ESTRUCTURAS ALGEBRAICAS
|
|
|
- Esther Iglesias Farías
- hace 7 años
- Vistas:
Transcripción
1 Fcb : Lic. 1 ESTRUCTURAS ALGEBRAICAS El presente texto tiene por objetivo presentar algunas estructuras algebraicas de manera coloquial, sin hacer un estudio profundo de las mismas ; pretende simplemente dar a conocer algunas de sus propiedades y apreciar las diferencias entre ellas. Las estructuras algebraicas pueden estar formadas por uno o mas conjuntos, por una o mas operaciones y por un conjunto de axiomas. La estructura algebraica elemental, es el monoide 1, que consiste en un solo conjunto A provisto de una operación. Vamos a escribir esa estructura así : ( A, ). La operación, es tal que cumple un axioma llamado Ley de cierre o Ley de composición interna. Según este axioma, a cada par de elementos del conjunto, le corresponde un elemento que está en el conjunto. Por ejemplo (N,+) el conjunto de los número naturales con la suma, es un monoide porque a todo par de números naturales les asocia otro número natural que es su suma. Por ejemplo,al par (2,3) le hace corresponder el número natural 2+3 que es 5. Al par (3,4) le corresponde el número 3+4 que es 7. Si tomamos el mismo conjunto con otra operación, por ejemplo los naturales con la resta, ya no tenemos un monoide, porque no siempre restar naturales da un natural ; por ejemplo al par (2,3) no le podemos hacer corresponder la resta 2-3 porque ( 1) no es un número natural. La escritura formal de la ley de cierre o ley de composición interna es O bien : : AxA ( a, b) A a b a A b ( a b) a, Entre los axiomas que pueden o no ser satisfechos por un conjunto provisto de una operación, se encuentran : Propiedad asociativa : En qué consiste la propiedad asociativa? Como la operación es binaria, opera sobre dos elementos Qué pasa entonces si queremos componer 3 1 Sigo la clasificación del Dr. Enzo Gentile en Estructuras algebraicas I, año 1977 Monografía 3.OEA Hay otros autores que nombran monoide a la estructura que yo voy a llamar semigrupo. En lo que hay consenso universal es a qué se llama grupo y grupo abeliano.
2 Fcb : Lic. elementos a, b, c? Podríamos operar con los dos primeros para obtener el elemento ( a b) y luego operar este resultado, este paréntesis, con c ; eso se escribe ( a b) c. Pero también sería posible componer a con el resultado (b c),obtenido a partir de componer b con c.si ambas posibilidades conducen al mismo número se dice que se cumple la propiedad asociativa.la suma de número naturales es asociativa, la multiplicación también. La escritura de la propiedad asociativa es : a,, c ( a b) c = a ( b c) Observen que a, b, y c están en un mismo orden pero los paréntesis han cambiado de lugar. Bien, si ambos miembros son iguales, si vale la asociativa, no es necesario poner los paréntesis. Elemento neutro Se dice que un elemento particular del conjunto A es el elemento neutro y se lo designa con la letra e, si, operando sobre cualquier otro elemento x del conjunto A, a izquierda y a derecha, da por resultado el mismo x. Formalmente, se escribe 2 x, etalque: e x = x e = x En (N,+), naturales con la suma, el 0 es el elemento neutro puesto que sumar cero a cualquier natural x, da por resultado x. Si en cambio, consideramos la estructura (Z, ) de número enteros con el producto, el número entero 1 es el neutro ya que multiplicando por 1 cualquier número entero x, obtenemos x. Elemento simétrico Si una estructura tiene elemento neutro, e, entonces vamos a decir que cada elemento x, tiene un simétrico x, siempre que al componer x con x, se obtenga el elemento neutro. La escritura pertinente a este axioma es : x, x' talque: x x' = x' x = e Si la operación es la suma, al simétrico de x se lo llama el opuesto de x y se escribe ( x) ; si en cambio la operación fuera la multiplicación, al simétrico de 1 x se lo llama el inverso de x y su notación es x.
3 Fcb : Lic. En la estructura (Z,+) de enteros con la suma, el neutro es el 0 y el opuesto de 3 es ( 3) y el opuesto de ( 5 ) es 5. En la estructura ( Z-{0} ; ) de enteros 3 diferentes de cero, con la multiplicación, el inverso de 3 es 1 1 3, o sea,. 3 Propiedad conmutativa : Es bastante conocida y dice que el orden en que se efectúa la operación no cambia el resultado. Así 2+3 = 3+2= 5, como así también 2 3= 3 2=6 a, a b = b a Tenemos entonces, para un conjunto A y una operación, 5 axiomas. Según la cantidad de axiomas que respete un par (A, ) tenemos la siguiente clasificación de estructuras de complejidad creciente : A 1 : Ley de cierre Monoide (A, ) A 2 : asociativa A 3 : neutro Semigrupo Semigrupo con neutro Grupo Grupo conmutativo o abeliano A 4 : inverso A 5 : conmutativa El grupo abeliano es la estructura mas compleja y rica dentro de las mas simples, es decir de las que se pueden obtener a partir de UN CONJUNTO Y UNA OPERACIÓN. Pasemos ahora a las estructuras algebraicas definidas a partir de UN CONJUNTO A con DOS OPERACIONES, o, es decir, a la terna (A,,o) En este caso vamos a definir las siguientes estructuras : anillo, anillo con identidad y cuerpo. Para poder hacer un cuadro con las mismas, primero tenemos que definir dos nuevos axiomas : distributiva a izquierda y derecha, de la operación,con respecto a la operación.son dos axiomas que van a conectar las dos operaciones entre sí.
4 Fcb : Lic. A 6: distributiva a izquierda 4 a,, c a ( b c) = a b a c A 7: distributiva a derecha a,, c ( a b) c = a c b c Ejemplos numéricos de distributividad ; para la suma y el producto de naturales, vale por ejemplo que 2 (5+3) = ` = = 16 Y también (2+5) 3 = = = 21 Veamos entonces los nombres de las estructuras formadas por un conjunto A y dos operaciones. Si el conjunto A con la primer operación es un grupo abeliano, y el conjunto A con la segunda operación es un semigrupo y la segunda operación es distributiva a izquierda y derecha con respecto a la primera, entonces tenemos un anillo. Si a la estructura de anillo le agregamos el axioma 3 para la segunda operación, la estructura es un anillo con unidad o con identidad ( A, ) grupo abeliano[axiomas1a 5] (A, o ) semigrupo [axiomas 1 y 2] anillo anillo con Axiomas 6 y 7 unidad cuerpo Axioma 3 en (A,o) Axiomas 4 y 5 en (A- {e},o) Es decir que un cuerpo es una estructura en la cual el conjunto A con la primer operación es grupo abeliano y el conjunto obtenido de A sustrayéndole el neutro de la primer operación, es abeliano con la segunda operación y además, se verifican las distributivas a derecha e izquierda, de la segunda operación con respecto a la primera.
5 Fcb : Lic. Vamos a pasar ahora al caso de DOS CONJUNTOS Y DOS OPERACIONES para definir la estructura llamada espacio vectorial ( V,, K, ) es un espacio vectorial si : El conjunto V con la primer operación, (V, ), es un grupo abeliano, es decir que verifica los 5 axiomas desde A 1 hasta A 5. El conjunto K es un cuerpo llamado cuerpo de escalares. La operación es una acción externa, es decir que, a diferencia de la operación que toma dos elementos de A y los compone ; esta acción, toma un elemento de K y lo compone con uno de A. A 8 : Ley externa o acción de K sobre V : KxV ( k, v) V k v Este axioma 8 también se puede escribir así : k K v ( k v) k, Y además se deben verificar los siguientes nuevos axiomas A 9 Asociatividad mixta Dados dos elementos k y m pertenecientes al cuerpo K, y un elemento v en V, realizar la acción de k sobre el resultado de la acción de m sobre v, da lo mismo que operar primero los dos escalares k y m según las leyes de K, y el resultado de esa operación hacerlo actuar sobre v : k K, m K, k.( m v) = ( km. ) v A 10 Distributiva con respecto a la suma en K Sumar dos escalares en K y hacer actuar esa suma sobre el vector v, es lo mismo que hacer actuar primero cada escalar sobre el vector y componer ambos resultados por medio de la operación en V k K, m K, ( k + m) v = kv. mv. A 11 Distributiva con respecto a la suma en V La acción de un escalar sobre la suma en V de dos vectores, da el mismo resultado que hacer primero actuar el escalar sobre cada uno de los vectores y sumar en V los resultados obtenidos. k K,, w k ( v w) = k v k w A 12 : La unidad del cuerpo K es el neutro para la acción externa 5
6 Fcb : Lic. Si llamamos 1 a la unidad de K 1 v = v 6 Es decir que ( V,,K, ) es un espacio vectorial si (V, ) satisface los axiomas A 1 hasta A 5 ( reemplazando la letra A con que designábamos el conjunto, por la letra V con que la designamos ahora).y además, si satisface los axiomas desde A 8 hasta A 12. Resumiendo Lo mas importante para observar es que un grupo está constituido por un conjunto y una operación que cumplen una serie de axiomas. Para tener un anillo y un cuerpo, ya hay que partir de un conjunto munido de dos operaciones que satisfagan numerosos axiomas. Para tener un espacio vectorial hay que tener dos conjuntos uno de ellos ya debe ser un cuerpo y también disponer de dos operaciones, una interna al conjunto V que se llama conjunto de vectores y otra externa a ese conjunto, que se denomina la acción del cuerpo sobre el conjunto de vectores. Todos estos son espacios literales algunos de los cuales se pueden ubicar en los ejes cartesianos como entes geométricos clásicos, pero lo importante no es eso, sino el cumplimiento de las coerciones determinadas por toda la axiomática. En un próximo texto abordaré la estructura de álgebra de Boole en la que es necesario definir un orden entre los elementos. Lic. 1º edición : julio 2002 Revisión : agosto 2018 Bs.As. CABA
1. Lección 1 - Espacio Vectorial
1. Lección 1 - Espacio Vectorial Definiremos espacio vectorial como la estructura algebraica consistente en: 1. Grupo abeliano {V, +, } cuyos elementos se denominan vectores. Para que los elementos de
LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS
LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS Sea una estructura formada por un conjunto A, sobre cuyos elementos se ha definido una operación o ley interna, comúnmente denotada por " * ", que
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS ESTRUCTURAS ALGEBRAICAS B.1 Operaciones (leyes de composición interna).
UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS
UNIVERSIDAD DON BOSCO - DEPARTAMENTO DE CIENCIAS BÁSICAS UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS ÁLGEBRA LINEAL - GUIÓN DE CLASE - SEMANA 10 - CICLO 01-2015 Estudiante: Grupo: 1. Aplicaciones 1.1. Aplicaciones.
PROBLEMAS RESUELTOS ÁLGEBRA LINEAL Tema 2. Espacios Vectoriales
SUBTEMA: ESPACIOS VECTORIALES Problema 1: Sea V = {a} el conjunto con el único elemento a. Determinar si V es un Espacio Vectorial sobre los reales con las operaciones de adición y multiplicación por un
La noción de ley de composición
La noción de ley de composición Una operación o ley de composición, es una regla mediante la cual, de dos elementos obtenemos otro. Definición Dados tres conjuntos A, B y C definimos una operación o ley
Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ).
ALGEBRA La primera parte del presente libro está dedicada a las estructuras algebraicas. En esta parte vamos a iniciar agregándole a los conjuntos operaciones. Cuando las operaciones tienen determinadas
Algebra Lineal Tarea No 9: Espacios vectoriales Maestra Dora Elia Cienfuegos, Enero-Mayo 2017
Algebra Lineal Tarea No 9: Espacios vectoriales Maestra Dora Elia Cienfuegos, Enero-Mayo 2017 Grupo: Matrícula: Nombre: Tipo:-1 1. Suponga que V = R 2 y que se definen las operaciones: y Si Calcule: 1.
CONJUNTOS. Los conjuntos son conceptos primitivos que representan una totalidad, una reunión de cosas.
CONJUNTOS CPR. JORGE JUAN Xuvia-Narón Los conjuntos son conceptos primitivos que representan una totalidad, una reunión de cosas. Un conjunto está formado por una serie de elementos susceptibles de poseer
CONCEPTOS BÁSICOS DE LA TEORÍA DE CONJUNTOS. ESTRUCTURAS ALGEBRAICAS.
TEMA 11 ÍNDICE CONCEPTOS BÁSICOS DE LA TEORÍA DE CONJUNTOS. ESTRUCTURAS ALGEBRAICAS. 1. INTRODUCCIÓN 2. CONJUNTOS 3. SUBCONJUNTOS 4. OPERACIONES 4.1 UNIÓN 4.2 INTERSECCIÓN 4.3 COMPLEMENTO 4.4 DIFERENCIA
Dado un conjunto A, llamamos operación binaria interna o ley de composición interna a cualquier función de A A en A. [1] [1] [0]
Contents 2 Operaciones y estructuras algebraicas. 2 2.1 Propiedades...................................................... 4 2.2 Elementos Particulares.............................................. 7 2.3
Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( )
MATRICES Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. Ejemplo 1. Algunos ejemplos de matrices ( + ( ) ( + ( ) El tamaño o el orden de una
Conjuntos Numéricos R 2, R 3, R n
Conjuntos Numéricos R 2, R 3, R n 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Espacios numéricos: R 2, R 3, R n... 3 1.1 Conjunto de R 2... 3 1.2 Conjunto de R 3... 6 1.3 Conjunto
Tema 1: Fundamentos.
Tema 1: Fundamentos. 1. Nociones básicas de la Teoría de Conjuntos. Definición. Un conjunto es una colección de objetos. A los objetos de un conjunto se les llama elementos del conjunto. Se denominará
Una operación interna: Suma Una operación externa: Multiplicación por un escalar
El conjunto R n Es el conjunto de las n-adas formadas por el producto cartesiano RRR.R, donde R es el conjunto de los números reales. Así pues, dos elementos X y Y de R n serán iguales si y solo si tienen
ESTRUCTURAS ALGEBRAICAS. Parte 1
ESTRUCTURAS ALGEBRAICAS Parte 1 ESTRUCTURAS ALGEBRAICAS Una estructura algebraica es una n-tupla (a 1,a 2,...,a n ), donde a 1 es un conjunto dado no vacío, y {a 2,...,a n } un conjunto de operaciones
Matrices. Álgebra de matrices.
Matrices. Álgebra de matrices. 1. Definiciones generales Definición 1.1 Si m y n son dos números naturales, se llama matriz de números reales de orden m n a una aplicación A : {1, 2, 3,..., m} {1, 2, 3,...,
TEMA 2. ESPACIOS VECTORIALES
TEMA 2. ESPACIOS VECTORIALES CÉSAR ROSALES GEOMETRÍA I En este tema comenzaremos el estudio de los objetos que nos interesarán en esta asignatura: los espacios vectoriales. Estos son estructuras básicas
en el espacio queda caracterizado por un par de puntos A y B, o bien por su módulo, dirección y sentido junto con el origen, siendo:
TEMA 10: VECTORES EN EL ESPACIO. 10.1 Vectores fijos y libres en el espacio vectorial. 10. Operaciones con vectores libres. Bases del espacio vectorial. 10.3 Producto escalar. Módulo y ángulo de vectores.
LEYES, ESTRUCTURAS BÁSICAS Y COCIENTES CONJUNTOS Y GRUPOS
Todos los derechos de propiedad intelectual de esta obra pertenecen en exclusiva a la Universidad Europea de Madrid, S.L.U. Queda terminantemente prohibida la reproducción, puesta a disposición del público
Estructuras Algebraicas
Estructuras Algebraicas Luis Manuel Hernández Ramos 12 24 de mayo de 2007 1 Centro de Calculo Científico y Tecnológico, Facultad de Ciencias, Universidad Central de Venezuela, Caracas. 2 e-mail: [email protected]
Estructuras Algebraicas
Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos
Preliminares. 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros.
CAPíTULO 1 Preliminares 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros. El método matemático es axiomático y deductivo: a partir de unos principios aceptados inicialmente
Matrices y determinantes
Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna
VECTORES 1.2 CONCEPTOS Y DEFINICIONES FUNDAMENTALES. En este capítulo estudiaremos los vectores y su álgebra.
CAPITULO I CALCULO II VECTORES 1.1 INTRODUCCIÓN Los vectores son un auxiliar utilísimo para la geometría del espacio. En esta unidad partiendo de lo que ya se sabe de vectores en el plano, se contemplan
Materia: Matemática de Octavo Tema: Operaciones en Q Propiedades de la Multiplicación en Q
Materia: Matemática de Octavo Tema: Operaciones en Q Propiedades de la Multiplicación en Q Las propiedades de la multiplicación en el conjunto, ya las hemos estudiado para el conjunto de los números naturales
Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.
Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz
El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.
Concepto de función Función real de variable real es toda correspondencia f que asocia a cada elemento de un determinado subconjunto de números reales, llamado dominio, otro número real (uno y sólo uno).
VECTORES : Las Cantidades Vectoriales cantidades escalares
VECTORES En física hay dos tipos de cantidades: Las Cantidades Vectoriales son aquellas que tiene tanto magnitud como dirección y sentido sobre la dirección), mientras que las cantidades escalares son
TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.
2009 TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 1º E.S.O. TEMA 08: Funciones. TEMA 08: FUNCIONES. 1. Correspondencia.
UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS
UNIVERSIDAD DON BOSCO - DEPARTAMENTO DE CIENCIAS BÁSICAS UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS ÁLGEBRA LINEAL - GUIÓN DE CLASE - SEMANA 10 y 11 - CICLO 01-2015 Estudiante: Grupo: 1. Estructuras Algebraicas
Los números enteros Z = {,-3, -2, -1, 0, 1, 2, 3, }
Los números enteros La unión de los números naturales y los enteros negativos forma el conjunto de los números enteros, que se designa con la palabra Z. Está constituido por infinitos elementos y se representan
Colegio Portocarrero. Curso Departamento de matemáticas. 2º Bachillerato de Humanidades. Concepto de función
2º Bachillerato de Humanidades. Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir
Número complejo: A modo de ejemplo: vemos que: es decir que la. En cursos anteriores se pudo observar que ecuaciones de segundo grado de la forma:
Número complejo: Introducción: En la mayoría de los cursos y temas anteriores hemos trabajado en el conjunto de los números reales. Cabe recordar que en dicho conjunto están definidas operaciones como:
MATRICES. Se denomina matriz de dimensión m n a todo conjunto cuyos elementos están dispuestos en m filas y n columnas. o simplemente A = (a.
MATRICES Se denomina matriz de dimensión m n a todo conjunto cuyos elementos están dispuestos en m filas y n columnas A= 2 1 5 0 3 8 A es de dimensión 2 3. a a a En general una matriz de dimensión 2 3
Espacio vectorial MATEMÁTICAS II 1
Espacio vectorial MATEMÁTICAS II 1 1 VECTORES EN EL ESPACIO. ESPACIO VECTORIAL V 3 1.1. VECTORES FIJOS Definición: Un vector fijo es un segmento orientado determinado por dos puntos. El primero de sus
*Número natural, el que sirve para designar la cantidad de. *El cero, a veces, se excluye del conjunto de los números
*Número natural, el que sirve para designar la cantidad de elementos que tiene un cierto conjunto, y se llama cardinal de dicho conjunto. *Los números naturales son infinitos. El conjunto de todos ellos
OPERACIÓN CON NÚMEROS ENTEROS(Z)
OPERACIÓN CON NÚMEROS ENTEROS(Z) Imagina que un día estas de visita en un apartamento de unos amigos, al despedirte bajas al sótano 2 a buscar tu carro y te das cuenta que dejaste las llaves en casa de
UNIDAD 1 NUMEROS COMPLEJOS
UNIDAD 1 NUMEROS COMPLEJOS El conjunto de los números complejos fue creado para poder resolver algunos problemas matemáticos que no tienen solución dentro del conjunto de los números reales. Por ejemplo
Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1
Espacios Vectoriales 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Espacios Vectoriales... 4 1.1 Definición de espacio vectorial... 4 1.2 Definición de subespacio vectorial...
ALGEBRA. Ricardo F. Vila Freyer CIMAT
ALGEBRA Ricardo F. Vila Freyer CIMAT 1. Algebra como Aritmética Generalizada La Historia nos dice que el Algebra fue desarrollada por los antiguos árabes. El primer texto de Algebra fué el libro de Al
Teoría de Geometría Afín y Proyectiva (G.A.P.) L A TEX
Teoría de Geometría Afín y Proyectiva (G.A.P.) L A TEX Juan Miguel Ribera Puchades 2 de julio de 2007 1 Índice 1. Introducción 4 2. Tema 1: Espacio Afín 5 2.1. Definición, ejemplos y notación.................
Números reales. 1 Composición de los números reales. 2 Axiomas de los números reales
Números reales 1 Composición de los números reales Los números reales, denotados por la letra R, se componen a su vez de ciertos conjuntos notables de números, éstos son: Números naturales: Son aquellos
NOCIONES PRELIMINARES (*) 1
CONJUNTOS NOCIONES PRELIMINARES (*) 1 Conjunto no es un término definible, pero da idea de una reunión de cosas ( elementos ) que tienen algo en común. En matemática los conjuntos se designan con letras
Una matriz es un arreglo rectangular de elementos. Por ejemplo:
1 MATRICES CONCEPTOS BÁSICOS Definición: Matriz Una matriz es un arreglo rectangular de elementos. Por ejemplo: es una matriz de 3 x 2 (que se lee 3 por 2 ) pues es un arreglo rectangular de números con
INSTITUTO DE ESTUDIOS BANCARIOS GUILLERMO SUBERCASEAUX Fundado en Matemáticas I. Técnico Financiero Semestre CONJUNTOS NUMERICOS
Matemáticas I Técnico Financiero Semestre 1-2008 CONJUNTOS NUMERICOS I. Números naturales El conjunto de los números naturales se representa por IN y corresponde al siguiente conjunto numérico: IN = {1,
MATRICES Y DETERMINANTES DEFINICIÓN DE MATRIZ. TIPOS
Índice Presentación... 3 Matrices... 4 Tipos de matrices I... 5 Tipos de matrices II... 6 Suma de matrices... 7 Multiplicación por un escalar... 8 Producto de matrices... 9 Trasposición de matrices...
CÁLCULO DE PROBABILIDADES
CÁLCULO DE PROBABILIDADES EXPERIMENTOS ALEATORIOS.ESPACIO MUESTRAL Experimento determinista: Aquel cuyo resultado se puede predecir de antemano, está regido por leyes, sean o no de la Naturaleza. Ej.-
Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales
Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales 1era evaluación. Matrices Definición: Una matriz es un conjunto de números ordenados en filas y columnas. Para definirla se utilizan letras
UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS
UNIVERSIDAD DON BOSCO - DEPARTAMENTO DE CIENCIAS BÁSICAS UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS ÁLGEBRA LINEAL - GUIÓN DE CLASE - SEMANA 10 - CICLO 01-2015 Estudiante: Grupo: 1. Aplicaciones 1.1. Aplicaciones.
Tema 1: NUMEROS ENTEROS
COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS 1º ESO. NÚMEROS ENTEROS Tema 1: NUMEROS ENTEROS Los números enteros (representados por la letra Z), son un conjunto de número
3.1. Operaciones con matrices. (Suma, resta, producto y traspuesta)
Operaciones con matrices Suma, resta, producto y traspuesta Suma, resta y multiplicación por escalares Las matrices de un tamaño fijo m n se pueden sumar entre sí y esta operación de sumar se puede definir
BLOQUE 1. LOS NÚMEROS
BLOQUE 1. LOS NÚMEROS Números naturales, enteros y racionales. El número real. Intervalos. Valor absoluto. Tanto el Cálculo como el Álgebra que estudiaremos en esta asignatura, descansan en los números
Espacios Vectoriales, Valores y Vectores Propios
, Valores y Vectores Propios José Juan Rincón Pasaye, División de Estudios de Postgrado FIE-UMSNH Curso Propedéutico de Matemáticas para la Maestría en Ciencias opciones: Sistemas de Control y Sistemas
MÉTODOS MATEMÁTICOS DE LA FÍSICA I
MÉTODOS MATEMÁTICOS DE LA FÍSICA I Ignacio Sánchez Rodríguez Curso 2006-07 TEMA PRELIMINAR ÍNDICE 1. Lenguaje matemático 2 2. Conjuntos 6 3. Aplicaciones 10 4. Relaciones 12 5. Estructuras algebraicas
CURSO UNICO DE INGRESO 2010
INSTITUTO SUPERIOR ZARELA MOYANO DE TOLEDO PROF. ING. ELSA MEDINA CURSO UNICO DE INGRESO 2010 MATEMATICAS INTRODUCCION El presente material supone un REPASO sobre los temas fundamentales y necesarios para
OPERACIONES CON NÚMEROS REALES
NÚMEROS REALES Por número real llamaremos a un número que puede ser racional o irracional, por consiguiente, el conjunto de los números reales es la unión del conjunto de números racionales y el conjunto
UNIDAD II: CONJUNTOS NUMÉRICOS
Presentación En esta unidad se aborda el estudio de los conjuntos numéricos, la operatoria y propiedades en ellos, dando énfasis al trabajo de operatoria básica en IR, potencias, raíces y logaritmos. En
Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.
Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz
Matrices y sistemas de ecuaciones
Matrices y sistemas de ecuaciones María Muñoz Guillermo [email protected] U.P.C.T. Matemáticas I M. Muñoz (U.P.C.T.) Matrices y sistemas de ecuaciones Matemáticas I 1 / 59 Definición de Matriz Matrices
7.1 Números Racionales: números enteros, propiedades de los números y orden de operaciones. Prof. Kyria A. Pérez
7.1 Números Racionales: números enteros, propiedades de los números y orden de operaciones Prof. Kyria A. Pérez Estándares de contenido y expectativas N.SO.7.2.1- Modela la suma, Resta, multiplicación
Unidad 2. Los números enteros.
Unidad 2. Los números enteros. Ubicación curricular en España: 6º Primaria, 1º ESO, 2º ESO. Objetos de aprendizaje: 2.1 Introducción a los números enteros. Expresar situaciones de la vida cotidiana en
CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero
Fundamento Científico del Currículum de Matemáticas en Enseñanza Secundaria CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero ESPACIOS VECTORIALES DEFINICIÓN... 1 PROPIEDADES DE
Un vector está representado por cuatro elementos: origen, dirección, sentido y módulo.
CÁLCULO VECTORIAL Escalares y vectores. Al estudiar la Física nos encontramos con dos tipos diferentes de magnitudes físicas: magnitudes escalares y magnitudes vectoriales.son magnitudes escalares aquellas
Teoría Tema 7 Operar con matrices
página 1/12 Teoría Tema 7 Operar con matrices Índice de contenido Concepto de matriz...2 Matriz traspuesta, simétrica y diagonal...3 Suma de matrices y producto de escalar por matriz...6 Producto de matrices...8
TEMA 6: EL LENGUAJE ALGEBRAICO
2009 TEMA 6: EL LENGUAJE ALGEBRAICO Tema para Primer Curso de Educación Secundaria Obligatoria. I.e.s de Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 06: EL LENGUAJE ALGEBRAICO. ECUACIONES
Arquitectura de Computadoras Algebra de Boole Basadas en las Notas de Teórico Versión 1.0 del Dpto. de Arquitectura-InCo-FIng
Basadas en las Versión.0 del Dpto. de Arquitectura-InCo-FIng ALGEBRA DE BOOLE Introducción. El álgebra de Boole es una herramienta de fundamental importancia en el mundo de la computación. Las propiedades
Conjuntos numéricos. Apuntes de Matemática I. Tatiana Inés Gibelli C.U.R.Z.A.
Conjuntos numéricos Apuntes de Matemática I Tatiana Inés Gibelli C.U.R.Z.A. Un concepto básico y elemental del lenguaje matemático es el de número. Para poder trabajar en matemática, es imprescindible
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares
MATRICES OPERACIONES BÁSICAS CON MATRICES
MATRICES OPERACIONES BÁSICAS CON MATRICES ANTECEDENTES En el año 1850, fueron introducidas por J.J. Sylvester El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A.
MATERIAL DOCENTE MATEMATICAS 8 BASICO: ESTRATEGIAS Y GUIAS DE TRABAJO
Especificaciones MATERIAL DOCENTE MATEMATICAS 8 BASICO: ESTRATEGIAS Y GUIAS DE TRABAJO I. Estrategia: se destacan en cada paso II. Contenidos: Repaso contenidos del primer Semestre. III. Esta estrategia
Partes de un monomio
Monomios Un monomio es una epresión algebraica en la que la únicas operaciones que afectan a las letras son la multiplicación y la potencia de eponente natural. Son monomios: NO son monomios: 1 yz 1 abc
Operaciones con números racionales. SUMA/RESTA.
http//www.colegiovirgendegracia.org/eso/dmate.htm ARITMÉTICA Números racionales.9. Operaciones con números racionales. SUMA/RESTA. (A) Reducción a común denominador 4 y 7 4 4 y 7 6 y 4 80 80 80 80 (B)
V E C T O R E S L I B R E S E N E L P L A N O
V E C T O R E S L I B R E S E N E L P L A N O 1. V E C T O R E S F I J O S Y V E C T O R E S L I B R E S E N E L P L A N O Existen magnitudes como la fuerza, la velocidad, la aceleración, que no quedan
Repartido 4. Profesor Fernando Díaz Matemática B 3ro EMT ISCAB 2016
Repartido 4 Profesor Fernando Díaz Matemática B 3ro EMT ISCAB 2016 VECTORES: MÓDULO, DIRECCIÓN Y SENTIDO Un vector es un segmento de recta orientado. Un vector se caracteriza por: 1) su módulo, que es
Números reales Suma y producto de números reales. Tema 1
Tema 1 Números reales Comprender el conjunto de los números reales, su estructura y sus principales propiedades, es el primer paso imprescindible en el estudio del Análisis Matemático. Presentaremos dicho
MATEMÁTICAS TEMA 50. Polinomios. Operaciones. Fórmula de Newton. Divisibilidad de polinomios. Fracciones algebraicas
MATEMÁTICAS TEMA 50 Polinomios. Operaciones. Fórmula de Newton. Divisibilidad de polinomios. Fracciones algebraicas ÍNDICE. 1. Introducción. 2. El anillo de los polinomios. 3. Potencia de un polinomio.
Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.
Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:
Conjuntos y matrices. Sistemas de ecuaciones lineales
1 Conjuntos y matrices Sistemas de ecuaciones lineales 11 Matrices Nuestro objetivo consiste en estudiar sistemas de ecuaciones del tipo: a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n Una solución
Estructuras algebraicas
Estructuras algebraicas Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza 1 Relaciones binarias 11 Recordatorio Definición Dados dos conjuntos A y B se llama producto cartesiano de A por B
RESUMEN ALGEBRA BÁSICA
RESUMEN ALGEBRA BÁSICA TERMINO ALGEBRAICO: Es una expresión matemática que consta de un producto (o cociente) de un número con una variable elevado a un exponente (o con varias variables). TÉRMINO ALGEBRAICO
Cálculo Diferencial: Enero 2016
Cálculo Diferencial: Enero 2016 Selim Gómez Ávila División de Ciencias e Ingenierías Universidad de Guanajuato 9 de febrero de 2016 / Conjuntos y espacios 1 / 21 Conjuntos, espacios y sistemas numéricos
