T P Nº 7: TENSIONES Y DEFORMACIONES AXIALES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "T P Nº 7: TENSIONES Y DEFORMACIONES AXIALES"

Transcripción

1 ESTATICA Y RESISTENCIA DE MATERIALES (QUIMICA Y MINAS) T P Nº 7: TENSIONES Y DEFORMACIONES AXIALES 1) Dos cables de acero, AB y BC, sostiene una lámpara que pesa 15 lb. El cable AB tiene un ángulo α = 35 º con respecto la horizontal, mientras que el cable BC mantiene un ángulo β = 50 º- Ambos tiene un diámetro de 25 milipulgadas (1 milipulgada = 0,001 pulg). Determine los esfuerzos σ AB y σ BC en ambos cables. a) Puede un cable trabajar a compresión? Justifique. Si fuesen barras que estuvieren comprimidas, cuales son las condiciones adicionales a verificar a diferencia de una barra traccionada? Es diferente una tensión de compresión que otra de tracción? b) Todos los materiales se comportan igual a tracción que a compresión? c) En qué cambiaría la formulación del problema si cambiásemos la inclinación de los cables? 2) En la fig. se muestra la sección transversal de un pedestal de concreto cargado uniformemente a compresión. a) Determine el esfuerzo promedio de compresión σ c en el concreto si la carga es igual a 7,5 MN. b) Halle la coordenadas x G e y G del punto donde la carga resultante debe actuar para producir un esfuerzo normal uniforme. a) Qué puede pasar con el material si la carga resultante no se aplica en ese centroide? b) Con qué valor habría que comparar ese esfuerzo promedio para juagar el comportamiento del material? 1

2 3) Un vagón cargado por completo con peso de 110 kn, es jalado lentamente hacia arriba por una vía inclinada mediante un cable de acero. El cable tiene un área efectiva de 480 mm 2 y el ángulo de inclinación de la vía es de 32º. Cuál es el esfuerzo de tracción σ t en el cable? a) Es importante la inclinación del cable para determinar el valor del esfuerzo de tracción del cable? b) Cuáles son las opciones que tendríamos si consideramos que la tensión en el cable es demasiado alta? 4) Un muro de contención de gran longitud está sostenido por puntales de madera inclinados a 30º y soportados por travesaños de concreto como se muestra en la primera parte de la fig. Los puntales están espaciados uniformemente a 10 ft. Para fines de análisis, el muro y los puntales se idealizan como se ve en la segunda parte de la fig., suponiendo que la base del muro y ambos extremos de los puntales están articulados. La presión del suelo contra el muro se supone triangularmente distribuida y la fuerza resultante que actúa sobre una longitud de 3 m de muro es F = 45 k. Si cada puntal tiene una sección transversal cuadrada de 6 in x 6 in. Cuál es el esfuerzo de compresión σ c en los puntales? a) Supongamos que consideremos que la tensión que soporta cada puntal es excesiva. Cuáles son las variables que tenemos dentro del problema para poder bajar ese valor? b) Es razonable la simplificación que realiza el problema acerca del tipo de vínculo que se establece para cada puntal? c) Piense en un esquema para el muro en el cual podría eliminarse los puntales. 2

3 5) Un poste circular sólido ABC soporta una carga P 1 = 1600 lb en su parte superior. Otra carga P 2 está distribuida de manera uniforme alrededor del soporte en B. Los diámetros de las partes superior e inferior del poste son d AB = 1.2 in y d BC = 2,4 in, respectivamente. a) Calcule el esfuerzo normal σ AB en la parte superior del poste. b) Si se desea que la parte inferior del poste tenga el mismo esfuerzo de compresión que la parte superior. Cuál debe ser la magnitud de la carga P 2? a) Qué dato significativo falta consignar en este problema para que se tomen determinaciones o análisis acerca de su comportamiento mecánico? 6) Una pértiga de acero con 30 m de largo cuelga dentro de una torre y sostiene un peso de 900 N en su extremo inferior. Si el diámetro de la pértiga circular es de 6 mm, calcule el esfuerzo normal máximo σ máx para ella, tomando en cuenta su propio peso. Tomar δ = 82 Kn/m 3 como peso específico. Determinar su deformación, considerando un valor de E = 200 GPa. 3

4 a) Es el mismo el valor de la tensión de trabajo en el tubo en toda su longitud? En ese caso, en qué lugar del tubo se produce la máxima tensión? b) En qué influye la longitud de la barra? 7) Tres materiales diferentes A, B Y C son probados a tracción usando probetas con diámetros de 12 mm y longitudes calibradas de 50 mm. En la falla, las distancias entre las marcas de calibración son de 54,5; 63,2 y 69.4 mm, respectivamente, y los diámetros son de 11,46, 9,48 y 6,06 mm, respectivamente, en las secciones transversales de falla. Determine el porcentaje de alargamiento y el porcentaje de reducción del área en cada probeta y luego, usando su juicio, clasifique cada material como frágil o dúctil. a) Qué ventaja puede tener para un ingeniero el hecho de estar trabajando con un material de comportamiento dúctil en lugar de frágil? b) Piense en dos ejemplos de un material dúctil y en otros dos ejemplos de materiales eminentemente frágiles c) Le parece que el coeficiente de seguridad de un material dúctil debe de ser el mismo que para uno frágil? Justifique d) Todos los materiales poseen un escalón de fluencia? En ese caso la tensión de fluencia, es importante en todos los materiales? 8) a) Una barra con 0,8 m de longitud está hecha de acero estructural cuya curva esfuerzo-deformación unitaria se ve en la figura. El esfuerzo de fluencia del acero es de 250 MPa., y la pendiente de la parte inicial lineal de la curva esfuerzodeformación unitaria (módulo de elasticidad) es de 200 GPa. La barra se carga axialmente hasta que se alarga 2,5 mm y luego se retira la carga. Qué relación hay entre la longitud final de la barra y su longitud original? 4

5 a) Qué datos importantes puede obtener de un ensayo como el de la figura? b) En particular, qué característica presenta este material en el análisis de este ensayo? b) Una barra circular, hecha con una aleación de aluminio, tiene 750 mm de longitud. El diagrama esfuerzo-deformación unitaria para este material se muestra en la figura subsecuente. La barra se carga en tracción hasta que se alarga 4,5 mm y entonces se descarga. Cuál es su deformación permanente? Si la barra se carga nuevamente, Cuál es su límite proporcional? a) Qué diferencia fundamental puede observar al analizar los dos ensayos (si es que las hubiere según su criterio)? 9) Una barra prismática de sección transversal circular está cargada por fuerzas de tracción P. La barra tiene una longitud L = 3 m y un diámetro d = 30 mm. Está hecha de una aleación de aluminio (2014 T6) con módulo de elasticidad E = 73 GPa y razón de Poisson ע = 1/3. Si la barra se alarga 7,3 mm. Cuánto se reduce su diámetro d? Cuál es la magnitud de la carga P? a) Qué significado físico admite el módulo de Poisson? b) Todos los materiales tiene el mismo valor del módulo de Poisson? 10) Los rieles de una vía de tren se sueldan en sus extremos (con el objeto de formar un riel continuo y eliminar el golpeteo de las ruedas del tren) cuando la temperatura es de 50º F. Qué esfuerzo σ de compresión se produce en los rieles 5

6 cuando el sol los calienta a 125 º F, si el coeficiente de dilatación térmica es α = 6,5 x 10-6 /ºF y el módulo de elasticidad es E = 30 X 10 6 psi? a) Qué significado físico tiene el coeficiente de dilatación térmica? Es el mismo para todos los materiales? b) Enumere algunos materiales que tiene un alto valor de α. PROBLEMAS OPCIONALES 11) Una barra a compresión de sección cuadrada de ancho b debe soportar una carga P = 8000 lb. La barra está construida de dos piezas por una junta unida con pegamento (lo que se llama junta charpada o biselada) a lo largo del plano pq, que forma un ángulo α = 40 º con la vertical. La barra es de un plástico estructural para el cual los esfuerzos permisibles en compresión son psi y en cortante, 600 psi. Además, los esfuerzos permisibles en la junta pegada son 750 psi en compresión y 500 psi en cortante. Hay que determinar el ancho mínimo b de la barra 6

7 12) La armadura ABC de dos barras de la fig. tiene soportes articulados en los puntos A y C, a 2 m de distancia entre ellos. Los miembros AB y BC son barras de acero interconectadas por un pasador en el nudo B, La longitud de la barra BC es de 3 m. Un letrero que pesa 5,4 kn está suspendido de la barra BC en los puntos D y E, que se encuentran a 0,8 y 0,4 m, respectivamente, desde los extremos de la barra. Definir el área transversal requerida en la barra AB si el esfuerzo permisible en tracción es de 125 MPa. 7

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 9: TENSION Y DEFORMACION AXIAL SIMPLE

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 9: TENSION Y DEFORMACION AXIAL SIMPLE ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 9: TENSION Y DEFORMACION AXIAL SIMPLE 1- Una barra prismática de sección transversal circular está cargada por fuerzas P, de acuerdo a la figura siguiente.

Más detalles

COMISION DE INGENIERIA QUIMICA y EN MINAS

COMISION DE INGENIERIA QUIMICA y EN MINAS 1 COMISION DE INGENIERIA QUIMICA y EN MINAS TRABAJOPRACTICO Nro. 5- TENSION Y DEFORMACION AXIAL PURA 1- La figura muestra un pedestal diseñado para soportar cargas dirigidas hacia abajo. Calcule la tensión

Más detalles

T P Nº 8: TENSION DE CORTE SIMPLE

T P Nº 8: TENSION DE CORTE SIMPLE ESTATICA Y RESISTENCIA DE MATERIALES (QUIMICA Y MINAS) T P Nº 8: TENSION DE CORTE SIMPLE 1) Un puntal S de acero que sirve como riostra a un malacate marino transmite una fuerza P de compresión de 54 kn

Más detalles

UNIVERSIDAD DIEGO PORTALES Facultad de Ingeniería Departamento de Ingeniería Industrial

UNIVERSIDAD DIEGO PORTALES Facultad de Ingeniería Departamento de Ingeniería Industrial ASIGNATURA: RESISTENCIA DE MATERIALES GUÍA N 1: ESFUERZOS Y DEFORMACIONES NORMALES 1.- Sabiendo que la fuerza en la barra articulada AB es 27 kn (tensión), hallar (a) el diámetro d del pasador para el

Más detalles

TRABAJO PRÁCTICO Nº 13 FLEXION PURA

TRABAJO PRÁCTICO Nº 13 FLEXION PURA TRABAJO PRÁCTICO Nº 13 FLEXION PURA 1 Una viga tiene una sección transversal rectangular y está sometida a la distribución de esfuerzos que se muestra en la fig. Determinar el momento interno M en la sección

Más detalles

COMISION DE INGENIERIA QUIMICA

COMISION DE INGENIERIA QUIMICA COMISION DE INGENIERIA QUIMICA TRABAJOPRACTICO Nro. 6- CORTE PURO Y TENSION DE APLASTAMIENTO 1. En la figura se ve un punzón para perforar placas de acero. Supóngase que se usa un punzón con diámetro de

Más detalles

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 9.1.- Dos hilos metálicos, uno de acero y otro de aluminio, se cuelgan independientemente en posición vertical. Hallar la longitud

Más detalles

Tema 5 TRACCIÓN-COMPRESIÓN

Tema 5 TRACCIÓN-COMPRESIÓN Tema 5 TRACCIÓN-COMPRESIÓN Problema 5.1 Obtenga el descenso del centro de gravedad de la barra, de longitud L, de la figura sometida a su propio peso y a la fuerza que se indica. El peso específico es

Más detalles

El esfuerzo axil. Contenidos

El esfuerzo axil. Contenidos Lección 8 El esfuerzo axil Contenidos 8.1. Distribución de tensiones normales estáticamente equivalentes a esfuerzos axiles.................. 104 8.2. Deformaciones elásticas y desplazamientos debidos

Más detalles

RESISTENCIA DE MATERIALES PROBLEMAS RESUELTOS. Mohamed Hamdy Doweidar

RESISTENCIA DE MATERIALES PROBLEMAS RESUELTOS. Mohamed Hamdy Doweidar RESISTENCIA DE MATERIALES PROBLEMAS RESUELTOS Mohamed Hamdy Doweidar Diseño Portada e impresión.- [ stylo@stylodigital.com ] impreso en España / printed in Spain Depósito Legal: Z-1541-017 ISBN: 978-84-1685-8-8

Más detalles

Por métodos experimentales se determina el estado biaxial de tensiones en una pieza de aluminio en las direcciones de los ejes XY, siendo estas:

Por métodos experimentales se determina el estado biaxial de tensiones en una pieza de aluminio en las direcciones de los ejes XY, siendo estas: Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDAD DE JAÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1 Si la sección de un perfil metálico es la que aparece en la figura, suponiendo que la chapa que une los círculos es de espesor e inercia despreciables, determina la relación entre las secciones A 1 y A

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 3. Propiedades mecánicas 3.1 Ensayos de esfuerzo - deformación unitaria Materiales Ley de esfuerzo cortante - deformación

Más detalles

Consignas de reflexión a) Defina el concepto de momento torsor. b) Cómo se distribuyen las tensiones de corte en la sección transversal de la llave?

Consignas de reflexión a) Defina el concepto de momento torsor. b) Cómo se distribuyen las tensiones de corte en la sección transversal de la llave? TRABAJO PRACTICO Nro. 8- TORSION 1) a ) Para la llave de la fig. calcule la magnitud del par de torsión aplicado al perno si se ejerce una fuerza de 50 N en un punto a 250 mm del eje de la caja. b) Calcule

Más detalles

PROBLEMAS DE RESISTENCIA DE MATERIALES I GRUPOS M1 YT1 CURSO

PROBLEMAS DE RESISTENCIA DE MATERIALES I GRUPOS M1 YT1 CURSO PROBLEMAS DE RESISTENCIA DE MATERIALES I GRUPOS M1 YT1 CURSO 2010-11 9.1.- Una viga indeformable de longitud 4 m, de peso despreciable, está suspendida por dos hilos verticales de 3 m de longitud. La viga

Más detalles

ESTATICA Y RESISTENCIA DE MATERIALES (QUIMICA Y MINAS)

ESTATICA Y RESISTENCIA DE MATERIALES (QUIMICA Y MINAS) ESTATICA Y RESISTENCIA DE MATERIALES (QUIMICA Y MINAS) T P Nº 9: TORSION 1) Calcule el esfuerzo cortante torsional que se produciría en una flecha circular sólida de 20 mm de diámetro cuando se somete

Más detalles

Deformación técnica unitaria (in/in)

Deformación técnica unitaria (in/in) UNIVERSIDAD DON BOSCO CIENCIA DE LOS MATERIALES FACULTAD DE INGENIERÍA UNIDAD 2: PROPIEDADES MECANICAS ESCUELA DE INGENIERÍA MECANICA JULIO DE 2010 PROBLEMAS: 1.- La siguiente tabla de datos de un ensayo

Más detalles

2. Un ensayo de tracción lo realizamos con una probeta de 15 mm de diámetro y longitud inicial de 150 mm. Los resultados obtenidos han sido:

2. Un ensayo de tracción lo realizamos con una probeta de 15 mm de diámetro y longitud inicial de 150 mm. Los resultados obtenidos han sido: PROBLEMAS ENSAYOS 1. Un latón tiene un módulo de elasticidad de 120 GN/m 2 y un límite elástico de 250 10 6 N/m 2. Una varilla de este material de 10 mm 2 de sección y 100 cm de longitud está colgada verticalmente

Más detalles

TRABAJO PRÁCTICO NRO. 8: SOLICITACIONES DE FLEXIÓN PURA

TRABAJO PRÁCTICO NRO. 8: SOLICITACIONES DE FLEXIÓN PURA TRABAJO PRÁCTICO NRO. 8: SOLICITACIONES DE FLEXIÓN PURA 1) Los elementos ABC y BD de la silla mostrada están rígidamente conectados en B y el collarín liso en D puede moverse con libertad a lo largo de

Más detalles

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO PROBEMAS DE RESISTENCIA DE MATERIAES MÓDUO 5: FEXIÓN DE VIGAS CURSO 016-17 5.1( ).- Halle, en MPa, la tensión normal máxima de compresión en la viga cuya sección y diagrama de momentos flectores se muestran

Más detalles

Estructuras hiperestáticas.

Estructuras hiperestáticas. RESISTENCIA DE MATERIALES. ESTRUCTURAS BOLETÍN DE PROBLEMAS Tema 10 BLOQUE 1. ESTRUCTURAS HIPERESTÁTICAS POR AXIL Estructuras hiperestáticas. Problema 1 Tenemos un pilar formado por una sección rectangular

Más detalles

10. (B 1.52) Se desea considerar un diseño alterno para dar soporte al elemento BCF del problema anterior, por lo que se reemplazará

10. (B 1.52) Se desea considerar un diseño alterno para dar soporte al elemento BCF del problema anterior, por lo que se reemplazará TALLER Solucione los siguientes ejercicios teniendo en cuenta, antes de resolver cada ejercicio, los pasos a dar y las ecuaciones a utilizar. Cualquier inquietud enviarla a juancjimenez@utp.edu.co o personalmente

Más detalles

CIENCIA E INGENIERÍA DE MATERIALES. Grado en Ingeniería de Organización Industrial. Curso 2014/15 3ª RELACIÓN DE EJERCICIOS

CIENCIA E INGENIERÍA DE MATERIALES. Grado en Ingeniería de Organización Industrial. Curso 2014/15 3ª RELACIÓN DE EJERCICIOS CIENCIA E INGENIERÍA DE MATERIALES Grado en Ingeniería de Organización Industrial. Curso 2014/15 3ª RELACIÓN DE EJERCICIOS 1. Se aplica una carga de 20 kn a una barra de hierro con una sección transversal

Más detalles

CAPITULO 2 DISEÑO DE MIEMBROS EN TRACCIÓN Y COMPRESIÓN SIMPLES

CAPITULO 2 DISEÑO DE MIEMBROS EN TRACCIÓN Y COMPRESIÓN SIMPLES CAPITULO 2 DISEÑO DE MIEMBROS EN TRACCIÓN Y COMPRESIÓN SIMPLES Fig. 2.a Cuando se estudia el fenómeno que ocasionan las fuerzas normales a la sección transversal de un elemento, se puede encontrar dos

Más detalles

4. Una viga es mantenida en la posición mostrada en la figura. 5. Una viga es sometida a la carga F = 400N y es mantenida

4. Una viga es mantenida en la posición mostrada en la figura. 5. Una viga es sometida a la carga F = 400N y es mantenida 1. Los cilindros lisos A y B tienen masas de 100 y 30 kg, respectivamente. (a) calcule todas las fuerzas que actúan sobre A cuando la magnitud de la fuerza P = 2000 N, (b) Calcule el valor máximo de la

Más detalles

PROPIEDADES ESTRUCTURALES I SEMINARIO Nº 7: FRACTURA GUÍA DE REPASO

PROPIEDADES ESTRUCTURALES I SEMINARIO Nº 7: FRACTURA GUÍA DE REPASO PROPIEDADES ESTRUCTURALES I - 2013 SEMINARIO Nº 7: FRACTURA GUÍA DE REPASO Problema 1. A partir de los datos de la figura 1: a) Obtenga los valores aproximados de tenacidad a la fractura K IC para un acero

Más detalles

1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático.

1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 2. El bloque A, cuyo peso es de 90N, se sostiene en la posición mostrada. Determinar el peso del

Más detalles

T P N 7- CORTE PURO Y TENSION DE APLASTAMIENTO

T P N 7- CORTE PURO Y TENSION DE APLASTAMIENTO COMISION DE INGENIERIA QUIMICA T P N 7- CORTE PURO Y TENSION DE APLASTAMIENTO 1. En la figura se ve un punzón para perforar placas de acero. Supóngase que se usa un punzón con diámetro de 0,75 in para

Más detalles

2- Propiedades Mecánicas de los Materiales

2- Propiedades Mecánicas de los Materiales 2- Propiedades Mecánicas de los Materiales Prof. JOSÉ BENJUMEA ROYERO Ing. Civil, Magíster en Ing. Civil 1 Contenido 2. Propiedades mecánicas de los materiales 2.1 Ensayos de materiales para conocer sus

Más detalles

ESTABILIDAD II A Ejercicios No Resueltos: SOLICITACION AXIL en régimen elástico

ESTABILIDAD II A Ejercicios No Resueltos: SOLICITACION AXIL en régimen elástico A continuación, ejercicios no resueltos para los alumnos de la materia Estabilidad II A, los mismos fueron extraídos del libro: Resistencia de Materiales. Autor: Luis Ortiz Berrocal. Ejercicio n 1: Calcular

Más detalles

TITULACIÓN: INGENIERO TÉCNICO DE MINAS (PRIMERA PARTE)

TITULACIÓN: INGENIERO TÉCNICO DE MINAS (PRIMERA PARTE) EXAMEN DE TEORÍA DE ESTRUCTURAS 03-09-2009 E.T.S.I. MINAS U.P.M. TITULACIÓN: INGENIERO TÉCNICO DE MINAS (PRIMERA PARTE) Duración: 1 hora 15 minutos Fecha de publicación de las calificaciones provisionales:

Más detalles

UNIVERSIDAD DE CARABOBO FACULTAD DE INGENIERÍA CÁTEDRA DE RESISTENCIA DE MATERIALES PROFESOR: AQUILINO RODRÍGUEZ

UNIVERSIDAD DE CARABOBO FACULTAD DE INGENIERÍA CÁTEDRA DE RESISTENCIA DE MATERIALES PROFESOR: AQUILINO RODRÍGUEZ UNIVERSIDAD DE CARABOBO FACULTAD DE INGENIERÍA CÁTEDRA DE RESISTENCIA DE MATERIALES PROFESOR: AQUILINO RODRÍGUEZ II- RESISTENCIA DE MATERIALES: DEFINICION DE DEFORMACION SIMPLE Deformación Total o Absoluta

Más detalles

PRÁ CTICO 4: TEORI ÁS DE FÁLLÁ Y CONCENTRÁDORES DE ESFUERZOS

PRÁ CTICO 4: TEORI ÁS DE FÁLLÁ Y CONCENTRÁDORES DE ESFUERZOS PRÁ CTICO 4: TEORI ÁS DE FÁLLÁ Y CONCENTRÁDORES DE ESFUERZOS 1. El dibujo de la figura muestra una combinación de pluma de brazo con un tensor que soporta una carga de 6kN. Ambas piezas están hechas de

Más detalles

Regresar Wikispaces. Siglo XXI

Regresar Wikispaces. Siglo XXI ísica IV 1 Serie de uerza y Estática Regresar ikispaces Siglo XXI 1. Un cuerpo de 25 kp cuelga del extremo de una cuerda. Hallar la aceleración de dicho cuerpo si la tensión en la cuerda es de: a) 25 kp

Más detalles

400 kn. A 1 = 20 cm 2. A 2 = 10 cm kn

400 kn. A 1 = 20 cm 2. A 2 = 10 cm kn Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDD DE JÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación

Más detalles

CAPÍTULO VIII ESFUERZO Y DEFORMACIÓN

CAPÍTULO VIII ESFUERZO Y DEFORMACIÓN CÍTUO VIII ESUERZO Y DEORMCIÓN 8.1. Esfuerzo l aplicar un par de fuerzas a un sólido de área, es posible definir el esfuerzo ingenieril i como: i que se expresa en: Ma, kg/mm, kg/cm, N/m, lbf/in f igura

Más detalles

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS Tecnología. Enunciados Ejercicios. ESTÁTICA-ESTRUCTURAS. Página 0 σ: tensiones (kp/cm 2 ) ε: deformaciones (alargamientos unitarios) σ t = σ adm : tensión de

Más detalles

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 14.1.- Se considera un soporte formado por un perfil de acero A-42 IPN 400 apoyado-empotrado, de longitud L = 5 m. Sabiendo

Más detalles

TEMA: Materiales. Ensayos.

TEMA: Materiales. Ensayos. TEMA: Materiales. Ensayos. 1.- En un ensayo Charpy, se deja caer una maza de 25 kg desde una altura de 1,20 m. Después de romper la probeta el péndulo asciende una altura de 50 cm. Datos: La probeta es

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2015-1 2 Capítulo 4. Carga axial elástica de un miembro. Miembros s, estáticamente s.. 3 1.1 elástica de un miembro El esfuerzo es un medio

Más detalles

ELASTICIDAD PREGUNTAS. 1. Explique que representa él modulo de rigidez de un sólido. 2. Qué significa él límite elástico de una barra de acero?

ELASTICIDAD PREGUNTAS. 1. Explique que representa él modulo de rigidez de un sólido. 2. Qué significa él límite elástico de una barra de acero? ELASTICIDAD PREGUNTAS 1. Explique que representa él modulo de rigidez de un sólido. 2. Qué significa él límite elástico de una barra de acero? 3. Dos alambres hechos de metales A y B, sus longitudes y

Más detalles

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO siempre mayor que el real (σ nz /ε z > E). 1-9-99 UNIDAD DOCENTE DE ELASTICIDAD Y RESISTENCIA DE MATERIALES PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-000 3.1.- Un eje de aluminio

Más detalles

PRÁ CTICO 1 INTRODUCCIO N Á CMM 2

PRÁ CTICO 1 INTRODUCCIO N Á CMM 2 PRÁ CTICO 1 INTRODUCCIO N Á CMM 2 1. El dibujo muestra un reductor de engranajes cónicos impulsado por un motor de 1800 rpm que suministra un par de torsión de 10 Nm. La salida impulsa una carga a 600

Más detalles

Material 2. Fig. 12. Barra compuesta de dos materiales

Material 2. Fig. 12. Barra compuesta de dos materiales 5. Elementos Compuestos de Materiales Diferentes Considérese un elemento compuesto por dos o más materiales (elemento de sección transversal no homogénea), y supóngase que este elemento se somete a la

Más detalles

Grado en Ingeniería Mecánica EXAMEN FINAL DE MECÁNICA DE SÓLIDOS (20/01/2014) Nombre y Apellidos: NIA:

Grado en Ingeniería Mecánica EXAMEN FINAL DE MECÁNICA DE SÓLIDOS (20/01/2014) Nombre y Apellidos: NIA: Grado en Ingeniería Mecánica EXAMEN FINAL DE MECÁNICA DE SÓLIDOS (20/01/2014) Nombre y Apellidos: NIA: Problema 1 (Duración 45 minutos) (Puntuación máxima: 2.5 puntos) La estructura de la figura está compuesta

Más detalles

CAPÍTULO VIII. DATOS DE LOS MATERIALES PARA EL PROYECTO

CAPÍTULO VIII. DATOS DE LOS MATERIALES PARA EL PROYECTO TÍTULO 4.º DIMENSIONAMIENTO Y COMPROBACION CAPÍTULO VIII. DATOS DE LOS MATERIALES PARA EL PROYECTO Artículo 32.º Datos de proyecto del acero estructural 32.1. Valores de cálculo de las propiedades del

Más detalles

PROPIEDADES MECÁNICAS

PROPIEDADES MECÁNICAS La selección de un material significa adecuar sus propiedades mecánicas a las condiciones de servicio requeridas para el componente. Se requiere analizar la aplicación a fin de determinar las características

Más detalles

CURSO DE MECANICA APLICADA MATERIALES Y SU ENSAYO

CURSO DE MECANICA APLICADA MATERIALES Y SU ENSAYO CURSO DE MECANICA APLICADA MATERIALES Y SU ENSAYO Actividad práctica Nº 2 y 3 2017 8 Ensayos Ejercicio Nº 1: Realizando un ensayo de tracción sobre una probeta de sección circular de acero SAE 1010 se

Más detalles

Mecánica de Sólidos. UDA 2: Miembros Cargados Axialmente.

Mecánica de Sólidos. UDA 2: Miembros Cargados Axialmente. Mecánica de Sólidos UDA 2: Miembros Cargados Axialmente. UDA 2: Estructuras sometidas a Cargas Axiales Principio de Saint Venant Debido a la carga, la barra se deforma como lo indican las línes dibujadas

Más detalles

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f 1) Se utiliza una barra de acero de sección rectangular para transmitir cuatro cargas axiales, según se indica en la figura.

Más detalles

ɛ = ᶩ / ᶩ, de donde se deduce, teniendo en

ɛ = ᶩ / ᶩ, de donde se deduce, teniendo en TRABAJO PRÁCTICO N 12 Determinación del módulo de elasticidad E de un acero utilizando un extensómetro. CONSIDERACIONES TEÓRICAS GENERALES. Según la ley de Hooke las deformaciones unitarias son proporcionales

Más detalles

PROBLEMA 1. Se pide: 1. Calcular para una confiabilidad del 95 % el valor máximo que puede tomar F para que la pieza tenga vida infinita.

PROBLEMA 1. Se pide: 1. Calcular para una confiabilidad del 95 % el valor máximo que puede tomar F para que la pieza tenga vida infinita. PROBLEMA 1 La pieza de la figura, que ha sido fabricada con acero forjado de resistencia última 750 MPa y densidad 7850 kg/m 3, sirve intermitentemente de soporte a un elemento de máquina, de forma que

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2015-2 2 Capítulo 1. s 1.1 1.2 Equilibrio de un cuerpo deformable 1.3 1.4 promedio 1.5 promedio 1.6 (admisible) 1.7 simples 3 1.1 La Resistencia

Más detalles

EJERCICIOS SOBRE ENSAYOS. SELECTIVIDAD

EJERCICIOS SOBRE ENSAYOS. SELECTIVIDAD EJERCICIOS SOBRE ENSAYOS. SELECTIVIDAD 50.- En un ensayo Charpy, se deja caer una maza de 25 Kg desde una altura de 1,20 m. Después de romper la probeta el péndulo asciende una altura de 50 cm. Datos:

Más detalles

CUANTOS TIPOS DE APOYO, NUDOS O SOPORTES SE PUEDEN IDENTIFICAR O CONSTRUIR UNA ESTRUCTURA?

CUANTOS TIPOS DE APOYO, NUDOS O SOPORTES SE PUEDEN IDENTIFICAR O CONSTRUIR UNA ESTRUCTURA? DEFINICION DE FUERZA AXIAL. Cuando suponemos las fuerzas internas uniformemente distribuidas, se sigue de la estática elemental que la resultante P de las fuerzas internas debe estar aplicadas en el centroide

Más detalles

Mecánica de Sólidos - Torsión. 4- Torsión. Prof. JOSÉ BENJUMEA ROYERO Ing. Civil, Magíster en Ing. Civil

Mecánica de Sólidos - Torsión. 4- Torsión. Prof. JOSÉ BENJUMEA ROYERO Ing. Civil, Magíster en Ing. Civil 4- Torsión Prof. JOSÉ BENJUMEA ROYERO Ing. Civil, Magíster en Ing. Civil Contenido 4. Torsión 4.1 Hipótesis básicas. Elementos de sección recta circular. Esfuerzos generados por efectos de torsión. 4.2

Más detalles

Examen de TECNOLOGIA DE MAQUINAS Febrero 95 Nombre...

Examen de TECNOLOGIA DE MAQUINAS Febrero 95 Nombre... Examen de TECNOLOGIA DE MAQUINAS Febrero 95 Nombre... El tornillo de la junta de la figura es M-10 y calidad 8G. La pieza tiene una altura de 1 cm y su diámetro es doble que el del tornillo. Los módulos

Más detalles

Contenido " '* Prefacio. Alfabeto griego

Contenido  '* Prefacio. Alfabeto griego Contenido Prefacio Símbolos ix Xlll Alfabeto griego XVI ""' y 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Introducción a la mecánica de materiales 1 Esfuerzo y defonnación unitaria normales 3 Propiedades mecánicas

Más detalles

T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS

T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS 1- Analice la deformada de cada uno de los casos presentados en la figura inferior. Responda a las siguientes consignas: a) Cuál es la parte de la viga (superior

Más detalles

ENSAYO DE TENSIÓN PARA METALES. Determinar el comportamiento de un metal cuando es sometido a esfuerzos axiales de tensión.

ENSAYO DE TENSIÓN PARA METALES. Determinar el comportamiento de un metal cuando es sometido a esfuerzos axiales de tensión. ENSAYO DE TENSIÓN PARA METALES 1. OBJETIVO 1.1 Objetivo general. Determinar el comportamiento de un metal cuando es sometido a esfuerzos axiales de tensión. 1.2 Objetivos Específicos Conocer las normas

Más detalles

Tema 6.3 FLEXIÓN HIPERESTÁTICA

Tema 6.3 FLEXIÓN HIPERESTÁTICA Tema 6.3 Nota: A continuación se muestra el sistema de coordenadas de todos los problemas donde se definen las condiciones de contorno. Problema 6.3.1 Una viga de 12 m de longitud está construida con una

Más detalles

Sabiendo que las constantes del material son E = Kg/cm 2 y ν = 0.3, se pide:

Sabiendo que las constantes del material son E = Kg/cm 2 y ν = 0.3, se pide: Elasticidad resistencia de materiales Tema 2.3 (Le de Comportamiento) Nota: Salvo error u omisión, los epígrafes que aparecen en rojo no se pueden hacer hasta un punto más avanzado del temario Problema

Más detalles

Taller estática. Figure 2: Figure 1:

Taller estática. Figure 2: Figure 1: Taller estática 1. Dos varillas de control están unidas en A a la palanca AB, como lo muestra la figura 1. Sabiendo que la fuerza en la varilla de la derecha es F 2 = 20 lb, determine a) la fuerza F 1,

Más detalles

Tecnología Ensayos tecnológicos

Tecnología Ensayos tecnológicos Tecnología Ensayos tecnológicos 1. Consulta la escala de Mohs y determina el valor de dureza de un material capaz de rayar el cuarzo y que es rayado por el topacio. 2. Determina la dureza Martens del acero

Más detalles

8. Ensayos con materiales

8. Ensayos con materiales 8. Ensayos con materiales Los materiales de interés tecnológico se someten a una variedad de ensayos para conocer sus propiedades. Se simulan las condiciones de trabajo real y su estudia su aplicación.

Más detalles

Mecánico de los materiales

Mecánico de los materiales Materiales de Ingeniería Química Capitulo 6 Propiedades y Comportamiento Mecánico de los materiales Prof. Juan P. Urbina C. Mérida, 05 de Junio de 2009 Esfuerzo y deformación Esfuerzo: es la fuerza que

Más detalles

FISICA II PARA INGENIEROS

FISICA II PARA INGENIEROS FISICA II PARA INGENIEROS INTRODUCCION INGENIERIA La Ingeniería es el conjunto de conocimientos y técnicas científicas aplicadas a la creación, perfeccionamiento e implementación de estructuras (tanto

Más detalles

RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA ESFUERZOS COMBINADOS

RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA ESFUERZOS COMBINADOS RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA FLEXION Y AXIAL 2013 roberto.ortega.a@usach.cl RESISTENCIA DE MATERIALES I ICM FLEXION Y AXIAL 2013 roberto.ortega.a@usach.cl RESISTENCIA DE MATERIALES

Más detalles

CONSIDERACIONES PARA EL DISEÑO

CONSIDERACIONES PARA EL DISEÑO CAPITULO II CONSIDERACIONES PARA EL DISEÑO 1.- ACCIONES SOBRE LAS ESTRUCTURAS 1.1.- Acciones a considerar sobre las estructuras Las acciones a tener en cuenta sobre una estructura o elemento estructural,

Más detalles

2014 RESISTENCIA DE MATERIALES I ICM RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA ESFUERZOS COMBINADOS

2014 RESISTENCIA DE MATERIALES I ICM RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA ESFUERZOS COMBINADOS RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA FLEXION Y AXIAL 2014 roberto.ortega.a@usach.cl RESISTENCIA DE MATERIALES I ICM FLEXION Y AXIAL 2014 roberto.ortega.a@usach.cl RESISTENCIA DE MATERIALES

Más detalles

Análisis de Tensiones.

Análisis de Tensiones. RESISTENCIA DE MATERIALES. ESTRUCTURAS BOLETÍN DE PROBLEMAS Tema 8 Análisis de Tensiones. Problema 1 Se tiene una estructura perteneciente a un graderío que soporta una carga de 1 tonelada en el punto

Más detalles

Curso: RESISTENCIA DE MATERIALES 1

Curso: RESISTENCIA DE MATERIALES 1 Curso: RESISTENCIA DE MATERIALES 1 Módulo 2: Fuerza axial y dimensionado Luis Segura (lsegura@fing.edu.uy) 2º Semestre - 2015 Universidad de la República - Uruguay Módulo 2 2º Semestre 2015 Luis Segura

Más detalles

Determinación de la Tensión Adm.de una barra de acero por medio del diagrama.

Determinación de la Tensión Adm.de una barra de acero por medio del diagrama. TRABAJO PRÁCTICO N 7 Determinación de la Tensión Adm.de una barra de acero por medio del diagrama. CONSIDERACIONES TEÓRICAS GENERALES Se denomina tracción axial al caso de solicitación de un cuerpo donde

Más detalles

Calcular la energía de deformación de la viga de rigidez constante EI, simplemente apoyada, indicada en la figura.

Calcular la energía de deformación de la viga de rigidez constante EI, simplemente apoyada, indicada en la figura. 11.29.- Calcular la energía de deformación de la viga de rigidez constante EI, simplemente apoyada, indicada en la figura. 30-6-98 11.30.- Calcular en Julios el potencial interno de una viga en voladizo

Más detalles

TEMA 5. PROPIEDADES MECÁNICAS ESTRUCTURA DEL TEMA CTM PROPIEDADES MECÁNICAS

TEMA 5. PROPIEDADES MECÁNICAS ESTRUCTURA DEL TEMA CTM PROPIEDADES MECÁNICAS TEMA 5. PROPIEDADES MECÁNICAS Prácticamente todos los materiales, cuando están en servicio, están sometidos a fuerzas o cargas externas El comportamiento mecánico del material es la respuesta a esas fuerzas;

Más detalles

El diseño de un estructura. Tendra la suficiente rigidez para que las deformaciones no sean excesivas e inadmisibles?

El diseño de un estructura. Tendra la suficiente rigidez para que las deformaciones no sean excesivas e inadmisibles? PROPIEDADES DE LOS MATERIALES. Unidad. Propiedades mecánicas de los materiales. El elemento es resistente a las cargas aplicadas? El diseño de un estructura. Tendra la suficiente rigidez para que las deformaciones

Más detalles

ESTATICA Y RESISTENCIA DE MATERIALES (QUIMICA Y MINAS) T P Nº 1: SISTEMAS DE FUERZAS

ESTATICA Y RESISTENCIA DE MATERIALES (QUIMICA Y MINAS) T P Nº 1: SISTEMAS DE FUERZAS ESTATICA Y RESISTENCIA DE MATERIALES (QUIMICA Y MINAS) T P Nº 1: SISTEMAS DE FUERZAS Fuerzas Concurrentes 1) Se arrastra una embarcación aguas arriba en la forma indicada en la fig. La resultante R de

Más detalles

T P N 1: Sistemas de Fuerzas

T P N 1: Sistemas de Fuerzas T P N 1: Sistemas de Fuerzas 1) Un lanchón es arrastrado por dos remolcadores. Si la resultante de las fuerzas ejercidas por los remolcadores es una fuerza de 5000 lb dirigida a lo largo del eje del lanchón.

Más detalles

Criterios de plasticidad y de rotura

Criterios de plasticidad y de rotura Lección 5 Criterios de plasticidad y de rotura Contenidos 5.1. Criterio de plasticidad para materiales sujetos a un estado triaxial de tensiones................... 64 5.2. Criterio de plasticidad de Von

Más detalles

PROBL EMAS. *3-4. Determine la magnitud y el ángulo 8 de F necesarios Determine las magnitudes de Fl y F2 necesarias

PROBL EMAS. *3-4. Determine la magnitud y el ángulo 8 de F necesarios Determine las magnitudes de Fl y F2 necesarias 90 CAPíTULO 3 Equilibrio de una partícula PROBL EMAS 3-1. Determine las magnitudes de l 2 necesarias para que la partícula P esté en equilibrio. 3-3. Determine la magnitud el ángulo 8 de } necesarios para

Más detalles

CAPÍTULO 15. ZAPATAS Y CABEZALES DE PILOTES

CAPÍTULO 15. ZAPATAS Y CABEZALES DE PILOTES CAPÍTULO 15. ZAPATAS Y CABEZALES DE PILOTES 15.0. SIMBOLOGÍA A g A s d pilote f ce β γ s área total o bruta de la sección de hormigón, en mm 2. En una sección hueca A g es el área de hormigón solamente

Más detalles

Serie de Dinámica MOVIMIENTO RECTILÍNEO

Serie de Dinámica MOVIMIENTO RECTILÍNEO Serie de Dinámica MOVIMIENTO RECTILÍNEO 1. En un ascensor en movimiento se pesa un cuerpo de 5 kg con una balanza de resorte. La balanza indica 5.1 kg. Halle la aceleración del ascensor. 2. Los pesos de

Más detalles

2.1.- Una fuerza P de 8 lb se aplica a la palanca de cambios mostrada en la figura. Determine el momento de P con respecto a B cuando es igual a 25.

2.1.- Una fuerza P de 8 lb se aplica a la palanca de cambios mostrada en la figura. Determine el momento de P con respecto a B cuando es igual a 25. 2.1.- Una fuerza P de 8 lb se aplica a la palanca de cambios mostrada en la figura. Determine el momento de P con respecto a B cuando es igual a 25. 2.2.- Para la palanca de cambios mostrada, determine

Más detalles

UNIDAD 5 FICHA DE ESTUDIO Nº6 TENSIONES Y DEFORMACIONES

UNIDAD 5 FICHA DE ESTUDIO Nº6 TENSIONES Y DEFORMACIONES UNIDAD 5 FICHA DE ESTUDIO Nº6 TENSIONES Y DEFORMACIONES OBJETIVO: Determinar las dimensiones de un elemento bajo la acción de fuerzas exteriores. Obtener una relación que vincule la tensión máxima actuante

Más detalles

FACULTAD DE INGENIERIA

FACULTAD DE INGENIERIA ASIGNATURA: DOBLE CURSADO GUIA DE PROBLEMAS N 6 ELASTICIDAD 2018 GUIA DE PROBLEMAS Nº 6 PROBLEMA Nº 1 a) Un alambre de teléfono de 120m de largo y de 2,2mm de diámetro se estira debido a una fuerza de

Más detalles

Propiedades mecánicas de los materiales metálicos. MATERIALES II. Ciencia y Tecnología de la Edidificación Prof.: Ana Mª Marín Palma

Propiedades mecánicas de los materiales metálicos. MATERIALES II. Ciencia y Tecnología de la Edidificación Prof.: Ana Mª Marín Palma Propiedades mecánicas de los materiales metálicos MATERIALES II. Ciencia y Tecnología de la Edidificación Prof.: Ana Mª Marín Palma Conceptos de tensión - deformación Cuando una fuerza se aplica uniformemente

Más detalles

Prácticas Complementarias de Resistencia 12-13

Prácticas Complementarias de Resistencia 12-13 Prácticas Complementarias de Resistencia 12-13 1) Dibujar sendos croquis con las reacciones acotadas en magnitud y sentido para las vigas de la figura 1: Figura 1 2) Calcular las reacciones del muro y

Más detalles

60 o 60 o. RESISTENCIA DE MATERIALES II CURSO EXAMEN DE JUNIO 30/5/ h 15 min

60 o 60 o. RESISTENCIA DE MATERIALES II CURSO EXAMEN DE JUNIO 30/5/ h 15 min RESISTEI DE MTERIES II URSO 1-1 EXME DE JUIO /5/1 1 h 15 min echa de publicación de la preacta: /6/1 echa y hora de la revisión del examen: 1/6/1 a las 9: 1. Un perfil IPE de m de longitud, empotrado en

Más detalles

CÁTEDRA: ESTÁTICA Y RESISTENCIA DE MATERIALES

CÁTEDRA: ESTÁTICA Y RESISTENCIA DE MATERIALES CÁTEDRA: ESTÁTICA Y RESISTENCIA DE MATERIALES Comisión de Ingeniería Química y en Minas Trabajo Práctico N 4: FUERZAS INTERNAS (Solicitaciones) - BARICENTRO 1- Se utiliza una barra de acero de sección

Más detalles

Figura 1.1: Máquina de Ensayo de Tracción.

Figura 1.1: Máquina de Ensayo de Tracción. Capítulo 1 Ensayo de Tracción Para conocer las cargas que pueden soportar los materiales, se efectúan ensayos para medir su comportamiento en distintas situaciones. El ensayo destructivo más importante

Más detalles

UNASAM FIC PRACTICA DIRIGIDA SOBRE MOMENTO TORQUE OLVG 2011

UNASAM FIC PRACTICA DIRIGIDA SOBRE MOMENTO TORQUE OLVG 2011 1. Determine el momento de la fuerza F con respecto al punto O: (a) usando la formulación vectorial, (b) la formulación vectorial. 6. Determine el momento de la fuerza con respecto al punto A. Exprese

Más detalles

TEMA 3. BASES DEL DISEÑO MECÁNICO CON MATERIALES.

TEMA 3. BASES DEL DISEÑO MECÁNICO CON MATERIALES. Félix C. Gómez de León Antonio González Carpena TEMA 3. BASES DEL DISEÑO MECÁNICO CON MATERIALES. Curso de Resistencia de Materiales cálculo de estructuras. Clases de tensiones. Índice. Tensión simple

Más detalles

Nombre de la asignatura: Resistencia de los materiales. Carrera : Ingeniería Mecánica. Clave de la asignatura: ACC

Nombre de la asignatura: Resistencia de los materiales. Carrera : Ingeniería Mecánica. Clave de la asignatura: ACC Nombre de la asignatura: Resistencia de los materiales. Carrera : Ingeniería Mecánica Clave de la asignatura: ACC- 96 Clave local: Horas teoría horas practicas créditos: 4--0.- UBICACIÓN DE LA ASIGNATURA

Más detalles

60kN/m 50kNm 50kNm. 60kN/m. 50kNm D D D CC. C C 2 2 m 5 m

60kN/m 50kNm 50kNm. 60kN/m. 50kNm D D D CC. C C 2 2 m 5 m Ejercicio 6.1 Para las vigas de la figura: a) Bosquejar cualitativamente el diagrama momento flector, el diagrama del giro y el diagrama de la deformada. b) Determinar la flecha en C y el ángulo de giro

Más detalles

MECANICA DE MEDIOS CONTINUOS 2º CURSO 2012/2013 Hoja 1

MECANICA DE MEDIOS CONTINUOS 2º CURSO 2012/2013 Hoja 1 MECANICA DE MEDIOS CONTINUOS 2º CURSO 2012/2013 Hoja 1 1.- a chapa rectangular ABCD de la F1 está anclada en el punto A y colgada de la cuerda SC. Determinar la tensión de la cuerda y la fuerza en el punto

Más detalles

Como la densidad relativa es adimensional, tiene el mismo valor para todos los sistemas de unidades.

Como la densidad relativa es adimensional, tiene el mismo valor para todos los sistemas de unidades. LA DENSIDAD (D) de un material es la masa por unidad de volumen del material La densidad del agua es aproximadamente de 1000 DENSIDAD RELATIVA (Dr) de una sustancia es la razón de la densidad de una sustancia

Más detalles