PAUTA C1. ] si z [x, , y] si z ( 2 )] si z [x, x ( x+y. 2 ] si z ( x ( x+y. )] si z [( ( y x+y

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PAUTA C1. ] si z [x, , y] si z ( 2 )] si z [x, x ( x+y. 2 ] si z ( x ( x+y. )] si z [( ( y x+y"

Transcripción

1 MA Optimización, Primavera 018 Profesores: J. Amaya, V. Acuña PAUTA C1 P1.a) Sea C un subconjunto de IR n. Se dice que es un convexo de punto medio si para cada par x, y C se tiene que 1 x + 1 y C. Demostrar que si C es convexo de punto medio y cerrado, entonces es convexo. HINT: Tome dos puntos x, y en C y λ [0, 1]. Divida el intervalo [x, y] en dos mitades iguales y vea dónde cae z = λx + (1 λ)y. Dependiendo de eso genere otro intervalo, más pequeño, que contiene a z y así sucesivamente. Solución P1.a) Supongamos que C IR n es un conjunto convexo de punto medio y cerrado. Sean x, y C y λ [0, 1] arbitrarios. El objetivo es probar que z = λx + (1 λ)y C. Usando la indicación construiremos una sucesión de conjuntos anidados (X n ) n IN que siempre contengan a z: Si X 1 = [x, ], entonces X = X 0 = [x, y] = {tx + (1 t)y : t [0, 1]} [x, ] si z [x, ] X 1 = (, y] si z (, y] [x, x + 1 ( )] si z [x, x + 1 ( )] ( x + 1 ( ), ] si z ( x + 1 ( ), ] Análogo, si X 1 = (, y], entonces X = (, ( y )] si z [( ), x + 1 y ] ( 1 ( ) + 1 ( y ), y] si z ( 1 ( ) + 1 ( y ), y] Así, siguiendo con la iteración dividiendo cada intervalo anterior y viendo donde está z, obtenemos una sucesión (X n ) n IN. Notamos que n IN z X n y el diámetro de X n tiende a cero, por lo que converge a {z}. Además cada extremo de X n pertenece a C dado que por construcción estos son el punto medio de dos elementos en C. En particular, el extremo derecho de cada X n es punto medio, y además este pertenece a X n (no necesariamente así el extremo izquierdo). Luego definiendo z n punto extremo derecho del intervalo X n, se tiene que (z n ) n IN C y z n z. Como C es cerrado, se concluye que z C. Por lo tanto, C es convexo. por encontrar z_n por usar cerradura y concluir

2 P1. b) Sean P y Q convexos en IR n. Entonces el conjunto P + Q = {x + y x P, y Q} también es un convexo. i) Demuestre que si z es punto extremo de P + Q entonces z es la suma de un punto extremo de P más un punto extremo de Q. HINT: Use contrarecíproca. ii) Muestre con un contraejemplo que la recíproca no es cierta. Es decir, que no podemos asegurar en general que si x es un punto extremo de P e y es un punto extremo de Q entonces x + y sea un punto extremo de P + Q. Solución P1. b) i) Por contrarecíproca, sea un punto z en P + Q que no es la suma de dos puntos extremos, uno de P y uno de Q. Es decir, z = x + y con x P e y Q y tal que al menos uno de los dos, x o y no es punto extremo de P y Q respectivamente. Sin pérdida de generalidad, supongamos que x no es punto extremo de P. Por lo tanto existen puntos x 1 y x en P y λ ]0, 1[ tales que Así, podemos escribir z como x = λx 1 + (1 λ)x z = λx 1 + (1 λ)x + y = λx 1 + (1 λ)x + λy + (1 λ)y = λ(x 1 + y) + (1 λ)(x + y) Como x 1 + y P + Q y x + y P + Q se concluye que z no es punto extremo de P + Q. Nota: la demostración por contradicción es bastante similar. ii) Hay muchos contraejemplos. Por ejemplo, si P = Q = B(0, 1) (es decir, si P y Q son la bola cerrada de radio 1) entonces P + Q = B(0, ). Claramente en P cualquier punto x de norma 1 es punto extremo. Si en Q se toma y = x, que es punto extremo de Q, entonces x + y = 0, que no es punto extremo de P + Q. Otro contraejemplo puede ser tomar en IR el poliedro cuadrado con (0, 0), (0, 1), (1, 0) y (1, 1) son puntos extremos. Si P y Q son este poliedro, entonces P + Q es el cuadrado de puntos extremos (0, 0), (0, ), (, 0) y (, ). Si tomamos la suma de (0, 0) P y (1, 1) Q obtenemos (1, 1) P + Q que no es un punto extremo de P + Q. Otro más: en IR la suma de dos intervalos cerrados [a, b] y [c, d] me da un intervalo cerrado con puntos extremos a + c y b + d. Los puntos a + d y b + c están en la suma pero no son puntos extremos. Notar que cualquier suma que convexos donde uno de ellos sea un sólo punto no resulta como contraejemplo. 1.5

3 P.a) a) Resuelva el siguiente problema Solución P.a) (P ) mín 9x +x 3 x 5 x 6 5x +50x 3 +x 4 +x 5 = 10 x 1 15x +x 3 = x +x 3 +x 5 +x 6 = 6 x i 0 i = 1,..., 6 Escojamos las variables x 4, x 1, x 6 para la base. Como B = I y B 1 b = (10,, 6) T 0 entonces tenemos una base factible. La matriz N corresponde a las columnas de las variables no-básicas x, x 3, x 5. Los costos reducidos no básicos son c T N = (9, 1, ) (0, 0, 1)B 1 N = (10,, 1). La función objetivo evaluada en este punto extremo es -6. El tableau inicial de SIMPLEX y una iteración: - por encontrar base y justificar que es factible. - por completar los valores del tableu Como no hay costos reducidos negativos, llegamos a una solución óptima en una iteración, para la base x 4, x 1, x 5. El óptimo se alcanza en el punto (, 0, 0, 4, 6, 0) y la función objetivo en ese punto vale -1. P.b) Escriba (P ) como problema de canónico de programación lineal y resuélvalo usando los criterios del algoritmo Simplex. (P ) mín f(x 1, x ) x 1 + x 1 x 1, x 0 donde f(x 1, x ) = máx{x 1, x }. HINT: Considere que si z = f(x 1, x ) entonces z x 1 y z x Solución P.b) Transformar la primera restricción en dos: x 1 + x 1 y x 1 x 1, agregar la variable z y las restricciones z x 1 y z x y la función objetivo mín z. Luego agregar variables de holgura y se obtiene un tableau SIMPLEX para las variables x 1, x, z, y 1, y, y 3, y 4 con variables básicas y 1, y, y 3, y 4 : por introducir z y las restricciones asociadas - por cambiar restricción con valor absoluto - por función objetivo - por construir el tableu y concluir Como todos los costos reducidos no negativos, no es necesario iterar y se obtiene directamente el óptimo: (0, 0, 0, 1, 1,, 0). Esta solución corresponde en el problema original al punto x 1 = 0 y x = 0.

4 P3. Escriba un modelo para el problema descrito a continuación. La International Free Transportation Agency (IFTA) tiene dos categorías de azafatas (titulares y aprendices) y debe decidir un programa de formación y contratación para los próximos seis meses. Las exigencias a respetar son expresadas en horas de vuelo de azafatas: Mes Enero Febrero Marzo Abril Mayo Junio Horas La formación de una nueva azafata (aprendiz) se hace en un mes calendario. Esta formación comprende 80 horas de vuelo en líneas de la compañía. Estas 80 horas se pueden deducir de exigencias que en general las azafatas deben cumplir, es decir, sirven para satisfacer las exigencias de horas de vuelo de la compañía. Cada azafata titular puede entregar hasta 140 horas de vuelo por mes. La compañía dispone de 60 azafatas titulares al 1 de enero. Cada azafata titular recibe un sueldo de US$00 por mes, independientemente del número de horas que preste servicio. Cada fin de mes, el 10 % de las azafatas titulares deja su trabajo por diversas razones. Al cabo de un mes de formación una azafata aprendiz se convierte en azafata titular para el mes entrante. El costo de formación de una azafata depende del mes, según la tabla: Mes Enero Febrero Marzo Abril Mayo Junio Costo (US$) Nota: 1) No existe posibilidad de contratar azafatas por fuera, es decir, la única manera de ingresar a la empresa es el mes de formación. )Una azafata aprendiz deviene automáticamente titular al inicio del mes siguiente a su formación. Solución P3. Sean las variables: x 1,..., x 6 : número de azafatas titulares en cada mes, y 1,..., y 6 : número de azafatas aprendices en cada mes. Función de costo: Minimizar x i + K i y i i=1 i=1 Sean H i las horas requeridas de vuelo por cada mes: (1000, 9000, 8000, 11000, 9000, 1000) Sean K i los costos de formación de azafatas en cada mes: (300, 350, 350, 500, 550, 400) Restricciones. x i+1 0, 9x i + y i, i = 1,..,5 140x i + 80y i H i, i = 1,..,6

5 x 1 = 60 x i, y i IN, i = 1,..,6 NOTA: la primera restricción debería ser una igualdad, pero se pone para evitar problemas de factibilidad, pues se está usando variables enteras. De todas maneras como se busca los x i más pequeños, eso se arregla bien así. Si un alumno pone la igualdad, no está totalmente malo, pero debería relajar la condición de integridad de las variables x i y al final redondear hacia arriba la solución. OJO: en general, no es obvio que ambas formulaciones sean equivalentes.

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 IN3701 - Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 Acá va una pequeña guía con problemas resueltos de Geometría en Programación Lineal con problemas básicamente extraídos del

Más detalles

Fundamentos de Programación Entera. A. Revisión. Carlos Testuri Germán Ferrari

Fundamentos de Programación Entera. A. Revisión. Carlos Testuri Germán Ferrari Fundamentos de Programación Entera A. Revisión Carlos Testuri Germán Ferrari Departamento de Investigación Operativa Instituto de Computación Facultad de Ingeniería Universidad de la República 2012-2018

Más detalles

Guía de Problemas para el Control 2

Guía de Problemas para el Control 2 Guía de Problemas para el Control 2 Geometría Problema 1 Demuestre que la intersección de conjuntos convexos es un conjunto convexo. Utilizando esto demuestre que todo poliedro es un conjunto convexo.

Más detalles

Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria.

Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria. Dualidad 1 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. Condiciones de holgura complementaria. 6 Solución dual óptima en la tabla. 7 Interpretación

Más detalles

CO5411. Dantzig-Wolfe / Descomposición de Benders. Prof. Bernardo Feijoo. 06 de febrero de 2008

CO5411. Dantzig-Wolfe / Descomposición de Benders. Prof. Bernardo Feijoo. 06 de febrero de 2008 Dantzig-Wolfe / Departmento de Cómputo Cientíco y Estadística Universidad Simón Bolívar 06 de febrero de 2008 Contenido 1 Dantzig-Wolfe 2 Contenido Dantzig-Wolfe 1 Dantzig-Wolfe 2 Ahora la nueva base produce

Más detalles

Programación Lineal. Yolanda Hinojosa

Programación Lineal. Yolanda Hinojosa Programación Lineal Yolanda Hinojosa Contenido Formulación primal de un programa lineal. Propiedades Algoritmo del simplex Algoritmo dual del simplex Formulación dual de un programa lineal. Propiedades

Más detalles

Introducción a la optimización con algoritmos. Ejercicios. 0 2 f(x + t(y x))(y x)dt. J(x + t(y x))(y x)dt siendo J la matriz Jacobiana de F.

Introducción a la optimización con algoritmos. Ejercicios. 0 2 f(x + t(y x))(y x)dt. J(x + t(y x))(y x)dt siendo J la matriz Jacobiana de F. Introducción a la optimización con algoritmos Ejercicios Preliminares 1. Demostrar que si f C 2 (IR n ), f : IR n IR entonces f(y) f(x) = 1 0 2 f(x + t(y x))(y x)dt. 2. Demostrar que si F C 1 (IR n ),

Más detalles

Pauta 11 : Conjuntos Infinitos

Pauta 11 : Conjuntos Infinitos MA1101-5 Introducción al Álgebra Profesor: Mauricio Telias Auxiliar: Arturo Merino P1. [Varios de numerabilidad] a) Considere el conjunto Pauta 11 : Conjuntos Infinitos 2 de junio del 2017 C = {..., 16,

Más detalles

Optimización bajo Incertidumbre. 0. Revisión. Depto. Investigación Operativa. Instituto de Computación. Facultad de Ingeniería, UdelaR

Optimización bajo Incertidumbre. 0. Revisión. Depto. Investigación Operativa. Instituto de Computación. Facultad de Ingeniería, UdelaR Optimización bajo Incertidumbre 0. Revisión Carlos Testuri Germán Ferrari Depto. Investigación Operativa. Instituto de Computación. Facultad de Ingeniería, UdelaR 2003-17 Contenido 1 Revisión Probabilidad

Más detalles

Para poder elaborar el problema dual a partir del primal, este se debe presentar en su forma canónica de la siguiente forma:

Para poder elaborar el problema dual a partir del primal, este se debe presentar en su forma canónica de la siguiente forma: TEORIA DE LA DUALIDAD. Cada problema de programación lineal tiene un segundo problema asociado con él. Uno se denomina primal y el otro dual. Los 2 poseen propiedades muy relacionadas, de tal manera que

Más detalles

Espacios métricos completos

Espacios métricos completos 5 Espacios métricos completos Comenzamos introduciendo las sucesiones de Cauchy, que relacionamos con las sucesiones convergentes. En el caso de que coincidan, se trata de un espacio métrico completo.

Más detalles

Escuela Superior Politécnica del Litoral

Escuela Superior Politécnica del Litoral Escuela Superior Politécnica del Litoral Instituto de Ciencias Matemáticas Primera evaluación de Álgebra Lineal - Diciembre 1, 2011 Nombre y Appellido: Paralelo: Firma: Tema 1 (9 puntos) Dé la definición

Más detalles

Optimización de Problemas no lineales.

Optimización de Problemas no lineales. Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN34A: Clase Auxiliar Optimización de Problemas no lineales. Marcel Goic F. Esta es una versión bastante

Más detalles

Tema 3 Optimización lineal. Algoritmo del simplex

Tema 3 Optimización lineal. Algoritmo del simplex Tema 3 Optimización lineal. Algoritmo del simplex José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 3 Teorema fundamental de la programación lineal. Algoritmo

Más detalles

Optimización lineal. Diego A. Patino. 2 de septiembre de Pontificia Universidad Javeriana 1/ 29

Optimización lineal. Diego A. Patino. 2 de septiembre de Pontificia Universidad Javeriana 1/ 29 Optimización lineal Diego A. Patino Pontificia Universidad Javeriana 2 de septiembre de 2016 1/ 29 Introducción Formulación del problema Herramientes del análisis convexo Formas de las restricciones 2/

Más detalles

Soluciones. Abril de 2010

Soluciones. Abril de 2010 FACULTAD CS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA00- Introducción al Cálculo Semestre 00-0 Profesor: Jorge San Martín Auxiliares: Natalia Ruiz - Alfredo Torrico Soluciones Abril de 00 P a) Demuestre

Más detalles

Geometría y Poliedros

Geometría y Poliedros IN3701, Optimización 3 de agosto de 2009 Contenidos 1 Definiciones Básicas Definición 2.1 S R n es un poliedro si S = {x R n : Ax b} para algún A R m n, b R m. Definición 2.2 S R n es acotado si existe

Más detalles

TEST IO-I T1. CONCEPTOS PREVIOS. C1.1. Cualquier conjunto convexo tiene al menos un punto extremo?

TEST IO-I T1. CONCEPTOS PREVIOS. C1.1. Cualquier conjunto convexo tiene al menos un punto extremo? TEST IO-I T1. CONCEPTOS PREVIOS C1.1. Cualquier conjunto convexo tiene al menos un punto extremo? a) Puede tener puntos extremos. b) Puede no tener puntos extremos. c) Puede tener vértices. C1.2. Es convexo

Más detalles

Funciones continuas e inyectivas

Funciones continuas e inyectivas Nuestro último teorema afirmaba que toda función continua en un intervalo cerrado y acotado tiene máximo y mínimo absolutos, pero nada nos informa sobre los puntos en los que se alcanzan. Bajo la hipótesis

Más detalles

Repaso del algoritmo SIMPLEX

Repaso del algoritmo SIMPLEX Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN70K: Clase Auxiliar Repaso del algoritmo SIMPLEX Marcel Goic F. 1 1 Esta es una versión bastante

Más detalles

Licenciatura en Administración y Dirección de Empresas

Licenciatura en Administración y Dirección de Empresas Licenciatura en Administración y Dirección de Empresas Programación Matemática de junio de 200 Ejercicio 3 pt. Considera el siguiente problema de programación no lineal:. Se trata de un problema convexo?

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Pedro Díaz Navarro * Abril de 26. Vectores en R 2 y R 3 2. Espacios Vectoriales Definición (Espacio vectorial) Decimos que un conjunto no vacío V es un espacio vectorial sobre un cuerpo

Más detalles

Método Simplex. Ing. Ricardo Fernando Otero, MSc

Método Simplex. Ing. Ricardo Fernando Otero, MSc Método Simplex Ing. Ricardo Fernando Otero, MSc Forma estándar de un modelo de programación lineal Dirección de mejora: Maximizar Todas las restricciones deben ser El lado izquierdo debe contener solo

Más detalles

1. Espacios topológicos compactos.

1. Espacios topológicos compactos. PRACTICO 6. COMPACIDAD. 1. Espacios topológicos compactos. Definición 1 Un cubrimiento de un conjunto X es una familia de subconjuntos de X cuya unión da X. Un cubrimiento de un espacio es abierto si cada

Más detalles

Pauta Control 1 - MA2A1 Agosto a) Estudiar si las siguientes denen una norma en R 2 : 3) (x, y) = x + 3

Pauta Control 1 - MA2A1 Agosto a) Estudiar si las siguientes denen una norma en R 2 : 3) (x, y) = x + 3 Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Pauta Control 1 - MA2A1 Agosto 2008 Profesor: Marcelo Leseigneur Auxiliares: Cristopher Hermosilla

Más detalles

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto

Más detalles

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 5 Condiciones de Karush-Kuhn-Tucker (KKT). Problemas

Más detalles

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas.

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas. Tema 3 Dualidad En el desarrollo de la programación lineal la teoria de la dualidad es importante, tanto desde el punto de vista teórico como desde el punto de vista práctico. Para cada modelo lineal se

Más detalles

Dualidad. Dpto. Ingeniería Industrial, Universidad de Chile. 22 de abril de IN3701, Optimización

Dualidad. Dpto. Ingeniería Industrial, Universidad de Chile. 22 de abril de IN3701, Optimización Contenidos Motivación y Representación de Poliedros IN3701, Optimización 22 de abril de 2009 Contenidos Motivación y Representación de Poliedros Contenidos 1 Motivación 2 y Representación de Poliedros

Más detalles

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son:

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son: Unidad X: Programación lineal (continuación) Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la resolución de problemas enfocados a las ecuaciones

Más detalles

Forma estándar de un programa lineal

Forma estándar de un programa lineal Forma estándar de un programa lineal Sin pérdida de generalidad, todo programa lineal se puede escribir como: min cx s.t Ax = b x 0 Objetivo: minimizar Todas las desigualdades como ecuaciones Todas las

Más detalles

max c T x s.a. Ax b x 0 y un diccionario general para dicho problema a rs x s, c s x s z = d + b r y r min b T y s.a. A T y c y 0

max c T x s.a. Ax b x 0 y un diccionario general para dicho problema a rs x s, c s x s z = d + b r y r min b T y s.a. A T y c y 0 CO-34 (S8) 25/3/28 8 Formalizaremos lo visto en la clase anterior. Considere un problema en forma estándar max s.a. c T x Ax b x un diccionario general para dicho problema x r = b r + a rs x s, s NB z

Más detalles

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Estos apuntes están redactados por Maria de los Angeles Isidro Pérez y Egor Maximenko.

Más detalles

Examen de Investigación Operativa 2006/07

Examen de Investigación Operativa 2006/07 Examen de Investigación Operativa 2006/07 ITIG-UC3M, 10 de septiembre de 2007, 10:00-12:00 Nombre, apellidos, grupo y NIA: Problema 1 Problema 2 Problema 3 Problema 4 Total Nota: indica en cada caso el

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

5.1. Algoritmo en modelos de maximización

5.1. Algoritmo en modelos de maximización 5.1. Algoritmo en modelos de maximización El primer tipo de modelo que vamos a resolver por el método símplex es el que tiene como objetivo maximizar a una función lineal, la cual está sujeta a una serie

Más detalles

max z = c T x sujeto a Ax b

max z = c T x sujeto a Ax b Tema 4 Análisis de sensibilidad El análisis de sensibilidad se realiza después de obtener la solución óptima de un modelo lineal para deteminar como afectan los cambios en los parámetros del modelo a la

Más detalles

Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo:

Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo: Método Simplex. Este método fue creado en el año 1947 por el estadounidense George Bernard Dantzig y el ruso Leonid Vitalievich Kantorovich, con el objetivo de crear un algoritmo capaz de crear soluciones

Más detalles

Tema 3: El Método Simplex. Algoritmo de las Dos Fases.

Tema 3: El Método Simplex. Algoritmo de las Dos Fases. Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo

Más detalles

1. La topología inducida.

1. La topología inducida. PRACTICO 4. ESPACIOS METRICOS. 1. La topología inducida. Sea (M, d) un espacio métrico. La bola abierta de centro x y radio r es el conjunto B(x; r) = {y M : d(x, y) < r}. La bola cerrada de centro x y

Más detalles

Guía Semana 1 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 1 1. RESUMEN. Universidad de Chile. Ingeniería Matemática 1. RESUMEN FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables 08-1 Guía Semana 1 Geometría. Dados x, y Ê N, su producto interno canónico (o producto punto) es x

Más detalles

INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA

INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA Sesión 4 Objetivos: Aplicar el método simplex a la solución de problemas reales. Contenido: Introducción al método Simplex Requerimiento del método Simplex

Más detalles

Tema 4 Funciones convexas y optimización convexa

Tema 4 Funciones convexas y optimización convexa Tema 4 Funciones convexas y optimización convexa José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 4 Repaso de algunos resultados sobre optimización de funciones.

Más detalles

Control 2 IN mayo 2009

Control 2 IN mayo 2009 Profs: Auxs: Daniel Espinoza Gonzalo Romero Víctor Bucarey Nelson Devia Jocelyn González Daniel Lillo Fernando Solari Control 2 IN3701 28 mayo 2009 Pregunta 1 La empresa de pigmentos LILLO & Co. debe decidir

Más detalles

1. Sensibilidad en caso de restricciones de igualdad

1. Sensibilidad en caso de restricciones de igualdad FACULTAD CS. FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA57B Optimización No Lineal. Semestre 2007-1 Profesor: Héctor Ramírez C. Auxiliar: Oscar Peredo. Clase Auxiliar #4 Análisis de Sensibilidad en Optimización

Más detalles

Auxiliar 7: Dualidad

Auxiliar 7: Dualidad IN3701: Modelamiento y Optimización Profs: Richard Weber, Rodrigo Wolf Coordinador: M. Siebert Aux: V. Bucarey, N. Devia, P. Obrecht Auxiliar 7: Dualidad Lunes 5 de Diciembre de 2011 Pregunta 1: Dualidad

Más detalles

Tema 2 Conjuntos convexos

Tema 2 Conjuntos convexos Tema 2 Conjuntos convexos José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 2 Conjuntos convexos. Propiedades básicas y ejemplos. Cierre e interior de un

Más detalles

Optimización de Problemas de Producción

Optimización de Problemas de Producción Optimización de Problemas de Producción Pedro Piñeyro - Luis Stábile Colaboran: Héctor Cancela - Antonio Mauttone - Carlos Testuri Depto. Investigación Operativa. Instituto de Computación. Facultad de

Más detalles

Subespacios de espacios vectoriales

Subespacios de espacios vectoriales Subespacios de espacios vectoriales Objetivos. Estudiar la definición, el criterio y algunos ejemplos de subespacios vectoriales. Muchos espacios vectoriales importantes (por ejemplo, espacio de soluciones

Más detalles

4. Métodos de Solución PPL : Solución Algebraica: MÉTODO SIMPLEX Segunda Parte

4. Métodos de Solución PPL : Solución Algebraica: MÉTODO SIMPLEX Segunda Parte 4. Métodos de Solución PPL : Solución Algebraica: MÉTODO SIMPLEX Segunda Parte Jorge Eduardo Ortiz Triviño jeortizt@unal.edu.co http:/www.docentes.unal.edu.co MÉTODO SIMPLEX Ejemplo de Simplex: Vamos a

Más detalles

El algoritmo del Simplex. Forma tabular

El algoritmo del Simplex. Forma tabular El algoritmo del Simplex. Forma tabular 1 Soluciones básicas factibles Consideremos el siguiente poliedro P = {x R n, tal que Ax = b, x } con A M m n, b R m, m n, x y RangoA = RangoA, b = m. Observación

Más detalles

Auxiliar N 5 07 de Noviembre de 2007

Auxiliar N 5 07 de Noviembre de 2007 Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN34A Optimización Auxiliar N 5 07 de Noviembre de 2007 Profesores: Francisco Cisternas Richard Weber

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

Introducción a la Programación Matemática. Yolanda Hinojosa

Introducción a la Programación Matemática. Yolanda Hinojosa Introducción a la Programación Matemática Yolanda Hinojosa Contenido Planteamiento general de un problema de programación matemática. Convexidad. ANEXO: Derivadas Sucesivas. Fórmula de Taylor. Clasificación

Más detalles

Ejercicios de Programación Lineal

Ejercicios de Programación Lineal Ejercicios de Programación Lineal Investigación Operativa Ingeniería Informática, UC3M Curso 08/09 1. Una compañía de transporte dispone de 10 camiones con capacidad de 40000 libras y de 5 camiones con

Más detalles

Nelson Devia C Basado en Bertsimas, D., Tsitsiklis, J. (1997) Introduction to Linear Optimization Capítulo 3

Nelson Devia C Basado en Bertsimas, D., Tsitsiklis, J. (1997) Introduction to Linear Optimization Capítulo 3 IN3701 - Modelamiento y Optimización Departamento de Ingeniería Industrial Universidad de Chile 2011 Basado en Bertsimas, D., Tsitsiklis, J. (1997) Introduction to Linear Optimization Capítulo 3 Contenidos

Más detalles

x, y = x 0 y 0 + x 1 y 1 + x 2 y 2 + x 3 y 3. Es fácil ver que verifica 1. Es simétrica. x, y = y, x para todo x, y R 4.

x, y = x 0 y 0 + x 1 y 1 + x 2 y 2 + x 3 y 3. Es fácil ver que verifica 1. Es simétrica. x, y = y, x para todo x, y R 4. 1 Tema 2. Sección 1. Espacio vectorial de Minkowski. Manuel Gutiérrez. Departamento de Álgebra, Geometría y Topología. Universidad de Málaga. 29071-Málaga. Spain. Abril de 2010. En este capítulo se recordará

Más detalles

MLG521. Cristóbal Rojas MLG521

MLG521. Cristóbal Rojas MLG521 Geometría y Polihedros MLG521 Cristóbal Rojas Deparento de Ciencias de de la Ingeniería Departamento de Ingeniería Matemática Universidad Andrés Bello Co-dictado con Pamela Álvarez MLG521 Ejemplo gráfico

Más detalles

Operaciones con matrices

Operaciones con matrices Operaciones con matrices Tareas adicionales Los problemas auxiliares de estas tareas adicionales no son muy difíciles y corresponden al nivel obligatorio de conocimientos. Los problemas principales de

Más detalles

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I Tema # 10 El método de las M s como solución de problemas de programación lineal 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Resolver modelos de programación lineal mediante

Más detalles

Funciones de varias variables. Continuidad

Funciones de varias variables. Continuidad Capítulo 1 Funciones de varias variables. Continuidad 1. Topología en R n Definición (Norma, espacio vectorial normado). Una norma sobre R n es una aplicación: : R n [0,+ [ x x, que satisface las siguientes

Más detalles

Elementos Básicos de Análisis Funcional en. Dr. Oldemar Rodríguez Rojas

Elementos Básicos de Análisis Funcional en. Dr. Oldemar Rodríguez Rojas Elementos Básicos de Análisis Funcional en Análisis Numérico Dr. Oldemar Rodríguez Rojas Agosto 2008 Contents 1 Elementos Básicos de Análisis Funcional 2 1.1 Espacios normados...........................

Más detalles

Tema 18. Programación lineal Formulación primal de un programa lineal

Tema 18. Programación lineal Formulación primal de un programa lineal Tema 18 Programación lineal 18.1. Formulación primal de un programa lineal Dentro de la programación matemática hablamos de programación lineal (PL) si tanto la función objetivo como las restricciones

Más detalles

7. PROGRAMACION LINEAL

7. PROGRAMACION LINEAL 7. PROGRAMACION LINEAL 7.1. INTRODUCCION A LA PROGRMACION LINEAL 7.2. FORMULACION DE UN PROBLEMA LINEAL 7.3. SOLUCION GRAFICA DE UN PROBLEMA LINEAL 7.4. CASOS ESPECIALES DE PROBLEMAS LINEALES 7.4.1. Problemas

Más detalles

Grado en Ciencias Ambientales. Matemáticas. Curso 11/12

Grado en Ciencias Ambientales. Matemáticas. Curso 11/12 Grado en Ciencias Ambientales. Matemáticas. Curso 11/12 Problemas Tema 1. Espacios Vectoriales. 1 Repaso de Estructuras Algebraicas 1.1. Construye explícitamente el conjunto A B, siendo A = {1, 2, 3},

Más detalles

Comenzaremos presentando la idea principal del método de Karmarkar, para después describir los detalles de cómputo del algoritmo.

Comenzaremos presentando la idea principal del método de Karmarkar, para después describir los detalles de cómputo del algoritmo. MÉTODO DEL PUNTO INTERIOR DE KARMARKAR Con el método símplex se obtiene una solución óptima siguiendo una ruta de puntos extremos adyacentes, a lo largo de las orillas del espacio de soluciones. Aunque

Más detalles

Clase 9 Programación No Lineal

Clase 9 Programación No Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 9 Programación No Lineal ICS 110 Optimización Profesor : Claudio Seebach Apuntes de Clases

Más detalles

Capítulo VI. Diferenciabilidad de funciones de varias variables

Capítulo VI. Diferenciabilidad de funciones de varias variables Capítulo VI Diferenciabilidad de funciones de varias variables La definición de diferenciabilidad para funciones el cociente no tiene sentido, puesto que no está definido, porque el cociente entre el vector

Más detalles

Universidad Carlos III de Madrid Licenciatura en Administración de Empresas Examen de Programación Matemática 19 de Septiembre de 2007 Soluciones

Universidad Carlos III de Madrid Licenciatura en Administración de Empresas Examen de Programación Matemática 19 de Septiembre de 2007 Soluciones Universidad Carlos III de Madrid Licenciatura en Administración de Empresas Examen de Programación Matemática 9 de Septiembre de 7 Soluciones. ( puntos Tu empresa proporciona automóviles a algunos de sus

Más detalles

Apuntes de Teórico de Programación 3. Apuntes de Teórico PROGRAMACIÓN 3. Greedy. Versión 1.1

Apuntes de Teórico de Programación 3. Apuntes de Teórico PROGRAMACIÓN 3. Greedy. Versión 1.1 Apuntes de Teórico PROGRAMACIÓN 3 Greedy Versión 1.1 1 Índice Índice... Introducción... 3 Ejemplo 1 (problema de las monedas)... 3 Ejemplo (problema de la mochila)... 4 Aplicaciones del método Greedy a

Más detalles

Proceso Selectivo para la XXII IMC, Bulgaria

Proceso Selectivo para la XXII IMC, Bulgaria Proceso Selectivo para la XXII IMC, Bulgaria Facultad de Ciencias UNAM Instituto de Matemáticas UNAM SUMEM Indicaciones Espera la indicación para voltear esta hoja. Mientras tanto, lee estas instrucciones

Más detalles

INGENIERO EN COMPUTACION TEMA: MÉTODO SIMPLEX

INGENIERO EN COMPUTACION TEMA: MÉTODO SIMPLEX UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO INGENIERO EN COMPUTACION TEMA: MÉTODO SIMPLEX ELABORÓ: M. EN C. LUIS ENRIQUE KU MOO FECHA: MARZO DE 2016 UNIDAD DE APRENDIZAJE

Más detalles

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut 8.1 Para cada uno de los siguientes conjuntos, encontrar una desigualdad válida que agregada a la formulación

Más detalles

Taller de Cálculo Avanzado - Segundo Cuatrimestre de Práctica 3

Taller de Cálculo Avanzado - Segundo Cuatrimestre de Práctica 3 Taller de Cálculo Avanzado - Segundo Cuatrimestre de 2008 Práctica 3 Topología. Decir qué propiedades (abierto, cerrado, acotado) tienen los siguientes conjuntos. (a) Q. (b) N. (c) {x R : x > 0}. (d) (0,

Más detalles

Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias.

Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias. Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias. Dr. Rafael Morones E. Dept. de Matemáticas ITAM August 5, 2002 1 Contenido 1 Preliminares. 3 1.1 Sucesiones...............................

Más detalles

Programación Lineal. - Si no: Sea j tal que c

Programación Lineal. - Si no: Sea j tal que c Programación Lineal El objetivo de este documento es hacer una breve introducción a la programación lineal que pueda contribuir al fácil manejo de la aplicación. La programación lineal es un procedimiento

Más detalles

1. Sucesiones y redes.

1. Sucesiones y redes. 1. Sucesiones y redes. PRACTICO 7. REDES. Se ha visto que el concepto de sucesión no permite caracterizar algunas nociones topológicas, salvo en espacios métricos. Esto empieza con algunas definiciones

Más detalles

Método Simplex en Optimización de Problemas de Producción

Método Simplex en Optimización de Problemas de Producción Método Simplex en Optimización de Problemas de Producción Pedro Piñeyro - Luis Stábile - Fernando Islas - Carlos Testuri Héctor Cancela - Antonio Mauttone Depto. Investigación Operativa. Instituto de Computación.

Más detalles

Funciones continuas Motivación

Funciones continuas Motivación Lección 9 Funciones continuas Generalizando la noción que conocemos para funciones reales de variable real, vamos a estudiar la continuidad para funciones entre dos espacios métricos cualesquiera. La definimos

Más detalles

Análisis Post Optimal y Algoritmo de Ramificación y Acotamiento

Análisis Post Optimal y Algoritmo de Ramificación y Acotamiento Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN34A: Clase Auxiliar Análisis Post Optimal y Algoritmo de Ramificación y Acotamiento Marcel Goic F.

Más detalles

Solemne 1. Fecha: Miércoles 7 de mayo de 2014 Semestre Otoño 2014

Solemne 1. Fecha: Miércoles 7 de mayo de 2014 Semestre Otoño 2014 Curso: CII2750 Optimización Profesores: Paul Bosch, Juan Pablo Cavada Fernando Paredes, Pablo Rey Solemne 1 Fecha: Miércoles 7 de mayo de 2014 Semestre Otoño 2014 Problema 1 Una empresa importadora de

Más detalles

POST-OPTIMIZACIÓN Y SENSIBILIDAD EN PROBLEMAS LINEALES.

POST-OPTIMIZACIÓN Y SENSIBILIDAD EN PROBLEMAS LINEALES. POST-OPTIMIZACIÓN Y SENSIBILIDAD EN PROBLEMAS LINEALES. Una de las hipótesis básicas de los problemas lineales es la constancia de los coeficientes que aparecen en el problema. Esta hipótesis solamente

Más detalles

Tema 7: Problemas clásicos de Programación Lineal

Tema 7: Problemas clásicos de Programación Lineal Tema 7: Problemas clásicos de Programación Lineal 1.- Características generales de un problema de transporte y asignación Surgen con frecuencia en diferentes contextos de la vida real. Requieren un número

Más detalles

310. T. P. Versión 1 Trabajo Práctico 1/5 Lapso

310. T. P. Versión 1 Trabajo Práctico 1/5 Lapso 310. T. P. Versión 1 Trabajo Práctico 1/5 UNIVERSIDAD NACIONAL ABIERTA ÁREA DE INGENIERÍA CARRERA INGENIERÍA DE SISTEMAS TRABAJO PRÁCTICO: ASIGNATURA: OPTIMIZACIÓN NO LINEAL CÓDIGO: 310 FECHA DE ENTREGA

Más detalles

6.8. Descomposición mediante valores singulares. v 2 =

6.8. Descomposición mediante valores singulares. v 2 = 68 Descomposición mediante valores singulares Los valores singulares de una matriz m n Supongamos que A es una matriz real cualquiera Los autovalores de A T A tienen la siguiente propiedad A T Ax = λx

Más detalles

Apellidos:... Nombre:... Examen

Apellidos:... Nombre:... Examen Cálculo Numérico I. Grado en Matemáticas. Curso 0/0. 0 de Junio de 0 Apellidos:... Nombre:... Examen. Decidir razonadamente si las siguientes afirmaciones son verdaderas o falsas, buscando un contraejemplo

Más detalles

Espacios conexos. Capítulo Conexidad

Espacios conexos. Capítulo Conexidad Capítulo 5 Espacios conexos 1. Conexidad En este capítulo exploraremos el concepto de conexidad en un espacio métrico, y estudiaremos algunas de sus aplicaciones. Definición 5.1. Decimos que el espacio

Más detalles

Optimización y Programación Lineal

Optimización y Programación Lineal Optimización y Programación Lineal Método Simplex: Minimización 3 de enero de Método Simplex: Minimización () Optimización y Programación Lineal 3 de enero de / 4 Minimización Minimización En la definición

Más detalles

Programación Lineal. María Muñoz Guillermo Matemáticas I U.P.C.T. M. Muñoz (U.P.C.T.) Programación Lineal Matemáticas I 1 / 13

Programación Lineal. María Muñoz Guillermo Matemáticas I U.P.C.T. M. Muñoz (U.P.C.T.) Programación Lineal Matemáticas I 1 / 13 Programación Lineal María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I M. Muñoz (U.P.C.T.) Programación Lineal Matemáticas I 1 / 13 Qué es la Programación Lineal? Introducción La Programación

Más detalles

MATE Método Simplex maximización estándar

MATE Método Simplex maximización estándar MATE 3012 Método Simplex maximización estándar Problema de maximización estándar Un problema de maximización de programación lineal está en la forma estándar, si la función objetiva w = c 1 x 1 + c 2 x

Más detalles

Unidad III Teoría de la Dualidad.

Unidad III Teoría de la Dualidad. Curso de investigación de operaciones http://www.luciasilva.8k.com/5.5.htm Unidad III Teoría de la Dualidad. III.1 FORMULACIÓN DEL PROBLEMA DUAL La Teoría de la Dualidad es una de las herramientas que

Más detalles

Universidad Nacional de Ingeniería UNI-RUACS 01/09/11

Universidad Nacional de Ingeniería UNI-RUACS 01/09/11 Universidad Nacional de Ingeniería UNI-RUACS 01/09/11 Elaborado por: Deall Daniel Irías Estelí, Nicaragua El método Simplex es un procedimiento iterativo que permite ir mejorando la solución a cada paso.

Más detalles

Contenido. 1 Resolución mediante planos de corte. Resolución mediante planos de corte

Contenido. 1 Resolución mediante planos de corte. Resolución mediante planos de corte Contenido 1 Resolución mediante planos de corte para LP para IP Facultad de Ingeniería. UdelaR Fundamentos de Programación Entera 1/20 para LP para IP Resolución mediante planos de corte La metodología

Más detalles

Tema 1 Introducción. José R. Berrendero. Departamento de Matemáticas Universidad Autónoma de Madrid

Tema 1 Introducción. José R. Berrendero. Departamento de Matemáticas Universidad Autónoma de Madrid Tema 1 Introducción José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Información de contacto José Ramón Berrendero Díaz Correo electrónico: joser.berrendero@uam.es Teléfono:

Más detalles

Jesús Getán y Eva Boj. Marzo de 2014

Jesús Getán y Eva Boj. Marzo de 2014 Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj 1 / 18 Jesús Getán y Eva Boj 2 / 18 Un Programa lineal consta de: Función objetivo. Modeliza

Más detalles

TALLERES DE METODOS NUMERICOS SOLUCION NUMERICA DE ECUACIONES NO LINEALES

TALLERES DE METODOS NUMERICOS SOLUCION NUMERICA DE ECUACIONES NO LINEALES TALLERES DE METODOS NUMERICOS SOLUCION NUMERICA DE ECUACIONES NO LINEALES. Usar un procedimiento iterativo para calcular una aproimación a la menor raíz positiva de la ecuación : sen π = 0 Calcular tres

Más detalles

La factorización eta CO-3411 (S08) 09/03/

La factorización eta CO-3411 (S08) 09/03/ CO-3411 (S08) 09/03/008 74 La factorización eta Esta factorización es una forma de llevar la matriz A B en cada iteración que evita tener que resolver los sistemas lineales involucrados desde cero, pudiendo

Más detalles

Dualidad y postoptimización

Dualidad y postoptimización Dualidad y postoptimización José María Ferrer Caja Universidad Pontificia Comillas Definición A cada problema de optimización lineal le corresponde otro que se denomina problema dual En forma canónica

Más detalles

La Programación Lineal. H. R. Alvarez A., Ph. D. 1

La Programación Lineal. H. R. Alvarez A., Ph. D. 1 La Programación Lineal H. R. Alvarez A., Ph. D. 1 El Método Simplex Desarrollado en 1947 por George Dantzig como parte de un proyecto para el Departamento de Defensa Se basa en la propiedad de la solución

Más detalles