Notas sobre funciones

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Notas sobre funciones"

Transcripción

1 Notas sobre funciones Manuel Bello Sean X e Y dos conjuntos. Una función f : X Y es una correspondencia entre los conjuntos X e Y, la cual asocia a cada elemento de X un único elemento de Y. El conjunto X se llama dominio y el conjunto Y es el codominio de la función f. La imagen de la función se denota por Im(f) y es el conjunto Im(f) := {y Y : existe x X tal que f(x) = y}. Por ejemplo, tenemos la función que a cada persona que está en una clase le asocia su edad o la función f : N N tal que f(n) = n para todo n N, donde N representa el conjunto de los números naturales {1, 2,...}. También tenemos la función f : R R tal que a cada x R le asocia f(x) = x 2. En estas notas prestaremos atención solamente a funciones definidas en subconjuntos de los números reales, R, con codominio también un subconjunto de R; es decir, X e Y subconjuntos de los números reales. Si f : X Y es una función, diremos que f es inyectiva si cualesquiera sean x 1, x 2 en X, con x 1 x 2, se cumple que f(x 1 ) f(x 2 ). La definición equivale a f(x 1 ) = f(x 2 ), entonces f(x 1 ) = f(x 2 ). Una función es suprayectiva (o sobreyectiva) si Im(f) = Y. Las funciones que son simultáneamente inyectivas y suprayectivas, se llaman biyectivas. Las funciones biyectivas son invertibles; es decir, si la función f : X Y es biyectiva, su inversa es la función f 1 : Y X tal que si f(x) = y, entonces f 1 (y) = x. Por tanto, f 1 (f(x)) = x, f(f 1 (y)) = y, para todo x en X, y en Y. Si, por ejemplo, la función f : R R es tal que f(x) = x para cada x en R, entonces ella es biyectiva y su inversa es la propia función f. Se cumple (1) f(f(x)) = x, para todo número real x. Una función f : R R es par si f( x) = f(x) para todo x real. Si se cumple que f( x) = f(x) para todo x real, se dice que f es impar. Una función f se dirá que es una función monótona creciente (o creciente) si f(x) f(y) cuando x < y. Diremos que la función es estrictamente creciente cuando f(x) < f(y) si x < y. Análogamente, una función f se dirá que es monótona decreciente (o simplemente, decreciente) si f(x) f(y) cuando x < y; y será estrictamente decreciente cuando f(x) > f(y) si x < y. Una ecuación funcional es una ecuación donde la incógnita es una función. Los métodos principales para resorver una ecuación funcional son: 1

2 Evaluar en valores específicos de la variable independientes. Suelen ser muy útiles 0 y 1 por ser los elementos neutros para la suma y el producto, respectivamente, o combinaciones de valores que lleven a 0 ó uno. Estudiar si la función es inyectidad o suprayectiva. Inducción matemática. Demostrar que la función tiene una determinada forma, por ejemplo, probar que la función es lineal. Para la solución del siguiente ejercicio combinamos la evaluación en un puntos determinados y la inyectividad de la función. Ejercicio. Hallemos las funciones reales f, de variable real, que satisfacen la ecuación funcional (2) f(x + f(x + y)) = f(2x) + y. Solución. Haciendo x = 0 en la ecuación (2), nos queda (3) f(f(y)) = f(0) + y, para todo y real. De aquí se deduce que f es inyectiva y suprayectiva. Tomamos y = 0 en la ecuación, f(x + f(x)) = f(2x). Por la inyectividad de f, de la ecuación anterior se obtiene x + f(x) = 2x f(x) = x. Es inmediato observar que f(x) = x es solución de (2). Evaluar en un valor particular de la variable puede ser básico para hallar la solución. Ejercicio. Encontrar todas las funciones f : R R tales que (4) x 2 f(x) + f(1 x) = 2x x 4. Solución. La única solución es f(x) = 1 x 2, que fácilmente se comprueba que satisface la ecuación. Cambiando 1 x por x y uniendo las dos ecuaciones, nos queda el sistema ( ) ( ) ( x 2 1 f(x) 2x x 4 ) 1 (1 x) 2 = f(1 x) 2(1 x) (1 x) 4 De donde, f(x) = (2x x4 )(1 x) 2 2(1 x) + (1 x) 4 x 2 (1 x) 2 1 = 1 x 2. 2

3 En el siguiente problema la solución presentada combina la evaluación en puntos específicos e inducción matemática. Ejercicio. Sea f : N Z una función tal que: 1. f(2) = 2; 2. f(nm) = f(m)f(n), n, m en N; 3. f(n) > f(m) si n > m. Probar que f(n) = n n N. Solución. Si n = 2, m = 1, obtenemos f(1) = 1. Asumimos que f(k) = k k 2n. Probemos que también f(k) = k, k 2n + 2. Solo tenemos que considerar k = 2n + 1 y k = 2n + 2. Tomando n = 2, m = k + 1, tenemos f(2n + 2) = f(2)f(n + 1) = 2n + 2. Como 2n < 2n+1 < 2n+2, tenemos 2n = f(2n) < f(2n+1) < f(2n+2) = 2n + 2. De donde f(2n + 1) = 2n + 1. Ejercicio. Supongamos que f es una función que transforma los enteros positivos en los enteros positivos, tal que f satisface (5) f(n + 1) > f(f(n)) para todos los enteros positivos n. Demostrar que f(n) = n para cada n entero positivo. Solución. La relación (6) equivale a (6) f(n + 1) f(f(n)) + 1. Observar que f(1) 1, f(2) f(f(1)) > 1, f(3) f(f(2)) + 1 f(f(f(2) 1)) Utilizando la relación anterior probamos por inducción (en n) que f(m) n, para todo m n 3

4 Si la relación anterior es cierta para n y consideramos m n + 1, f(m) f(f(m 1)) + 1 n + 1, porque m 1 n y, por hipótesis de inducción f(m 1) n. Además, f es estrictamente creciente ya que f(n + 1) f(f(n)) + 1 f(n) + 1 f(n + 1) > f(n). Supongamos, para obtener una contradicción, que existen n 0 y k 0 tales que f(n 0 ) = n 0 + k 0. Entonces f(n 0 + k 0 ) = f(f(n 0 )) f(n 0 + 1) 1, que contradice la monotonía estricta. Conocer una solución puede ayudar a construir otras soluciones. Ejercicio. Probar que hay infinitas funciones f : R R que cumplen la ecuación (1). x 1 = f(f(x 1 )) = f(f(x 2 )) = x 2, entonces x 1 = x 2. Solución. Observar que f(x) = x satisface la ecuación (1). Si consideramos dos números reales x 1 x 2 y f : R R tal que x si x x 1, x x 2, f(x) = x 2 si x = x 1, x 1 si x = x 2 Entonces fácilmente se comprueba que esta función satisface (1). Cambiando los puntos x 1 y x 2, obtenemos otras funciones que también cumplen (1). Ejercicio. Hallar todas las funciones f : R R tales que f(f(x) 2 + f(y)) = xf(x) + y. Solución. Probemos que las únicas funciones que satisfacen la ecuación son f 1 (x) = x, f 2 (x) = x. Es trivial comprobar que ellas cumplen la ecuación dada. Si x = 0, nos queda f(f(0) 2 + f(y)) = y. Por tanto, f es inyectiva y suprayectiva en R. Si f(a) = 0 (tal valor existe porque f es suprayectiva), haciendo x = a, tenemos f(f(y)) = y, 4

5 de donde, por la inyectividad de f, f(0) 2 + f(y) = f(y) f(0) = 0. Por otra parte, sustituyendo x por f(x) en la ecuación dada obtenemos f(x 2 + f(y)) = xf(x) + y y por la inyectividad de f, concluimos f(x) 2 + f(y) = x 2 + f(y) f(x) = ±x. Pero no existen b y c tales que f(b) = b, f(c) = c y bc 0, ya que en caso contrario, haciendo x = b, y = c, nos queda f(b 2 c) = b 2 + c. Y si f(b 2 c) = b 2 c, entonces c = 0, y si f(b 2 c) = b 2 + c, entonces b = 0. Concluimos que las únicas soluciones son f 1, f 2. En el siguiente problema la idea principal es probar que la función es lineal observando que f(x + 1) f(x) es constante, para ello evaluamos en valores particulares de las variables. Ejercicio. Hallar todas las funciones f : Z Z tales que (7) f(x f(y)) = f(f(x)) f(y) 1. Solución. Las soluciones son las funciones f 1 (x) = 1 y f 2 (x) = x + 1. Es fácil comprobar que dichas funciones son soluciones de (7). Veamos que son las únicas. Consideremos y = f(x) en la ecuación (7), entonces (8) f(x f(f(x))) = 1. Eso significa que 1 es un punto de la imagen de f. Sea y tal que f(y) = 1. Evaluando (7) en ese valor, nos queda (9) f(x + 1) = f(f(x)) f(x) = f(f(x 1)). Utilizando estás relaciones en las ecuaciones (7) y (8), nos queda f(x f(x + 1)) = 1 f(x 1 f(x)) = 1, f(x f(y)) = f(x + 1) f(y) 1. Haciendo y = x en esta última ecuación y utilizando nuevamente (9), llegamos a f(x + 1) f(x) = f(x f(x)) + 1 = f(f(x f(x) 1)) + 1 = f( 1) + 1. De modo que f(x + 1) f(x) = A, x Z, 5

6 con A = f( 1) + 1. Por inducción matemática en x, nos queda que f(x) = Ax + B, donde B = f(0). Sustituyendo en (7) la expresión anterior para f obtenemos A(x (Ay + B)) + B = A(x f(y)) + B = Af(x) + B (Ay + B) 1 = A(Ax + B) Ay 1 Ax A 2 y AB + B = A 2 x Ay + AB 1 Evaluando en x = 0 ó y = 0, nos queda el sistema A = A 2, AB + B = AB 1. Por tanto, las únicas soluciones son las funciones f 1 y f 2 dadas más arriba, que corresponden a A = B = 1 y A = 0, B = 1. Evaluar en un valor particular de la variable es fundamental para la solución del siguiente problema. Ejercicio. Hallar todas las funciones f : (0, ) (0, ) tales que para todo x > 0, y > 0 se cumple ( ( )) 1 f x f = x f y ( ) 1. x + y Solución. Veamos que la única solución es f(x) = x/(x + 1), x > 0. Una simple cuenta nos permite comprobar que f(x) = x/(x + 1), x > 0, es solución del problema. por Veamos que esta es la única. Como f(1/y) > 0, la ecuación en x dada xf(1/y) = 1/(x + y) f(1/y) x 2 + f(1/y)y x 1 = 0 es una ecuación de segundo grado en x, que tiene soluciones en x dadas por con única solución positiva x 1,2 = f(1/y)y ± (f(1/y)y) 2 + 4f(1/y) 2f(1/y) f(1/y)y + (f(1/y)y) 2 + 4f(1/y) 2f(1/y) Observar que para cada y se ha encontrado un valor de x de modo que los dos valores de f que intervienen en la ecuación dada son iguales. De acuerdo a la ecuación propuesta, tal solución tiene que ser x = 1. Por tanto, f(1/y) = 1/(1 + y) f(t) = t/(t + 1), t > 0. 6

VI Taller de Olimpiadas Matemáticas para Profesores 2016

VI Taller de Olimpiadas Matemáticas para Profesores 2016 VI Taller de Olimpiadas Matemáticas para Profesores 2016 Ecuaciones Funcionales María Huánuco Candia 1. Marco Teórico En primer lugar, repasaremos un poco de teoría básica acerca de las funciones. Definición

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

P(f) : P(B) P(A) (A.2)

P(f) : P(B) P(A) (A.2) TEMA 2. APLICACIONES 227 Tema 2. Aplicaciones Definición A.2.1. Una correspondencia entre dos conjuntos A y B es un subconjunto del producto cartesiano A B. Una aplicación f entre dos conjuntos A y B es

Más detalles

Seminario de problemas. Curso Hoja 18

Seminario de problemas. Curso Hoja 18 Seminario de problemas. Curso 2014-15. Hoja 18 119. Dados números reales a, b, c, d, e tales que Hallar el mayor valor posible de e. a + b + c + d + e = 8, a 2 + b 2 + c 2 + d 2 + e 2 = 16. Solución. El

Más detalles

Funciones elementales

Funciones elementales Tema Funciones elementales.1. Función real de variable real Una función real de variable real es cualquier aplicación f : D R! R. Se dice que el conjunto D es el dominio de f. El rango de f es el conjunto

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1 Conjuntos y aplicaciones (Curso 2010 2011) 1. Dados los siguientes conjuntos: A = {2, 3, 5, 7, 11} B = {x Z x > 4} C = {x Z x 2 < 20} D = {x N x es primo}

Más detalles

Semana03[1/17] Funciones. 16 de marzo de Funciones

Semana03[1/17] Funciones. 16 de marzo de Funciones Semana03[1/17] 16 de marzo de 2007 Introducción Semana03[2/17] Ya que conocemos el producto cartesiano A B entre dos conjuntos A y B, podemos definir entre ellos algún tipo de correspondencia. Es decir,

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1 Conjuntos y aplicaciones (Curso 2014 2015) 3. Sea f : X Y una aplicación, y sean A, B dos subconjuntos de X. Decidir razonadamente si las siguientes

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

Ejercicios de Álgebra Básica. Curso 2014/15

Ejercicios de Álgebra Básica. Curso 2014/15 Ejercicios de Álgebra Básica. Curso 2014/15 Tema 1: Conjuntos Conjuntos. Operaciones básicas Ejercicio 1. Describir las relaciones de inclusión o pertenencia entre los siguientes conjuntos: A =, B = {

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

Estructuras algebraicas

Estructuras algebraicas Semana 10[1/14] 26 de abril de 2007 Semana 10[2/14] Grupos Un grupo es un caso particular de una estructura algebraica. Veremos que esta noción rescata ampliamente las propiedades de estructuras tales

Más detalles

Seminario de problemas. Curso Hoja 20

Seminario de problemas. Curso Hoja 20 Seminario de problemas. Curso 014-15. Hoja 0 13. Dada una semicircunferencia de diámetro AB = R, se considera la cuerda CD de longitud fija c. Sea E la intersección de AC con BD y F la intersección de

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

VI Taller de Olimpiadas Matemáticas para Profesores 2016

VI Taller de Olimpiadas Matemáticas para Profesores 2016 VI Taller de Olimpiadas Matemáticas para Profesores 016 Ecuaciones Funcionales María Huánuco Candia Sustituir las variables por valores o por otras variables 1 Hallar todas las funciones f : R R que satisfacen

Más detalles

Documento 2 : Nuevas funciones a partir de otras

Documento 2 : Nuevas funciones a partir de otras Unidad 4: Funciones reales de una variable real Temas: Algebra de funciones. Composición de funciones. Funciones inyectivas, sobreyectivas, biyectivas. Función inversa. Capacidades. Manejar conceptos y

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1 Conjuntos y aplicaciones (Curso 2016 2017) 1. Dados los siguientes conjuntos: A = {2, 3, 5, 7, 11} B = {x Z x 4} C = {x Z x < 5} D = {x N x es impar}

Más detalles

Curso Propedéutico de Cálculo Sesión 1: Funciones

Curso Propedéutico de Cálculo Sesión 1: Funciones Curso Propedéutico de Cálculo Sesión 1: Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico Esquema 1 2 Esquema 1 2 El cálculo se basa en las propiedades de los

Más detalles

Inyectivas, Suprayectivas, Biyectivas, Inversas. Relaciones Funcionales. f : A B se lee f es una función con dominio A y codominio B

Inyectivas, Suprayectivas, Biyectivas, Inversas. Relaciones Funcionales. f : A B se lee f es una función con dominio A y codominio B Relaciones Funcionales Sean A, B dos conjuntos no vacíos, que llamaremos dominio y contradominio respectivamente. Entenderemos por función de A en B toda regla que hace corresponder a cada elemento del

Más detalles

Pregunta 1 Es correcta esta definición? Por qué?

Pregunta 1 Es correcta esta definición? Por qué? TEORÍA DE CONJUNTOS. En un libro de COU de 1975 puede leerse la siguiente definición de conjunto: Un conjunto es una colección de objetos, cualquiera que sea su naturaleza. Pregunta 1 Es correcta esta

Más detalles

Semana04[1/17] Funciones. 21 de marzo de Funciones

Semana04[1/17] Funciones. 21 de marzo de Funciones Semana04[1/17] 21 de marzo de 2007 Composición de funciones Semana04[2/17] Pensemos que tenemos tres conjuntos no vacíos A, B, C, y dos funciones, f : A B y g : B C, como en el siguiente diagrama: Figura:

Más detalles

MatemáticaDiscreta&Lógica 1. Funciones. Aylen Ricca. Tecnólogo en Informática San José

MatemáticaDiscreta&Lógica 1. Funciones. Aylen Ricca. Tecnólogo en Informática San José MatemáticaDiscreta&Lógica 1 Funciones Aylen Ricca Tecnólogo en Informática San José 2014 http://www.fing.edu.uy/tecnoinf/sanjose/index.html FUNCIÓN.::. Definición. Sean A y B conjuntos no vacíos, una funciónf

Más detalles

Imagenes inversas de funciones. x f 1 (A) f(x) A

Imagenes inversas de funciones. x f 1 (A) f(x) A Imagenes inversas de funciones Denición. Sean f : X Y y A una parte del codominio Y. Imagen inversa ó preimagen del subconjunto A Y, es el conjunto de los elementos del dominio cuyas imagenes pertenecen

Más detalles

ÁLGEBRA LINEAL I Soluciones a la Práctica 1

ÁLGEBRA LINEAL I Soluciones a la Práctica 1 ÁLGEBRA LINEAL I Soluciones a la Práctica 1 Conjuntos y aplicaciones (Curso 2015 2016) 1. Dados los siguientes conjuntos: A = {2, 3, 5, 7, 11} B = {x Z x 4} C = {x Z x < 5} D = {x N x es impar} Hallar:

Más detalles

y exámenes. Temas 3 y 4

y exámenes. Temas 3 y 4 U N I V E R S I D A D D E M U R C I A Ejercicios DEPARTAMENTO DE MATEMÁTICAS CONJUNTOS Y NÚMEROS 2016/2017. de talleres y exámenes. Temas 3 y 4 Se recuerda que la resolución de algunos de estos ejercicios

Más detalles

FUNCIÓN. La Respuesta correcta es D

FUNCIÓN. La Respuesta correcta es D FUNCIONES FUNCIÓN La Respuesta correcta es D FUNCIÓN Función Continua: Es aquella en la que su gráfica se puede recorrer en forma ininterrumpida en toda su extensión. FUNCIÓN Función Discontinua: Es aquella

Más detalles

Es claro que es una relación de equivalencia. Para ver que tener la misma cardinalidad y la cardinalidad están bien definidas queremos ver que

Es claro que es una relación de equivalencia. Para ver que tener la misma cardinalidad y la cardinalidad están bien definidas queremos ver que Capítulo II Cardinalidad Finita II.1. Cardinalidad Definimos I n para n N como I n = {k N : 1 k n}. En particular I 0 =, puesto que 0 < 1. Esto es equivalente a la definición recursiva { si n = 0 I n =

Más detalles

CONJUNTOS Y NÚMEROS. HOJA 2

CONJUNTOS Y NÚMEROS. HOJA 2 CONJUNTOS Y NÚMEROS. HOJA 2 Conjuntos 1) Vamos a demostrar que, dado un conjunto B de n búhos, todos los búhos de B son del mismo color. Lo haremos por inducción sobre n. a) Si n = 1 sólo hay un búho,

Más detalles

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones UNSL Repaso de Inducción, y Inducción Matemática (Sección 1.7 del libro) Supongamos que queremos demostrar enunciados del siguiente tipo: P(n) : La suma de los primeros n números naturales es n(n+1)

Más detalles

Ejercicios de Álgebra Básica. Curso 2017/18

Ejercicios de Álgebra Básica. Curso 2017/18 Ejercicios de Álgebra Básica. Curso 2017/18 Tema 1: Conjuntos Conjuntos. Operaciones básicas Ejercicio 1. Describir las relaciones de inclusión o pertenencia entre los siguientes conjuntos: A =, B = {

Más detalles

Relaciones de Recurrencia

Relaciones de Recurrencia Relaciones de Recurrencia Elvio Accinelli Abstract Estas notas no pretenden ser más que una sugerencia para el comienzo del tema Relaciones de Recurrencia. En realidad es el esquema de como pienso abordar

Más detalles

Funciones reales de variable real

Funciones reales de variable real Capítulo 2 Funciones reales de variable real 2.. Definición. Dominio, imagen y gráfica. Informalmente, una función entre dos conjuntos A y B es una regla que a ciertos elementos del conjunto A les asigna

Más detalles

Función inversa. ExMa-MA0125 W. Poveda 1

Función inversa. ExMa-MA0125 W. Poveda 1 Función inversa. ExMa-MA01 W. Poveda 1 Objetivos. Interpretar y aplicar los conceptos de función inyectiva, función sobreyectiva función biyectiva, función invertible Función Inyectiva De nición. Sea una

Más detalles

Funciones y Cardinalidad

Funciones y Cardinalidad Funciones y Cardinalidad Definición 1 Llamaremos función f entre dos conjuntos A y B a una relación que verifica las siguientes propiedades: i) Dom(f) = A ii) Si (a, b), (a, c) f entonces b = c Dicho de

Más detalles

Que importancia tienen las funciones matemáticas?

Que importancia tienen las funciones matemáticas? Funciones Que importancia tienen las funciones matemáticas? Justificación Las funciones son de mucho valor y utilidad para resolver problemas de la vida diaria, problemas de finanzas, de economía, de estadística,

Más detalles

CAPÍTULO III RELACIONES Y FUNCIONES

CAPÍTULO III RELACIONES Y FUNCIONES RELACIONES Y FUNCIONES 41 CAPÍTULO III RELACIONES Y FUNCIONES 3.1 RELACIONES 1 Una relación R de un conjunto A a un conjunto B asigna a cada par (a,b) en A x B exactamente uno de los enunciados siguientes:

Más detalles

Preliminares. 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros.

Preliminares. 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros. CAPíTULO 1 Preliminares 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros. El método matemático es axiomático y deductivo: a partir de unos principios aceptados inicialmente

Más detalles

Conjuntos finitos y conjuntos numerables

Conjuntos finitos y conjuntos numerables Tema 3 Conjuntos finitos y conjuntos numerables En este tema vamos a usar los números naturales para contar los elementos de un conjunto, o dicho con mayor precisión, para definir los conjuntos finitos

Más detalles

Funciones Reales de Variable real

Funciones Reales de Variable real Semana05[1/29] 30 de marzo de 2007 Funciones Definición de funciones Semana05[2/29] Sean A y B dos conjuntos no vacios de naturaleza arbitraria. Una función de A en B es una correspondencia entre los elementos

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Ximo Beneyto Tema: Pàgina : 49 APLICACIONES LINEALES Definición : Sean (E(K), +, A) y (F(K), +, A), Espacios Vectoriales construídos sobre un mismo cuerpo K, una aplicación f:e 6

Más detalles

TEMA 3 Elementos de la teoría de los conjuntos. *

TEMA 3 Elementos de la teoría de los conjuntos. * TEM 3 Elementos de la teoría de los conjuntos. * Conjuntos. Un conjunto es cualquier colección, bien definida, de objetos llamadas elementos o miembros del conjunto. Una manera de describir un conjunto

Más detalles

Estructuras Discretas. Conjuntos. Conjuntos & Funciones. Especificación de Conjuntos.

Estructuras Discretas. Conjuntos. Conjuntos & Funciones. Especificación de Conjuntos. Estructuras Discretas Conjuntos Conjuntos & Funciones Claudio Lobos clobos@inf.utfsm.cl niversidad Técnica Federico Santa María Estructuras Discretas INF 152 Definición: conjunto n conjunto es una colección

Más detalles

1.3. El teorema de los valores intermedios

1.3. El teorema de los valores intermedios Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 07-2 Importante: Visita regularmente http://www.dim.uchile.cl/calculo. Ahí encontrarás

Más detalles

Práctica 2 -Cardinalidad- A. Propiedades básicas de los Conjuntos

Práctica 2 -Cardinalidad- A. Propiedades básicas de los Conjuntos Cálculo Avanzado Segundo Cuatrimestre de 2012 Práctica 2 -Cardinalidad- A. Propiedades básicas de los Conjuntos Ejercicio 1. Demostrar las siguientes igualdades de conjuntos: i) B i I A i = i I(B A i ).

Más detalles

Problemas Tema 2 Solución a problemas de Límite y Continuidad - Hoja 21 - Todos resueltos

Problemas Tema 2 Solución a problemas de Límite y Continuidad - Hoja 21 - Todos resueltos página 1/ Problemas Tema 2 Solución a problemas de Límite y Continuidad - Hoja 21 - Todos resueltos Hoja 21. Problema 1 1. a) Demostrar que la función f ()= definida en el dominio [ 1, ) admite inversa.

Más detalles

y exámenes. Temas 3 y 4

y exámenes. Temas 3 y 4 U N I V E R S I D A D D E M U R C I A Ejercicios DEPARTAMENTO DE MATEMÁTICAS CONJUNTOS Y NÚMEROS 2017/2018. de talleres y exámenes. Temas 3 y 4 Se recuerda que la resolución de algunos de estos ejercicios

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Ejercicio 3 4 5 6 7 8 total Puntos Universidad Carlos III de Madrid Departamento de Economía Eamen final de Matemáticas I 0 de septiembre de 007 APELLIDOS: NOMBRE: DNI: Titulación: Grupo: MODELO : Dada

Más detalles

Práctica 2: Cardinalidad. Propiedades básicas de los conjuntos

Práctica 2: Cardinalidad. Propiedades básicas de los conjuntos Cálculo Avanzado Segundo Cuatrimestre de 2014 Práctica 2: Cardinalidad Propiedades básicas de los conjuntos Ejercicio 1. Demostrar las siguientes igualdades de conjuntos: i) B i I A i = i I(B A i ). ii)

Más detalles

Información importante

Información importante Coordinación de Matemática I (MAT021) 1 er Semestre de 2010 Semana 8: Lunes 10 viernes 14 de Mayo Información importante El viernes 14 ser publicada la tarea preparatoria de Taller de Sala. Durante la

Más detalles

para todo existe no existe tal que implica entonces si y sólo si Conjuntos conjunto elementos Ejemplo pertenece conjunto vacío

para todo existe no existe tal que implica entonces si y sólo si Conjuntos conjunto elementos Ejemplo pertenece conjunto vacío Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas En este tema vamos a analizar diversos conceptos que no están propiamente incluidos en el temario, así como algunas cuestiones

Más detalles

Aplicaciones lineales

Aplicaciones lineales Aplicaciones lineales María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I M. Muñoz (U.P.C.T.) Aplicaciones lineales Matemáticas I 1 / 32 Contenidos 1 Definición y propiedades Definición de aplicación

Más detalles

Fundación Uno. xy = 7 xy 2 x 2 y y + x = 54

Fundación Uno. xy = 7 xy 2 x 2 y y + x = 54 ENCUENTRO # 29 TEMA: Funciones de variable real. CONTENIDOS: 1. Definición de funciones 2. Función lineal. Gráfica y propiedades. 3. Función cuadrática. Gráfica y propiedades. Ejercicio Reto 1. El valor

Más detalles

Espacios vectoriales y aplicaciones lineales

Espacios vectoriales y aplicaciones lineales CAPíTULO 5 Espacios vectoriales y aplicaciones lineales 1 Espacios y subespacios Sea K un cuerpo Diremos que un conjunto V tiene estructura de espacio vectorial sobre K si 1) en V hay una operación + de

Más detalles

Toda función es una relación, pero no toda relación es una función. Las relaciones multiformes NO son funciones. Relación uno a uno (biunívoca)

Toda función es una relación, pero no toda relación es una función. Las relaciones multiformes NO son funciones. Relación uno a uno (biunívoca) CONCEPTO TRADICIONAL DE FUNCIÓN Cuando dos variables están relacionadas en tal forma que a cada valor de la primera corresponde un valor de la segunda, se dice que la segunda es función de la primera.

Más detalles

TERCER EXAMEN PARCIAL ALGEBRA LINEAL I 23 DE MAYO DE 2014 (CON SOLUCIONES)

TERCER EXAMEN PARCIAL ALGEBRA LINEAL I 23 DE MAYO DE 2014 (CON SOLUCIONES) TERCER EXAMEN PARCIAL ALGEBRA LINEAL I 23 DE MAYO DE 2014 (CON SOLUCIONES) Instrucciones: Resolver los 5 problemas justificando todas sus afirmaciones y presentando todos sus cálculos. 1. Sea F un campo.

Más detalles

Tema 1: Fundamentos.

Tema 1: Fundamentos. Tema 1: Fundamentos. 1. Nociones básicas de la Teoría de Conjuntos. Definición. Un conjunto es una colección de objetos. A los objetos de un conjunto se les llama elementos del conjunto. Se denominará

Más detalles

Algebra I (Doble Grado Matemáticas-Informática)

Algebra I (Doble Grado Matemáticas-Informática) Algebra I (Doble Grado Matemáticas-Informática) Relación 1 Curso 2017-2018 Conjuntos y aplicaciones. Ejercicio 1. Construir todas las aplicaciones del conjunto X = {a, b, c} en el conjunto Y = {1, 2} y

Más detalles

Ejercicios Selección Unica de funciones. ExMa-MA SELECCION UNICA

Ejercicios Selección Unica de funciones. ExMa-MA SELECCION UNICA Ejercicios Selección Unica de funciones. ExMa-MA0125 1 SELECCION UNICA A continuación se presentan 54 preguntas de selección única. En cada caso, escoja la respuesta correcta. No lo realice con calculadora.

Más detalles

Derivación. Aproximaciones por polinomios.

Derivación. Aproximaciones por polinomios. Derivación... 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Matemáticas (Grado en Químicas) Contenidos Derivada 1 Derivada 2 3 4 5 6 Outline Derivada 1 Derivada 2 3 4 5 6 Definición

Más detalles

Algebra Lineal XI: Funciones y Transformaciones Lineales

Algebra Lineal XI: Funciones y Transformaciones Lineales Algebra Lineal XI: Funciones y Transformaciones Lineales José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email:

Más detalles

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la

Más detalles

0.1. Homomorfismos de Grupos

0.1. Homomorfismos de Grupos 0.1. HOMOMORFISMOS DE GRUPOS 1 0.1. Homomorfismos de Grupos Definición 1 Sean (G, ) y (H, ) dos grupos. Una función f de G a H f : G H se dice ser a) Un homomorfismo si f(x y) = f(x) f(y), x, y (G, ),

Más detalles

93.58 ÁLGEBRA 1º PARCIAL 2º CUATRIMESTRE 2015

93.58 ÁLGEBRA 1º PARCIAL 2º CUATRIMESTRE 2015 93.58 ÁLGEBRA º PARCIAL 2º CUATRIMESTRE 205 Ejercicio. Sea A el conjunto cuyos elementos son las funciones f: {k N: k 4} {k N: k 8}. Sea R la relación en A definida por: frg f() = g(). Pruebe que R es

Más detalles

COMPLEMENTO DEL TEÓRICO

COMPLEMENTO DEL TEÓRICO ÁLGEBRA I PRIMER CUATRIMESTRE - AÑO 2016 COMPLEMENTO DEL TEÓRICO El material de estas notas fue dictado en las clases teóricas pero no se encuentra en el texto que seguimos en las mismas ( Álgebra I -

Más detalles

Teorema del Valor Medio

Teorema del Valor Medio Tema 6 Teorema del Valor Medio Abordamos en este tema el estudio del resultado más importante del cálculo diferencial en una variable, el Teorema del Valor Medio, debido al matemático italo-francés Joseph

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 4

Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Ejercicio Determinar las funciones enteras f para las que Solución f( + w) = f()f(w), w C. En primer lugar, f(0) = f(0 + 0) = f(0)f(0) = f(0) 2,

Más detalles

Solución del Examen de Matemática I - 19 de setiembre de 2011

Solución del Examen de Matemática I - 19 de setiembre de 2011 Solución del Examen de Matemática I - 19 de setiembre de 2011 Ejercicio 1 a) Dados los conjuntos y, hallar el mayor conjunto que cumpla simultáneamente con:, y. Justificar. Si consideramos, entonces y

Más detalles

Conjuntos, relaciones de equivalencia y aplicaciones

Conjuntos, relaciones de equivalencia y aplicaciones CAPíTULO 1 Conjuntos, relaciones de equivalencia y aplicaciones 1. Conjuntos La idea de conjunto es una de las más significativas en Matemáticas. La mayor parte de los conceptos matemáticos están construidos

Más detalles

Teoría Tema 2 Concepto de función

Teoría Tema 2 Concepto de función página 1/7 Teoría Tema Concepto de función Índice de contenido Función, dominio e imagen... Función inyectiva...4 Función sobreyectiva...6 Función biyectiva...7 página /7 Función, dominio e imagen Una

Más detalles

una aplicación biyectiva h : A A.

una aplicación biyectiva h : A A. Álgebra Básica Examen de septiembre 9-9-016 apellidos nombre Observaciones: -) Los cuatro ejercicios tienen el mismo valor. Cada ejercicio será puntuado sobre 10 para después calcular la nota global. -)

Más detalles

Transformaciones lineales

Transformaciones lineales CAPíTULO 4 Transformaciones lineales En este capítulo estudiamos las primeras propiedades de las transformaciones lineales entre espacios vectoriales. 1. Construcciones de transformaciones lineales Lema

Más detalles

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( )

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( ) MATRICES Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. Ejemplo 1. Algunos ejemplos de matrices ( + ( ) ( + ( ) El tamaño o el orden de una

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Capítulo 5 Aplicaciones Lineales 51 Definición y Propiedades Sean V y W dos espacios vectoriales sobre el mismo cuerpo K Definición 511 Se dice que una aplicación f : V W es una aplicación lineal o un

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

Conjuntos finitos y conjuntos numerables

Conjuntos finitos y conjuntos numerables Tema 3 Conjuntos finitos y conjuntos numerables En este tema vamos a usar los números naturales para contar los elementos de un conjunto, o dicho con mayor precisión, para definir los conjuntos finitos

Más detalles

Álgebra y Trigonometría Clase 4 Inversas, exponenciales y logarítmicas

Álgebra y Trigonometría Clase 4 Inversas, exponenciales y logarítmicas Álgebra y Trigonometría Clase 4 Inversas, exponenciales y logarítmicas CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

Notas sobre polinomios

Notas sobre polinomios Notas sobre polinomios Glenier Bello 1. Definiciones y conceptos básicos 1.1. Un polinomio es una función f : C C del tipo f(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, donde n es un entero no negativo

Más detalles

1. Ecuaciones lineales en cuerpos finitos

1. Ecuaciones lineales en cuerpos finitos 1. Ecuaciones lineales en cuerpos finitos Un cuerpo es un conjunto F dotado de dos operaciones suma y producto, usualmente denotadas por + y que satisfacen los axiomas de los números reales, exceptuando

Más detalles

4.2. Funciones inyectivas, sobreyectivas y biyectivas

4.2. Funciones inyectivas, sobreyectivas y biyectivas 4.. Funciones inyectivas, sobreyectivas y biyectivas En esta sección estudiaremos tres conceptos básicos sobre funciones. 4... Funciones inyectivas Definición 4.. Sea f una función de en. Diremos que f

Más detalles

UNIDAD 1: RELACIONES Y FUNCIONES

UNIDAD 1: RELACIONES Y FUNCIONES UNIDAD 1: RELACIONES Y FUNCIONES En Topología, para caminar con soltura y seguridad, es necesario conocer con precisión lo que son las funciones. Es menester fundamental, las ideas intuitivas y conceptos

Más detalles

Conjuntos Infinitos. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO

Conjuntos Infinitos. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO El estudio de los conjuntos infinitos se inicia con Las Paradojas del Infinito, la última obra del matemático checo Bernard Bolzano, publicada

Más detalles

EL TEOREMA DE SEIFERT-VAN KAMPEN. 1. Preliminares sobre grupos

EL TEOREMA DE SEIFERT-VAN KAMPEN. 1. Preliminares sobre grupos EL TEOREMA DE SEIFERT-VAN KAMPEN 1. Preliminares sobre grupos Sea G un grupo. Denotaremos de forma multiplicativa la operación en G. Así, el producto de x, y G es x y, y el inverso de x G es x 1. Para

Más detalles

Teoría de la Dimensión

Teoría de la Dimensión Capítulo II Teoría de la Dimensión En este capítulo introduciremos una de las propiedades más importantes que tienen los espacios vectoriales: la dimensión. Dos son los modos posibles de llegar a la noción

Más detalles

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados Capítulo 5 Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados En este tema iniciamos el estudio de los conceptos geométricos de distancia y perpendicularidad en K n. Empezaremos con las definiciones

Más detalles

LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS

LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS Sea una estructura formada por un conjunto A, sobre cuyos elementos se ha definido una operación o ley interna, comúnmente denotada por " * ", que

Más detalles

1º ITIS Matemática discreta Relación 2 APLICACIONES

1º ITIS Matemática discreta Relación 2 APLICACIONES º ITIS Matemática discreta Relación 2 PLICCIONES. Estudiar en cuáles de los siguientes casos la correspondencia G deinida entre 2 2 los conjuntos y B mediante la relación ( x, y G x + y = es una aplicación:

Más detalles

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2017

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2017 Tema 1: Conjuntos Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Septiembre de 2017 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2017 1

Más detalles

Funciones de Variable Real

Funciones de Variable Real Tema 1 Funciones de Variable Real 1.1. La Recta Real Los números reales se pueden ordenar como los puntos de una recta. Los enteros positivos {1, 2, 3, 4,...} que surgen al contar, se llaman números naturales

Más detalles

Conjuntos. 17 {perro, gato, 17, x 2 }

Conjuntos. 17 {perro, gato, 17, x 2 } Conjuntos Qué es un conjunto? Informalmente, es una agrupación de cosas, o una descripción que dice qué elementos están y qué elementos no están. Para describir un conjunto usamos llavecitas y enumeramos

Más detalles

Funciones. f(x) = 1 x 4. x 4. Denición 3. El conjunto Y es llamado el codominio de f. x 4. x 4 = 1 y. 4y + 1 y. y y < 4

Funciones. f(x) = 1 x 4. x 4. Denición 3. El conjunto Y es llamado el codominio de f. x 4. x 4 = 1 y. 4y + 1 y. y y < 4 Análisis Matemático Funciones Denición. Sean X, Y R dos conjuntos no vacíos. Una función f del conjunto X en el conjunto Y es una regla de correspondencia que asocia a cada elemento x X un único elemento

Más detalles

1.1 Definición de una función de variable real Dominio Rango 1.2 Representación grafica de funciones Grafica de una función 1.2.

1.1 Definición de una función de variable real Dominio Rango 1.2 Representación grafica de funciones Grafica de una función 1.2. 1.1 Definición de una función de variable real 1.1.1 Dominio 1.1.2 Rango 1.2 Representación grafica de funciones 1.2.1 Grafica de una función 1.2.2 Criterio de la recta vertical 1.3 Tipos de funciones

Más detalles

Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García. UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior

Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García. UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior INGENIERÍAS TÉCNICAS INDUSTRIALES TEORIA DE CÁLCULO I Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Capítulo 7 Aplicaciones Lineales 7.1 Definición y Propiedades Sean V y W dos espacios vectoriales sobre el mismo cuerpo K. Definición 7.1.1 Se dice que una aplicación f : V W es una aplicación lineal o

Más detalles

ÁLGEBRA (Ciencias) año 2014 PRÁCTICA N 4. ELEMENTOS DE TEORÍA DE CONJUNTOS: nociones básicas

ÁLGEBRA (Ciencias) año 2014 PRÁCTICA N 4. ELEMENTOS DE TEORÍA DE CONJUNTOS: nociones básicas ÁLGEBRA (Ciencias) año 2014 PRÁCTICA N 4 ELEMENTOS DE TEORÍA DE CONJUNTOS: nociones básicas 1. Decir, justificando adecuadamente, si las siguientes afirmaciones son verdaderas o falsas: (a) { } (b) { }

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Ejercicio 1 2 4 5 6 Total Puntos Departamento de Economía Examen Final de Matemáticas I 16 de Enero de 201 APELLIDOS: Duración del Examen: 2 horas. NOMBRE: DNI: Titulación:

Más detalles

Funciones Inversas. Derivada de funciones inversas

Funciones Inversas. Derivada de funciones inversas Capítulo 15 Funciones Inversas En este capítulo estudiaremos condiciones para la derivación de la inversa de una función de varias variables y, en particular, extenderemos a estas funciones la fórmula

Más detalles

Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación. Lecturas en Ciencias de la Computación ISSN

Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación. Lecturas en Ciencias de la Computación ISSN Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Lecturas en Ciencias de la Computación ISSN 1316-6239 Relaciones Prof. Luis Manuel Hernández R. ND 2006-02 Centro de Cálculo

Más detalles