COLEGIAL - 23 DE MAYO DE NIVEL 1. Nombre y Apellido:... Grado:... Sección:...

XX OLIMPIADA NACIONAL DE MATEMÁTICA PRIMERA RONDA COLEGIAL - 23 DE MAYO DE NIVEL 1. Nombre y Apellido:... Grado:... Sección:... PRIMERA RONDA COLEGIAL - 23 DE MAYO DE 2008 - NIVEL 1 Nombre y Apellido:................................. Grado:....... Sección:...... Puntaje:.......... Los dibujos correspondientes a los problemas de

Más detalles

Semejanza. Razones. Teorema de Thales. Proporciones. a = b. c d

Semejanza. Razones. Teorema de Thales. Proporciones. a = b. c d Semejanza Razones Razones y proporciones Teorema de Thales Triángulos semejantes Teoremas de semejanza Teoremas de Euclides Perímetro y Área a) Razón. Es el cuociente entre dos números (positivos). b)

Más detalles

Matemáticas III. Grupos: 3 B. Escuela Secundaria Diurna No. 264 Miguel Servet. Alumno (a): Actividades escolares. Profra. Gisel M.

Matemáticas III. Grupos: 3 B. Escuela Secundaria Diurna No. 264 Miguel Servet. Alumno (a): Actividades escolares. Profra. Gisel M. Escuela Secundaria Diurna No. 264 Miguel Servet Jornada Ampliada Matemáticas III Actividades escolares Profra. Gisel M. Leal Martínez Grupos: 3 B. Alumno (a): octubre, 2017 IGUALDAD O CONGRUENCIA DE TRIÁNGULOS

Más detalles

Seminario de problemas. Curso Hoja 14

Seminario de problemas. Curso Hoja 14 Seminario de problemas. Curso 2015-16. Hoja 14 79. (a) Prueba que en cualquier conjunto de 27 números impares distintos, todos ellos menores que 100, habrá dos que sumen 102. (b) Cuántos conjuntos de 26

Más detalles

SEGUNDA OLIMPIADA ESTATAL DE MATEMÁTICAS

SEGUNDA OLIMPIADA ESTATAL DE MATEMÁTICAS PROBLEMAS PROPUESTOS PARA LA ETAPA DE ZONA PRIMER GRADO 1. Marcos tiene todas las letras del abecedario en tres tamaños: grandes, medianas y pequeñas: A,B,C,D,E,...,Z A,B,C,D,E,...,Z A,B,C,D,E,...,Z Usando

Más detalles

Problemas Primera Sesion

Problemas Primera Sesion Problemas Primera Sesion 1 Los enteros positivos x, y, z cumplen x + y = z, x 4y + z = 310. Halla todos los posibles valores del producto xyz. Solución 1. Podemos despejar y de la primera ecuación y sustituir

Más detalles

SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C

SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA MEP ITCR UCR UNA UNED - MICIT SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C 01 1. Un factor de la factorización completa de corresponde a mx y + 9y m x y x 4

Más detalles

Tema 5: Semejanza. 1.- Introducción: Concepto de Escala y Teorema de Pitágoras.

Tema 5: Semejanza. 1.- Introducción: Concepto de Escala y Teorema de Pitágoras. Tema 5: Semejanza. En este tema nos dedicaremos al estudio de los triángulos y polígonos, y dedicaremos un apartado a un famoso teorema, que nos será de utilidad para entender la semejanza entre ellos:

Más detalles

Colegio Fernando de Aragón Departamento de matemática Prof. Sergio Moreno SEMEJANZA N 15 NOMBRE: II FECHA: / /201

Colegio Fernando de Aragón Departamento de matemática Prof. Sergio Moreno SEMEJANZA N 15 NOMBRE: II FECHA: / /201 Colegio Fernando de Aragón Departamento de matemática Prof. Sergio Moreno N lista: SEMEJANZA N 15 NOMBRE: II FECHA: / /201 ALTERNATIVAS Cómo se puede saber si los polígonos ABCD y A B C D (figura 1) son

Más detalles

MATEMÁTICA N O 8. Santillana FASCÍCULO PSU N O 8 MATEMÁTICA. Santillana

MATEMÁTICA N O 8. Santillana FASCÍCULO PSU N O 8 MATEMÁTICA. Santillana FASCÍCULO PSU N O 8 MATEMÁTICA 1 1. En la ecuación a 2 + b = 5, si a = -2, entonces b =? 2 A) 19 B) -8 C) -2 D) 22 E) 2 2. Si 0, entonces el promedio entre a y a es: A) 1 B) 1 2 C) 0 D) 1 E) 2 3. En una

Más detalles

TRIÁNGULOS: RELACIONES DE DESIGUALDAD ENTRE SEGMENTOS Y ÁNGULOS

TRIÁNGULOS: RELACIONES DE DESIGUALDAD ENTRE SEGMENTOS Y ÁNGULOS TRIÁNGULOS: RELACIONES DE DESIGUALDAD ENTRE SEGMENTOS Y ÁNGULOS Introducción.- Anteriormente, a partir de la congruencia de triángulos, hemos estudiado las condiciones que han de verificarse para que dos

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

Nombre y Apellido:... Puntaje:... Colegio:... Grado:... Teléfono (L B):... Celular: Número de Cédula de Identidad:...

Nombre y Apellido:... Puntaje:... Colegio:... Grado:... Teléfono (L B):... Celular: Número de Cédula de Identidad:... XXII OLIMPIADA NACIONAL DE MATEMÁTICA RONDA REGIONAL 14 DE AGOSTO DE 2010 - NIVEL 1 PEGÁ TU STICKER AQUÍ Nombre y Apellido:............................................ Puntaje:......... Colegio:.......................................................

Más detalles

XXIII OLIMPIADA COSTARRICENSE DE MATEMÁTICA UN A-UCR-IT CR-UN ED-MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL NIVEL C. (11 o - 12 o )

XXIII OLIMPIADA COSTARRICENSE DE MATEMÁTICA UN A-UCR-IT CR-UN ED-MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL NIVEL C. (11 o - 12 o ) XXIII OLIMPIADA COSTARRICENSE DE MATEMÁTICA UN A-UCR-IT CR-UN ED-MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL NIVEL C f(θ) = θ cos(3θ) (11 o - 12 o ) 2011 OLCOMA 1 Estimado estudiante: La Comisión de las Olimpiadas

Más detalles

lado s, entonces DA=s, ED=s/2 y AE Entonces, por semejanza tenemos que

lado s, entonces DA=s, ED=s/2 y AE Entonces, por semejanza tenemos que PROBLEMA Dado un cuadrado ABCD, llamamos E al punto medio del lado CD. Unimos A con E; desde B trazamos la perpendicular a AE y esta corta a AE en F. Probar que CF=CD. Solución 1 Como ABCD es un cuadrado,

Más detalles

Problemas de entrenamiento

Problemas de entrenamiento Problemas de entrenamiento Revista Tzaloa, año 1, número 1 Problema E1-1. (Principiante) Determina el menor entero positivo que no se puede escribir en la forma: a b para algunos enteros positivos a, b,

Más detalles

TALLER SOBRE TRIANGULOS Y CONGRUENCIA

TALLER SOBRE TRIANGULOS Y CONGRUENCIA TALLER SOBRE TRIANGULOS Y CONGRUENCIA EJERCICIOS PROPUESTO SOBRE TRIÁNGULOS. Resuelva justificando todos los pasos:. Si b =0 cm.; c =0 cm.; d =?. Si 70;? 3. Si f =3cm.; d =0 cm. a =? 4. Si ACB 40? 5. Si

Más detalles

IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS. Nombre: Grado: Costrucciones

IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS. Nombre: Grado: Costrucciones IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS Nombre: Grado: 9 5 1. Costrucciones 2. las rectas y puntos notables de un triángulo Sabemos que los polígonos son figuras cerradas planas, de lados rectos,

Más detalles

Fundación Uno. 2. En la figura, BD es una altura del triángulo ABC. Cuál es el valor de b a?

Fundación Uno. 2. En la figura, BD es una altura del triángulo ABC. Cuál es el valor de b a? ENCUENTRO # 51 TEMA: Semejanza de triángulo. CONTENIDOS: 1. Razones y proporciones(teorema de Tales). 2. Criterios de Semejanza. 3. Ejercicios de aplicación. Ejercicio Reto 1. Examen de la UNI 2014 En

Más detalles

25.º OLIMPIADA NACIONAL JUVENIL DE MATEMÁTICA CUARTA RONDA DEPARTAMENTAL NIVEL 1 17 de agosto de 2013

25.º OLIMPIADA NACIONAL JUVENIL DE MATEMÁTICA CUARTA RONDA DEPARTAMENTAL NIVEL 1 17 de agosto de 2013 CUARTA RONDA DEPARTAMENTAL NIVEL 1 Nombre y Apellido:............................................... Colegio:............................. Grado/Curso:...... Sección:..... Ciudad:................................

Más detalles

DETERMINANTES UNIDAD 3. Página 76

DETERMINANTES UNIDAD 3. Página 76 UNIDAD 3 DETERMINANTE Página 76 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes: 2x + 3y 29 5x 3y 8 4x + y

Más detalles

Seminario de problemas. Curso Hoja 17

Seminario de problemas. Curso Hoja 17 Seminario de problemas. Curso 015-15. Hoja 17 11. [Olimpiada Matemática de Española, 00, Islas Canarias] Las alturas de un triángulo ABC se cortan en un punto H. Sabemos que AB = CH. Determinad el valor

Más detalles

ESCUELA SECUNDARIA FEDERAL 327 JORNADA AMPLIADA GUIA DE MATEMÁTICAS III MAESTRA MÓNICA VÁZQUEZ MARTÍNEZ NOMBRE: GRUPO: N.L.

ESCUELA SECUNDARIA FEDERAL 327 JORNADA AMPLIADA GUIA DE MATEMÁTICAS III MAESTRA MÓNICA VÁZQUEZ MARTÍNEZ NOMBRE: GRUPO: N.L. ESCUELA SECUNDARIA FEDERAL 327 JORNADA AMPLIADA GUIA DE MATEMÁTICAS III MAESTRA MÓNICA VÁZQUEZ MARTÍNEZ NOMBRE: GRUPO: N.L. I. RESUELVE LOS PROBLEMAS QUE IMPLICAN EL USO DE ECUACIONES CUADRADICAS UTILIZANDO

Más detalles

Olimpiada Estatal de Matemáticas 2010 Primera Etapa

Olimpiada Estatal de Matemáticas 2010 Primera Etapa Olimpiada Estatal de Matemáticas 2010 Primera Etapa PROBLEMAS 1. Carmen compró galletas. Cada una cuesta 4 pesos. Si pagó con un billete de 100 pesos y le regresaron 48 pesos, Cuántas galletas compró?

Más detalles

CONJUNTOS Y NÚMEROS. HOJA 2

CONJUNTOS Y NÚMEROS. HOJA 2 CONJUNTOS Y NÚMEROS. HOJA 2 Conjuntos 1) Vamos a demostrar que, dado un conjunto B de n búhos, todos los búhos de B son del mismo color. Lo haremos por inducción sobre n. a) Si n = 1 sólo hay un búho,

Más detalles

XVI OLIMPIADA NACIONAL DE MATEMÁTICA. Nombre y Apellido:... Grado:... Sección:... Puntaje:...

XVI OLIMPIADA NACIONAL DE MATEMÁTICA. Nombre y Apellido:... Grado:... Sección:... Puntaje:... XVI OLIMPIADA NACIONAL DE MATEMÁTICA SEGUNDA RONDA COLEGIAL - 30 DE JULIO DE 2004 - NIVEL 1 Nombre y Apellido:........................... Grado:...... Sección:..... Puntaje:..... Los dibujos correspondientes

Más detalles

4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES

4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES 4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES Y EL TEOREMA DE PITÁGORAS. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS 4.1.1. El teorema de Thales y consecuencias. Thales de Mileto vivió hacia

Más detalles

Seminario de problemas. Curso Soluciones hoja 5

Seminario de problemas. Curso Soluciones hoja 5 Seminario de problemas. Curso 017-18. Soluciones hoja 5 33. Hallar todos los triángulos rectángulos cuyos lados vienen dados por números enteros y tales que el número que indica su área es igual al que

Más detalles

REAL SOCIEDAD MATEMÁTICA ESPAÑOLA. XLIII OLIMPIADA MATEMÁTICA ESPAÑOLA Comunidad de Madrid. Primera sesión, viernes 24 de noviembre de 2006

REAL SOCIEDAD MATEMÁTICA ESPAÑOLA. XLIII OLIMPIADA MATEMÁTICA ESPAÑOLA Comunidad de Madrid. Primera sesión, viernes 24 de noviembre de 2006 REAL SOCIEDAD MATEMÁTICA ESPAÑOLA XLIII OLIMPIADA MATEMÁTICA ESPAÑOLA Comunidad de Madrid Primera sesión, viernes 4 de noviembre de 006 En la hoja de respuestas, rodea con un círculo la opción que creas

Más detalles

OLIMPÍADA JUVENIL DE MATEMÁTICA 2008 CANGURO MATEMÁTICO PRUEBA PRELIMINAR 1 Y 2 AÑO DE DIVERSIFICADO RESPONDE LA PRUEBA EN LA HOJA DE RESPUESTA ANEXA

OLIMPÍADA JUVENIL DE MATEMÁTICA 2008 CANGURO MATEMÁTICO PRUEBA PRELIMINAR 1 Y 2 AÑO DE DIVERSIFICADO RESPONDE LA PRUEBA EN LA HOJA DE RESPUESTA ANEXA OLIMPÍADA JUVENIL DE MATEMÁTICA 008 CANGURO MATEMÁTICO PRUEBA PRELIMINAR 1 Y AÑO DE DIVERSIFICADO RESPONDE LA PRUEBA EN LA HOJA DE RESPUESTA ANEXA 1. Miguel tiene cinco cajas que contienen algunas cartas

Más detalles

SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL

SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL XXVIII OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICITT SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL (8 9 ) 06 Estimado estudiante: La Comisión de las Olimpiadas Costarricenses de

Más detalles

SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL

SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL XXVIII OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICITT SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL (8 9 ) 06 Estimado estudiante: La Comisión de las Olimpiadas Costarricenses de

Más detalles

Matemáticas Discretas Enrique Muñoz de Cote INAOE. Permutaciones y Combinaciones

Matemáticas Discretas Enrique Muñoz de Cote INAOE. Permutaciones y Combinaciones Matemáticas Discretas Enrique Muñoz de Cote INAOE Permutaciones y Combinaciones Contenido Introducción Reglas de la suma y el producto Permutaciones Combinaciones Generación de permutaciones Teorema del

Más detalles

SEGUNDO NIVEL. Problema 6 Decidir si existe un cuadrado de lado menor que 1 que pueda cubrir por completo cualquier rectángulo de diagonal 1.

SEGUNDO NIVEL. Problema 6 Decidir si existe un cuadrado de lado menor que 1 que pueda cubrir por completo cualquier rectángulo de diagonal 1. PRIMER NIVEL PRIMER DÍA Problema 1 En la figura se marcaron los 12 puntos que son vértices de triángulos. Se distribuyen los números enteros de 1 a 12, sin repeticiones, en los puntos marcados, de modo

Más detalles

III Congreso Iberoamericano de Cabri IBEROCABRI

III Congreso Iberoamericano de Cabri IBEROCABRI III Congreso Iberoamericano de Cabri IBEROCABRI - 2006 NÚMEROS CONSTRUÍBLES Carlos Mario Cárdenas Mazenet Universidad Nacional de Colombia - Sede Medellín Resumen Desde la época clásica de los griegos,

Más detalles

Olimpiada Recreativa de Matemática Prueba Nacional Séptimo Grado

Olimpiada Recreativa de Matemática Prueba Nacional Séptimo Grado Olimpiada Recreativa de Matemática Séptimo Grado Problema 1. Se tienen siete monedas: todas iguales en forma y tamaño, pero dos de ellas son un poco más pesadas que las otras cinco. Si tienes una balanza

Más detalles

XIV. PrimeraFecha. Primer Nivel. 23 de Abril de 2016 Soluciones. Individual

XIV. PrimeraFecha. Primer Nivel. 23 de Abril de 2016 Soluciones. Individual XIV PrimeraFecha 3 de Abril de 016 Soluciones Individual Primer Nivel 1 En una reunión hay 01 personas de cinco nacionalidades diferentes. Se sabe que en cada grupo de seis personas, al menos dos tienen

Más detalles

PREGUNTAS y RESPUESTAS

PREGUNTAS y RESPUESTAS INTEGRAL MODELO LAPSO 2010-2 754-1/3 Universidad Nacional Abierta GEOMETRIA 754 Vicerrectorado Académico Fecha:12-2-11 Área de Matemática Carreras: 508-126 PREGUNTAS y RESPUESTAS Obj 1 Pta 1 Indique, explicando

Más detalles

Si B borra 9, A borra 2, 4, 6 y 8 y gana.

Si B borra 9, A borra 2, 4, 6 y 8 y gana. Día 1 VI OMCC Soluciones Problema 1 En una pizarra se escriben los números 1, 2, 3, 4, 5, 6, 7, 8 y 9. Dos jugadores A y B juegan por turnos. Cada jugador en su turno escoge uno de los números que quedan

Más detalles

Viernes mañana Problema 1. Sean a 1, b 1 números naturales cuyo máximo común divisor y mínimo común múltiplo designamos por D y M, respectivamente.

Viernes mañana Problema 1. Sean a 1, b 1 números naturales cuyo máximo común divisor y mínimo común múltiplo designamos por D y M, respectivamente. Soluciones Viernes mañana Problema 1. Sean a 1, b 1 números naturales cuo máximo común divisor mínimo común múltiplo designamos por D M, respectivamente. Si a b son los respectivos cocientes obtenidos

Más detalles

Soluciones de los problemas del taller especial

Soluciones de los problemas del taller especial Soluciones de los problemas del taller especial Este taller fue preparado para satisfacer la inquietud de los docentes que solicitaron más capacitación Olimpiada Akâ Porâ Olimpiada Nacional de Matemáticas

Más detalles

Enunciados y Soluciones

Enunciados y Soluciones LIV Olimpiada matemática Española (Concurso Final) Enunciados Soluciones 1. Determina todos los enteros positivos x, tales que 2x + 1 sea un cuadrado perfecto, pero entre los números 2x + 2, 2x + 3,, 3x

Más detalles

4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES

4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES 4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES Y EL TEOREMA DE PITÁGORAS. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS. 4.1.1. El teorema de Thales y consecuencias. Thales de Mileto vivió hacia

Más detalles

CUARTO AÑO DE SECUNDARIA

CUARTO AÑO DE SECUNDARIA CUARTO AÑO DE SECUNDARIA Noviembre 011 Alumno(a): Colegio: En esta prueba se evalúan tres Capacidades y cinco destrezas. Para evaluar cada destreza utilizamos ejercicios que se puntúan según lo indicado.

Más detalles

PRIMERA ELIMINATORIA NACIONAL

PRIMERA ELIMINATORIA NACIONAL XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA MEP ITCR UCR UNA UNED - MICIT PRIMERA ELIMINATORIA NACIONAL NIVEL B 01 Estimado (a) estudiante: La Comisión de las Olimpiadas Costarricenses de Matemática 01

Más detalles

I Eliminatoria Determine el área sombreada en la figura adjunta. (a) 15. (b) 16. (c) 17. (d) 18

I Eliminatoria Determine el área sombreada en la figura adjunta. (a) 15. (b) 16. (c) 17. (d) 18 1. Determine el área sombreada en la figura adjunta 3 11 (a) 15 (b) 16 (c) 17 (d) 18. Un camión puede llevar 5 sacos de cemento o 00 de arroz. Si en un viaje colocan 1 sacos de cemento, cuantos sacos de

Más detalles

EXAMEN SEGUNDO NIVEL SOLUCIONARIO

EXAMEN SEGUNDO NIVEL SOLUCIONARIO XXVI OLIMPIADA COSTARRICENSE DE MATEMÁTICA UCR-UN A-IT CR-UN ED-MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL EXAMEN SEGUNDO NIVEL SOLUCIONARIO 2014 SOLUCIONARIO EXAMEN SEGUNDO NIVEL SEGUNDA ELIMINATORIA 2014

Más detalles

DETERMINANTES. Página 77 REFLEXIONA Y RESUELVE. Determinantes de orden 2

DETERMINANTES. Página 77 REFLEXIONA Y RESUELVE. Determinantes de orden 2 DETERMINANTES Página 77 REFLEXIONA Y RESUELVE Determinantes de orden 2 Resuelve los siguientes sistemas y calcula el determinante de cada matriz de coeficientes: 2x + y = 29 5x y = 8 a b x y = 5 0x + 6y

Más detalles

DÍA 2 SOLUCIONES BANCO DE PROBLEMAS. Nivel I (7 )

DÍA 2 SOLUCIONES BANCO DE PROBLEMAS. Nivel I (7 ) XXIX OLIMPIADA COSTARRICENSE DE MATEMÁTICA MEP - UNA - UCR - MICITT - UNED - TEC DÍA 2 SOLUCIONES BANCO DE PROBLEMAS Nivel I (7 ) Martes 14 de noviembre Final 2017 GEOMETRÍA 1. Considere el ABC y sean

Más detalles

4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES

4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES 4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES Y EL TEOREMA DE PITÁGORAS. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 4.1.1. El teorema de Thales y consecuencias. 4.1.1. El teorema

Más detalles

Soluciones del examen final estatal de la 24 a OLIMPIADA MEXICANA DE MATEMÁTICAS

Soluciones del examen final estatal de la 24 a OLIMPIADA MEXICANA DE MATEMÁTICAS Soluciones del examen final estatal de la 24 a OLIMPID MEXICN DE MTEMÁTICS 1 Como 01 9 = 45, que es múltiplo de 9, bastará ver si es posible lograr que un número con todos los dígitos sea múltiplo de 11

Más detalles

PRIMERA ELIMINATORIA. Nivel I (7 )

PRIMERA ELIMINATORIA. Nivel I (7 ) XXX OLIMPIADA COSTARRICENSE DE MATEMÁTICAS MEP - UNA - UCR - MICITT - UNED - TEC PRIMERA ELIMINATORIA (7 ) 2018 Estimado estudiante: La comisión de OLCOMA le saluda y le da la más cordial bienvenida a

Más detalles

= =. Cuál es el valor de (b a)?

= =. Cuál es el valor de (b a)? TERCERA RONDA - REGIONAL - 6 DE SETIEMBRE DE 2003 - NIVEL 1 Nombre y Apellido:................................. Grado:....... Sección:...... Puntaje:.......... Los dibujos correspondientes a problemas

Más detalles

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 7 Triángulos semejantes. Parte B. Fecha: Profesor: Fernando Viso

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 7 Triángulos semejantes. Parte B. Fecha: Profesor: Fernando Viso GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 7 Triángulos semejantes. Parte B. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual. Sin libros,

Más detalles

Unidad nº 6 Figuras planas 13

Unidad nº 6 Figuras planas 13 Unidad nº 6 Figuras planas 13 Cuestiones 3 1 Puede ser que la suma de los ángulos de un polígono sea 40º Justifica tu respuesta. Debería cumplirse 180º (n ) = 40º, que no se cumple para ningún valor entero

Más detalles

Geometría. Problemas de Semejanza. Olimpiada de Matemáticas en Tamaulipas

Geometría. Problemas de Semejanza. Olimpiada de Matemáticas en Tamaulipas Geometría Problemas de Semejanza Olimpiada de Matemáticas en Tamaulipas 1. Problemas Antes de comenzar con los problemas, es conveniente recordar o asegurarse que los olímpicos tienen presentes el tema

Más detalles

LIII OME - SEGUNDA PRUEBA FASE LOCAL, COMUNIDAD DE MADRID =

LIII OME - SEGUNDA PRUEBA FASE LOCAL, COMUNIDAD DE MADRID = LIII OME - SEGUND PUE FSE LOCL, COMUNIDD DE MDID 1 de diciembre de 016 1. El producto de dos números del conjunto {1,, 3,..., 6} es igual a la suma de los restantes. Encuentra dichos números. La suma de

Más detalles

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 6 Triángulos semejantes. Parte A. Fecha: Profesor: Fernando Viso

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 6 Triángulos semejantes. Parte A. Fecha: Profesor: Fernando Viso GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 6 Triángulos semejantes. Parte A. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual. Sin libros,

Más detalles

Números naturales y recursividad

Números naturales y recursividad Números naturales y recursividad Rafael F. Isaacs G. * Fecha: 12 de abril de 2004 Números naturales Cuál es el primer conjunto de números que estudiamos desde la escuela primaria? Se sabe que los números

Más detalles