Introducción a la Programación Matemática. Yolanda Hinojosa

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Introducción a la Programación Matemática. Yolanda Hinojosa"

Transcripción

1 Introducción a la Programación Matemática Yolanda Hinojosa

2 Contenido Planteamiento general de un problema de programación matemática. Convexidad. ANEXO: Derivadas Sucesivas. Fórmula de Taylor. Clasificación de matrices simétricas según su signo.

3 Ejemplo 1 Un profesor ha puesto un examen que consta de tres preguntas, y está asignando puntuación a cada una de ellas, de forma que se cumplan los siguientes requisitos: Cada una de las preguntas ha de tener una puntuación mínima de 2, 5 puntos. La suma de la puntuación de todas las preguntas ha de ser 10 puntos. La diferencia entre la puntuación de la primera y la segunda pregunta deberá ser a lo sumo de un punto. El profesor conoce que un 60 % del curso resolverá la primera pregunta correctamente, un 40 % la segunda y un 50 % la tercera. Cómo debe asignar los puntos de modo que se maximice la puntuación global del curso? Plantear un modelo matemático que permita resolver este problema. Pasos a seguir 1 Qué tenemos que decidir? Variables de decisión 2 Qué objetivo perseguimos? Función objetivo 3 Qué condiciones se tienen que cumplir? Restricciones (Conjunto factible o conjunto de oportunidades)

4 1 Variables de decisión: x 1 : puntuación asignada a la primera pregunta x 2 : puntuación asignada a la segunda pregunta x 3 : puntuación asignada a la tercera pregunta 2 Función objetivo: puntuación global primera pregunta: 0, 6x 1 puntuación global segunda pregunta: 0, 4x 2 puntuación global tercera pregunta: 0, 5x 3 f (x 1, x 2, x 3 ) = 0, 6x 1 + 0, 4x 2 + 0, 5x 3 3 Restricciones (Conjunto factible): puntuación mínima por pregunta: x i 2, 5 i = 1, 2, 3 suma puntuaciones: x 1 + x 2 + x 3 = 10 diferencia puntuación 1 a y 2 a pregunta: x 1 x Modelo Matemático: max 0, 6x 1 + 0, 4x 2 + 0, 5x 3 (PL) s.a. x i 2, 5 i = 1, 2, 3 x 1 + x 2 + x 3 = 10 x 1 x 2 1

5 Planteamiento general Opt. f (x 1,, x n) s.a. g i (x 1,, x n) 0 i = 1,, m h j (x 1,, x n) 0 q k (x 1,, x n) = 0 x = (x 1,, x n) R n j = 1,, r k = 1,, s siendo f, g i, h j, q k : D R n R Algunos Modelos de Programación Matemática: Programación No Lineal (PNL): Alguna de las funciones que intervienen en el modelo (ya sea la función objetivo o cualquiera de las restricciones) NO es lineal. PNL sin restricciones. PNL con restricciones de igualdad. PNL con restricciones de desigualdad. Programación Lineal (PL): Todas las funciones que intervienen en el modelo (tanto la función objetivo como todas las restricciones) son funciones lineales. Programación Entera (PE): Las variables de decisión del problema han de ser números enteros.

6 Ejemplo 2 Una compañía cervecera ha dividido su mercado en 2 territorios. Si se gasta en promoción 10x euros en el territorio 1 podrá vender 6x 1/2 cajas de cerveza en el territorio 1 y si se gasta 10y euros en promocionar en el territorio 2, entonces podrá vender 4y 1/2 cajas de cerveza en el territorio 2. Cada caja de cerveza vendida en el territorio 1 supone un coste de envío y producción de 5 euros y se vende a 10 euros. Cada caja de cerveza vendida en el territorio 2 supone un coste de envío y producción de 4 euros y se vende a 9 euros. Se dispone de un total de 1000 euros para la promoción. Qué cantidad tendrá que gastarse en promoción la compañía cervecera en cada territorio de forma que maximice sus beneficios (teniendo en cuenta sólo los gastos de producción y envío y no lo que se gasta en promoción)? Variables de decisión: x: promoción en el territorio 1 y: promoción en el territorio 2 Función Objetivo: Ganancias= Ingresos - Gastos = (60x 1/2 + 36y 1/2 ) (30x 1/2 + 16y 1/2 ) Restricciones: max 3x 1/2 + 2y 1/2 s.a. x + y = 100 x, y 0 (PNL) con restricciones de igualdad

7 Ejemplo 3 Una empresa se anuncia en horario de emisión de cine y en horario de emisión de un evento deportivo. Cada minuto en horario de cine cuesta euros y en horario deportivo cuesta euros. Si se emiten S minutos al día en horario de cine, serán vistos por 5S 1/2 hombres y por 20S 1/2 mujeres (en miles de espectadores al día). Si se emiten F minutos en horario deportivo, serán vistos por 17F 1/2 hombres y por 7F 1/2 mujeres (en miles de espectadores). Dicha empresa quiere que al menos hombres y mujeres al día vean sus anuncios. Determínese el n o de minutos de anuncios que deberá emitir la empresa al día en horario de cine y en horario deportivo de forma que se minimicen los costes de la misma, alcanzando el número mínimo requerido de espectadores. Variables de decisión: S: minutos emitidos en horario de cine F: minutos emitidos en horario deportivo Función Objetivo: min 5S + 10F Restricciones: s.a. 5S 1/2 + 17F 1/ S 1/2 + 7F 1/2 60 S, F 0 (PNL) con restricciones de desigualdad

8 Ejemplo 4 A una compañía le cuesta 6 euros por unidad producir un artículo. Si vende a un precio p cada unidad y gasta un total de a euros en publicidad, puede vender 10000p 2 a 1/6 unidades del artículo. Obtener el precio y el nivel de publicidad que maximizarán las ganancias de la compañía. Variables de decisión: p: precio unitario del artículo a: gasto total en publicidad Función Objetivo: Ganancias= Ingresos - Gastos = p(10000p 2 a 1/6 ) 6(10000p 2 a 1/6 ) a max (p 6)(10000p 2 a 1/6 ) a Restricciones: s.a. p, a 0 (PNL) sin restricciones

9 Ejemplo 5 Un artesano produce tres tipos de sillas con distinto acabado. Tarda 3 días en terminar cada silla si ésta es de primera calidad, 2 días por cada silla de segunda calidad y 1 día por cada silla de tercera calidad. En cada silla obtiene una ganancia de 36, 30 y 25 euros, respectivamente. Sabiendo que sólo tiene licencia para vender 30 sillas, como máximo, en un periodo de dos meses (60 días). Cuántas sillas de cada tipo debe producir para maximizar la ganancia de los próximos dos meses? Variables de decisión: x 1 : n o de sillas producidas del tipo 1 x 2 : n o de sillas producidas del tipo 2 x 3 : n o de sillas producidas del tipo 3 Función Objetivo: max 36x x x 3 Restricciones: s.a. 3x 1 + 2x 2 + x 3 60 x 1 + x 2 + x 3 30 x 1, x 2, x 3 0 (PE)

10 Planteamiento General Optimizar f (x) siendo f : D R n R s.a. x X X R n f : función objetivo X: conjunto factible o de oportunidades: X = {x R n / g(x) = 0; h(x) 0} x: variables decisión Objetivo: Encontrar de entre todas las soluciones factibles aquellas para las que la función objetivo es óptima (óptimos o extremos): x es un mínimo local o relativo de f en X si para cualquier x X de su entorno: f (x ) f (x). El mínimo es global si: f (x ) f (x) x X, y es estricto si f (x ) < f (x) Definición Análoga para máximo cambiando por. máximo global máximo local

11 Condiciones de Optimalidad Global 1 Teorema de Weierstrass: Si la función objetivo es una función continua y el conjunto factible es cerrado y acotado, entonces existe un mínimo y un máximo global. 2 Condiciones de convexidad: Si la función objetivo es una función convexa y el conjunto factible (o conjunto de las restricciones) es un conjunto convexo, entonces todo mínimo (en caso de que exista) es un mínimo global. Si la función objetivo es una función cóncava y el conjunto factible es un conjunto convexo, entonces todo máximo (en caso de que exista) es un máximo global.

12 Convexidad Conjunto Convexo Un conjunto S R n se dice que es convexo si x, y S, λ [0, 1] se verifica que: λx + (1 λ)y S Conjunto convexo: Conjunto NO convexo: Dados dos conjuntos convexos S 1, S 2 R n se tiene que: S 1 S2 es un conjunto convexo. S 1 + S 2 = {x 1 + x 2 R n /x 1 S 1, x 2 S 2 } es un conjunto convexo. S 1 S2 NO es (en general) un conjunto convexo. Nota: Los resultados anteriores se pueden generalizar para el caso de k conjuntos.

13 Convexidad Función Convexa Dado un conjunto S R n convexo y dada f : S R n R se dice que, f es convexa en S si y sólo si: 1 f (λx + (1 λ)y) λf (x) + (1 λ)f (y) x, y S, λ [0, 1] 2 f (y) f (x) + f (x)(y x) (si además f es diferenciable en int(s)) 3 Hf (x) es SDP x int(s) (si además f C 2 (int(s))) f es estrictamente convexa si las desigualdades son estrictas o Hf (x) es DP.

14 Convexidad f es cóncava si f es convexa. Propiedades: 1 Si f es convexa, entonces si λ 0 λf es convexa; y si λ 0 λf es cóncava. 2 Si f 1 y f 2 son convexas, entonces f 1 + f 2 es convexa. 3 Si f i son funciones convexas y λ i 0 i = 1,, k entonces k f = λ i f i es una función convexa. i=1 4 Si S es un conjunto convexo y f es convexa en S, entonces el conjunto Λ α = {x S/f (x) α} es un conjunto convexo. Si f es cóncava en S, entonces el conjunto Ω α = {x S/f (x) α} es un conjunto convexo.

15 ANEXO: Derivadas Sucesivas. Fórmula de Taylor. Se define la derivada de f en x 0 como: f f (x) f (x 0 ) f (x 0 + h) f (x 0 ) (x 0 ) = lim x x0 = lim λ 0. x x 0 h tasa instantánea de variación variación de f (x) en un entorno de x 0. pendiente de la recta tangente en (x 0, f (x 0 )). Sea f : D R R y x 0 int(d). f es diferenciable en x 0 si: f (x) = f (x 0 ) + f (x 0 )(x x 0 ) + R(x) siendo lim x x0 R(x) x x 0 = 0 (f se puede aproximar por la recta tangente en un entorno de x 0 ). f : D R R Se define la función derivada de f, como la función que asocia a cada x int(d) su derivada y se denota por f (x). Si f (x) es continua, se dice que f C 1 Se define la función derivada segunda de f, como la función que asocia a cada x int(d) la derivada de f y se denota por f (x). Si f (x) es continua, f C 2. Fórmula de Taylor: Si f C n en un entorno de x 0, entonces: f (x) = f (x 0 ) + f (x 0 )(x x 0 ) + f (x 0 ) (x x 0 ) f n) (x 0 ) (x x 0 ) n + R n(x) 2 n! R n(x) con lim x x0 (x x 0 ) n = 0

16 ANEXO: Derivadas Sucesivas. Fórmula de Taylor. f : D R n R En R derivada: tasa instantánea de variación de f cuando varía la variable independiente. En R n derivada direccional: tasa instantánea de variación de f cuando las variables independientes varían en la dirección de un vector v ( v = 1 ). Si tomamos v = e i (varía una única variable independiente y las demás permanecen ctes. ) obtenemos las derivadas parciales. Sea f : D R n R, x 0 = (x 01,..., x 0n ) int(d). Se define la derivada parcial i-ésima de f en x 0 como: D i f (x 0 ) = f f (x 01,..., x 0i + λ,..., x 0n ) f (x 01,..., x 0i,..., x 0n ) (x 0 ) = lim λ 0. x i λ ( f Se define el vector gradiente como: f (x 0 ) = (x 0 ),..., f ) (x 0 ). x 1 x n

17 ANEXO: Derivadas Sucesivas. Fórmula de Taylor. f : D R n R Sea f : D R n R y x 0 int(d). f es diferenciable en x 0 si: f (x) = f (x 0 ) + f (x 0 )(x x 0 ) + R(x) siendo lim x x0 R(x) x x 0 = 0 (f se puede aproximar por el hiperplano tangente en un entorno de x 0 ). Si f es diferenciable en x 0, la derivada direccional de f en la dirección del vector v es: D vf (x 0 ) = f (x 0 ) v Propiedades del vector gradiente: 1 f (x 0 ) es perpendicular a la [recta tangente a la] curva de nivel f (x) = k que pasa por x 0. 2 f (x 0 ) es la dirección de máximo crecimiento de la función en un entorno de x 0 3 f (x 0 ) es la dirección de máximo decrecimiento de f en un entorno de x 0

18 ANEXO: Derivadas Sucesivas. Fórmula de Taylor. f : D R n R Si existe f (x) en un entorno de x 0 y es derivable en x 0 con respecto a x j, se define x i su derivada parcial segunda en x 0 con respecto a x i y x j como: ( f Hf (x 0 ) = D ij f (x 0 ) = 2 f x j x i (x 0 ) = x j x i ) (x 0 ). Sea f : D R n R. Se define la matriz hessiana de f en x 0 como: f (x 0 ) f (x 0 ) f (x 0 ) x 1 x 1 x 2 x 1 x nx 1 2 f (x 0 ) x 1 x 2. 2 x 1 x n f (x 0 ) 2 2 f (x 0 ) f (x 0 ) x 2 x 2 x nx x 2 x n f (x 0 ) 2 x nx n f (x 0 ) Fórmula de Taylor: Si f C 2 en un entorno de x 0, entonces: f (x) = f (x 0 ) + (x 0 )(x x 0 ) (x x 0) t Hf (x 0 )(x x 0 ) + R 2 (x) R 2 (x) con lim x x0 x x 0 2 = 0.

19 ANEXO: Clasificación de matrices simétricas según su signo Sea A M n n (R) una matriz simétrica de orden n: Se denomina menor principal de orden i, y se denota por D i, al menor obtenido como intersección de las i primeras filas y columnas de la matriz. Ejemplo: El menor principal de orden 2 de una matriz 3 3 es: D 2 = a 11 a 12 a 21 a 22. Se denomina menor primario de orden i, y se denota por H i, a cada menor obtenido como intersección de i filas y columnas del mismo índice. Ejemplo: Los menores primarios de orden 2 de una matriz 3 3 son: H2 12 = a 11 a 12 a 21 a 22 H2 13 = a 11 a 13 a 31 a 33 H2 23 = a 22 a 23 a 32 a 33.

20 ANEXO: Clasificación de matrices simétricas según su signo Sea A M n n (R) y supongamos que rg(a) = r n. Se pueden dar dos casos: Caso 1 i : 1 i r D i 0, entonces: Si D 1 > 0, D 2 > 0,, D r > 0 entonces A es semidefinida positiva (SDP). Si además r = n (es decir, A = 0) entoces A es definida positiva (DP). Si D 1 < 0, D 2 > 0, D 3 < 0,, con sig(d i ) = sig( 1) i entonces A es semidefinida negativa (SDN). Si además r = n (es decir, A = 0) entoces A es definida negativa (DN). En otro caso es Indefinida. Caso 2 i : 1 i r tal que D i = 0. El criterio es similar al anterior pero las condiciones tienen que ser cumplidas por todos los menores primarios no nulos.

Tema 4 Funciones convexas y optimización convexa

Tema 4 Funciones convexas y optimización convexa Tema 4 Funciones convexas y optimización convexa José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 4 Repaso de algunos resultados sobre optimización de funciones.

Más detalles

Tema 7: Programación matemática

Tema 7: Programación matemática Tema 7: Programación matemática Formulación general: Optimizar f( x) sujeto a x X f : D R n R..................................................................... función objetivo x = (x 1, x 2,..., x

Más detalles

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009 Cálculo 2. Cálculo diferencial de funciones de varias variables Mayo, 2009 Definición IR 2 = {(x 1,x 2 )/x 1 IR,x 2 IR} Sean dos puntos a y b, de coordenadas respectivas (a 1,a 2 ) y (b 1,b 2 ). Definición

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA Universidad de Valladolid Facultad de Ciencias Económicas y Empresariales Departamento de Economía Aplicada Subsección de Matemáticas Esquemas teóricos de la asignatura de las licenciaturas en Economía

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables 1. Conceptos elementales Funciones IR n IR m. Definición Una función f (también f o f): A IR n IR m es una aplicación que a cada x (también x o x) A IR n le hace corresponder

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Tema 11: Diferenciabilidad en varias variables.

Tema 11: Diferenciabilidad en varias variables. Tema 11: Diferenciabilidad en varias variables. José M. Salazar Noviembre de 2016 Tema 11: Diferenciabilidad en varias variables. Lección 14. Diferenciabilidad en varias variables. Lección 15. Aplicaciones

Más detalles

Optimización lineal. Diego A. Patino. 2 de septiembre de Pontificia Universidad Javeriana 1/ 29

Optimización lineal. Diego A. Patino. 2 de septiembre de Pontificia Universidad Javeriana 1/ 29 Optimización lineal Diego A. Patino Pontificia Universidad Javeriana 2 de septiembre de 2016 1/ 29 Introducción Formulación del problema Herramientes del análisis convexo Formas de las restricciones 2/

Más detalles

Clase 9 Programación No Lineal

Clase 9 Programación No Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 9 Programación No Lineal ICS 110 Optimización Profesor : Claudio Seebach Apuntes de Clases

Más detalles

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15.

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Curso 2012/2013 21 de junio de 2013 4 p.) 1) Se considera la función fx) = x 4 e 1 x 2. a) Calcular los intervalos de

Más detalles

PROGRAMACIÓN MATEMÁTICA

PROGRAMACIÓN MATEMÁTICA PROGRAMACIÓN MATEMÁTICA TEMA 1. INTRODUCCIÓN A LA PROGRAMACIÓN MATEMÁTICA. CONJUNTOS CONVEXOS. CONVEXIDAD DE UNA FUNCIÓN. PLANTEAMIENTO FORMAL DEL PROBLEMA DE PROGRAMACION MATEMATICA. - Función Objetivo:

Más detalles

Programación NO Lineal (PNL) Optimización sin restricciones

Programación NO Lineal (PNL) Optimización sin restricciones Programación NO Lineal (PNL) Optimización sin restricciones Ejemplos de los problemas que se aplica la programación NO Lineal: Problema de transporte con descuentos por cantidad : El precio unitario de

Más detalles

Clase 8 Nociones Básicas de Convexidad

Clase 8 Nociones Básicas de Convexidad Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 8 Nociones Básicas de Convexidad ICS 1102 Optimización Profesor : Claudio Seebach Apuntes

Más detalles

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n.

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n. April 15, 2009 En este capítulo D denota un subconjunto abierto de R n. 1. Introducción Definición 1.1. Dada una aplicación f : D R, definimos la derivada parcial segunda de f como D ij f = 2 f = ( ) x

Más detalles

CÁLCULO II Grados en Ingeniería

CÁLCULO II Grados en Ingeniería CÁLCULO II Grados en Ingeniería Domingo Pestana Galván José Manuel Rodríguez García Figuras realizadas con Arturo de Pablo Martínez Capítulo 1. Cálculo diferencial 1.1 Funciones. Límites y continuidad

Más detalles

Tema 6: Funciones de varias variables

Tema 6: Funciones de varias variables Tema 6: Funciones de varias variables de febrero de 6 Preliminares: derivadas parciales. Sea F una función de dos variables, como por ejemplo la función definida por F(x; y) = x y 3 Podemos derivarla con

Más detalles

(x x 0 ) y 0. O bien z z 0 = x 0. y notamos a este límite ᾱ (t 0 ) = dᾱ dt (t 0).

(x x 0 ) y 0. O bien z z 0 = x 0. y notamos a este límite ᾱ (t 0 ) = dᾱ dt (t 0). O bien z z 0 = x 0 z 0 (x x 0 ) y 0 z 0 (y y 0 ). Para obtener la ecuación cartesiana de este plano hacemos x 0 (x x 0 )+y 0 (y y 0 )+z 0 (z z 0 ) = 0, como x 0 + y0 + z0 = x 0 + y0 + r (x 0 + y0) = r

Más detalles

CAPÍTULO 2 PROGRAMACIÓN NO LINEAL. Programación No Lineal

CAPÍTULO 2 PROGRAMACIÓN NO LINEAL. Programación No Lineal CAPÍTULO 2 PROGRAMACIÓN NO LINEAL Programación No Lineal Capítulo 2: Programación No Lineal mín (ó máx)f(x) s.a. x S R n No existe un método que permita resolver cualquier problema de programación no lineal.

Más detalles

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 5 Condiciones de Karush-Kuhn-Tucker (KKT). Problemas

Más detalles

Fundamentos de Optimización

Fundamentos de Optimización Capítulo 1 Fundamentos de Optimización 1.1 Conceptos básicos La teoría de optimización clásica o programación matemática está constituida por un conjunto de resultados y métodos analíticos y numéricos

Más detalles

Licenciatura en Administración y Dirección de Empresas

Licenciatura en Administración y Dirección de Empresas Licenciatura en Administración y Dirección de Empresas Programación Matemática de junio de 200 Ejercicio 3 pt. Considera el siguiente problema de programación no lineal:. Se trata de un problema convexo?

Más detalles

(1.5 p.) 2) Hallar el polinomio de Taylor de grado 3 de la función g(x) = e 1 x2 centrado en x 0 = 1 y usarlo para dar una aproximación de e 5/4.

(1.5 p.) 2) Hallar el polinomio de Taylor de grado 3 de la función g(x) = e 1 x2 centrado en x 0 = 1 y usarlo para dar una aproximación de e 5/4. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Examen final 0 de enero de 0.75 p. Se considera la función escalar de una variable real fx = lnlnx. lnx a Calcular el

Más detalles

EL PROBLEMA GENERAL DE OPTIMIZACION

EL PROBLEMA GENERAL DE OPTIMIZACION EL PROBLEMA GENERAL DE OPTIMIZACION Terminología Tipos de soluciones Resultados teóricos sobre existencia y unicidad de soluciones Método gráfico de resolución Problemas de optimización Este tipo de problemas

Más detalles

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( )

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( ) Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 4 (APLICACIONES DE LA DERIVADA) Profesora: Yulimar Matute Febrero 2012 RECTA

Más detalles

Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria.

Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria. Dualidad 1 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. Condiciones de holgura complementaria. 6 Solución dual óptima en la tabla. 7 Interpretación

Más detalles

Clase 10: Extremos condicionados y multiplicadores de Lagrange

Clase 10: Extremos condicionados y multiplicadores de Lagrange Clase 10: Extremos condicionados y multiplicadores de Lagrange C.J. Vanegas 7 de abril de 008 1. Extremos condicionados y multiplicadores de Lagrange Estamos interesados en maximizar o minimizar una función

Más detalles

Derivada y diferencial

Derivada y diferencial Derivada y diferencial Una cuestión, que aparece en cualquier disciplina científica, es la necesidad de obtener información sobre el cambio o la variación de determinadas cantidades con respecto al tiempo

Más detalles

TEORIA MATEMATICAS 5 PRIMER PARCIAL

TEORIA MATEMATICAS 5 PRIMER PARCIAL Def: Grafica de una función TEORIA MATEMATICAS 5 PRIMER PARCIAL Sea:. Definimos la grafica de f como el subconjunto de formado por los puntos, de en los que es un punto de U. Simbólicamente grafica es:

Más detalles

Tema 8: Aplicaciones de la derivada

Tema 8: Aplicaciones de la derivada 1. Introducción Tema 8: Aplicaciones de la derivada En la unidad anterior hemos establecido el concepto de derivada de una función f(x) en un punto x 0 de su dominio y la hemos interpretado geométricamente

Más detalles

Examen bloque Álgebra Opcion A. Solución

Examen bloque Álgebra Opcion A. Solución Examen bloque Álgebra Opcion A EJERCICIO 1A (2 5 puntos) Halle la matriz X que verifique la ecuación matricial A2 X = A B C, siendo A, B y C las matrices Halle la matriz X que verifique la ecuación matricial

Más detalles

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO DE EXAMEN CURSO 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

Más detalles

Tema 8: Aplicaciones de la derivada

Tema 8: Aplicaciones de la derivada Tema 8: Aplicaciones de la derivada 1. Introducción En la unidad anterior hemos establecido el concepto de derivada de una función en un punto de su dominio y la hemos interpretado geométricamente como

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO CURSO 2012-2013 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES

Más detalles

Optimización estática

Optimización estática Capítulo 5 Optimización estática 5.1. Conceptos básicos La teoría de optimización clásica o programación matemática está constituida por un conjunto de resultados y métodos analíticos y numéricos enfocados

Más detalles

Matemáticas Empresariales II. Formas cuadráticas

Matemáticas Empresariales II. Formas cuadráticas Matemáticas Empresariales II Lección 7 Formas cuadráticas Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales II 1 / 17 Definición de Formas cuadráticas Sea V

Más detalles

FUNDAMENTOS DE CONVEXIDAD (Parte 2)

FUNDAMENTOS DE CONVEXIDAD (Parte 2) 19 de Mayo de 2016 FUNDAMENTOS DE CONVEXIDAD (Parte 2) Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de Venezuela Programación No Lineal José Luis Quintero 1 Puntos

Más detalles

Programa Oficial de Asignatura. Ficha Técnica. Presentación. Competencias y/o resultados del aprendizaje. Contenidos Didácticos

Programa Oficial de Asignatura. Ficha Técnica. Presentación. Competencias y/o resultados del aprendizaje. Contenidos Didácticos Ficha Técnica Titulación: Grado en Administración y Dirección de Empresas Plan BOE: BOE número 67 de 19 de marzo de 2014 Asignatura: Módulo: Métodos cuantitativos de la empresa Curso: 2º Créditos ECTS:

Más detalles

Método lagrangiano. En el método de Jacobi, sea que el vector Λ represente los coeficientes de sensibilidad; esto es.

Método lagrangiano. En el método de Jacobi, sea que el vector Λ represente los coeficientes de sensibilidad; esto es. Método lagrangiano. En el método de Jacobi, sea que el vector Λ represente los coeficientes de sensibilidad; esto es Entonces, Λ = Y0 J 1 = f g f Λ g = 0 Esta ecuación satisface las condiciones necesarias

Más detalles

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02 Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 0/02 x 2 + y 4. (a) Comprueba que el siguiente límite no existe lim (x,y) (0,0) x 2 + y. 2 (b) Busca una trayectoria a través de la

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.2. DERIVADA DE

5. ANÁLISIS MATEMÁTICO // 5.2. DERIVADA DE 5. ANÁLISIS MATEMÁTICO // 5.2. DERIVADA DE UNA FUNCIÓN EN UN PUNTO Y APLICACIONES. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.2.1. El problema de la tangente. Derivada.

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

EXAMEN DE LA UNIDAD 1: LÍMITES, CONTINUIDAD Y DERIVADA. 1. Estudia la continuidad de las siguientes funciones: a) [1 25 puntos] f ( x)

EXAMEN DE LA UNIDAD 1: LÍMITES, CONTINUIDAD Y DERIVADA. 1. Estudia la continuidad de las siguientes funciones: a) [1 25 puntos] f ( x) EXAMEN DE LA UNIDAD 1: LÍMITES, CONTINUIDAD Y DERIVADA 1. Estudia la continuidad de las siguientes funciones: 3 a) [1 5 puntos] f ( ) 5 6 ( 1)( ) b) [1 5 puntos] y 3 3. Calcula los siguientes límites:

Más detalles

Solución. Las dimensiones de la caja para un coste mínimo son x = 4 cm e y = 80/(4 2 ) = 5m

Solución. Las dimensiones de la caja para un coste mínimo son x = 4 cm e y = 80/(4 2 ) = 5m Ejercicio n º 1 de la opción A de septiembre de 2004 [2'5 puntos] Se desea construir una caja de base cuadrada con una capacidad de 80 cm 3. Para la tapa y la superficie lateral se usa un material que

Más detalles

Hipercuádricas. Polaridad. Estudio geométrico de las cónicas y cuádricas

Hipercuádricas. Polaridad. Estudio geométrico de las cónicas y cuádricas Capítulo 4 Hipercuádricas. Polaridad. Estudio geométrico de las cónicas y cuádricas Comenzamos con el objeto básico de este curso. Hemos estudiado hasta ahora variedades lineales proyectivas, que están

Más detalles

Capítulo VI. Diferenciabilidad de funciones de varias variables

Capítulo VI. Diferenciabilidad de funciones de varias variables Capítulo VI Diferenciabilidad de funciones de varias variables La definición de diferenciabilidad para funciones el cociente no tiene sentido, puesto que no está definido, porque el cociente entre el vector

Más detalles

Aproximaciones de funciones y problemas de extremos

Aproximaciones de funciones y problemas de extremos Aproximaciones de funciones y problemas de extremos José Vicente Romero Bauset ETSIT-curso 2009/2010 José Vicente Romero Bauset Tema 5.- Aproximaciones de funciones y problemas de extremos 1 Teorema de

Más detalles

Algunos conceptos que utilizaremos en lo sucesivo son: Sistema de restricciones lineales: conjunto de todas las restricciones.

Algunos conceptos que utilizaremos en lo sucesivo son: Sistema de restricciones lineales: conjunto de todas las restricciones. A partir del planteamiento del problema de Programación Lineal expresado en su formulación estándar, vamos a estudiar las principales definiciones y resultados que soportan el aspecto teórico del procedimiento

Más detalles

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V :

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V : Capítulo 7 Extremos Relativos Una aplicación clásica del Teorema Local de Taylor es el estudio de los extremos relativos de una función escalar. Aunque la analogía con el caso de una variable es total,

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

FUNCIONES DE DOS VARIABLES

FUNCIONES DE DOS VARIABLES FUNCIONES DE DOS VARIABLES - Funciones de dos variables reales - Límites 3- Continuidad de funciones de dos variables 4- Derivabilidad de funciones de dos variables 5- Diferenciabilidad de funciones de

Más detalles

Cálculo Diferencial de una Variable

Cálculo Diferencial de una Variable Departamento de Matemática Aplicada Universitat Politècnica de València, España Fundamentos Matemáticos para la Ingenieria Civil Esquema Esquema de la exposición Definición. Interpretación geométrica de

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Departamento de Economía Examen final de Matemáticas II. 20 de Junio de 2007. IMPORTANTE: DURACIÓN DEL EXAMEN: 2h. 30min. NO se permite el uso de calculadoras. Sólo se

Más detalles

Forma estándar de un programa lineal

Forma estándar de un programa lineal Forma estándar de un programa lineal Sin pérdida de generalidad, todo programa lineal se puede escribir como: min cx s.t Ax = b x 0 Objetivo: minimizar Todas las desigualdades como ecuaciones Todas las

Más detalles

MAXIMOS Y MINIMOS DE FUNCIONES DE DOS VARIABLES

MAXIMOS Y MINIMOS DE FUNCIONES DE DOS VARIABLES UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ECONÓMICAS, ADMINISTRATIVAS Y CONTABLES DEPARTAMENTO DE MÉTODOS CUANTITATIVOS Métodos Cuantitativos IV MAXIMOS Y MINIMOS DE FUNCIONES DE DOS

Más detalles

Capítulo 2: Cálculo diferencial de una y varias variables

Capítulo 2: Cálculo diferencial de una y varias variables Capítulo 2: Cálculo diferencial de una y varias variables (Fundamentos Matemáticos de la Biotecnología) Departamento de Matemáticas Universidad de Murcia Contenidos Límites y continuidad Límites laterales

Más detalles

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V :

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V : Capítulo 12 Extremos Relativos Una aplicación clásica del Teorema Local de Taylor, que vimos en el capítulo anterior, es el estudio de los extremos relativos de una función escalar. Aunque la analogía

Más detalles

Examen de Matemáticas II (Junio 2014) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas II (Junio 2014) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas II (Junio 04) Selectividad-Opción A Tiempo: 90 minutos Problema (3 puntos) Dadas las matrices α β γ x 0 A = γ 0 α ; X = y ; B = 0 O = 0 β γ z 0 se pide: (,5 puntos). Calcula α, β

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 3 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Universidad Carlos III de Madrid Licenciatura en Administración de Empresas Examen de Programación Matemática 19 de Septiembre de 2007 Soluciones

Universidad Carlos III de Madrid Licenciatura en Administración de Empresas Examen de Programación Matemática 19 de Septiembre de 2007 Soluciones Universidad Carlos III de Madrid Licenciatura en Administración de Empresas Examen de Programación Matemática 9 de Septiembre de 7 Soluciones. ( puntos Tu empresa proporciona automóviles a algunos de sus

Más detalles

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO VECTORIAL EXTREMOS DE FUNCIONES ESCALARES DE VARIABLE VECTORIAL

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO VECTORIAL EXTREMOS DE FUNCIONES ESCALARES DE VARIABLE VECTORIAL (Apuntes sin revisión para orientar el aprendizaje) CÁLCULO VECTORIAL EXTREMOS DE FUNCIONES ESCALARES DE VARIABLE VECTORIAL En numerosas aplicaciones de la ingeniería se presentan problemas de optimización,

Más detalles

Funciones Reales de Varias Variables

Funciones Reales de Varias Variables Funciones Reales de Varias Variables Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 162 CONTENIDO Funciones

Más detalles

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo Unidad II Modelos de Programación Lineal

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena 1 Universidad Simón Bolívar. Preparaduría nº 3. christianlaya@hotmail.com ; @ChristianLaya Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena Derivada

Más detalles

Programación Lineal. El modelo Matemático

Programación Lineal. El modelo Matemático Programación Lineal. El modelo Matemático 1 Modelización Definición 1.1 Consideremos el problema de optimización con restricciones, definido como sigue Min f(x) s.a. g i (x) b i i = 1, 2,..., m (P OR)

Más detalles

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas.

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas. Tema 3 Dualidad En el desarrollo de la programación lineal la teoria de la dualidad es importante, tanto desde el punto de vista teórico como desde el punto de vista práctico. Para cada modelo lineal se

Más detalles

= f (a) R. f(x) f(a) x a. recta por (a, f(a)) de pendiente f(a+h2) f(a) recta tangente por (a, f(a)) de pendiente f (a)

= f (a) R. f(x) f(a) x a. recta por (a, f(a)) de pendiente f(a+h2) f(a) recta tangente por (a, f(a)) de pendiente f (a) 1 1. DERIVACIÓN 1.1. DEFINICIONES Y RESULTADOS PRINCIPALES Definición 1.1. Derivada. Sea f una función definida en un intervalo abierto I con a I. Decimos que f es derivable en a si existe y es real el

Más detalles

ECUACIONES DIFERENCIALES Y MÉTODOS NUMÉRICOS (Curso ) Cuarto Curso de Ingeniero Industrial

ECUACIONES DIFERENCIALES Y MÉTODOS NUMÉRICOS (Curso ) Cuarto Curso de Ingeniero Industrial ECUACIONES DIFERENCIALES Y MÉTODOS NUMÉRICOS (Curso 2009-2010) Cuarto Curso de Ingeniero Industrial Optimización y Sistemas de Ecuaciones no Lineales FUNCIONES CONVEXAS. CRITERIOS DE OPTIMALIDAD Un problema

Más detalles

Tema 7: Problemas clásicos de Programación Lineal

Tema 7: Problemas clásicos de Programación Lineal Tema 7: Problemas clásicos de Programación Lineal 1.- Características generales de un problema de transporte y asignación Surgen con frecuencia en diferentes contextos de la vida real. Requieren un número

Más detalles

MÉTODO DEL DUAL (TEORIA DE DUALIDAD)

MÉTODO DEL DUAL (TEORIA DE DUALIDAD) MÉTODO DEL DUAL (TEORIA DE DUALIDAD) Todo problema de programación lineal tiene asociado con él otro problema de programación lineal llamado DUAL. El problema inicial es llamado PRIMO y el problema asociado

Más detalles

EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I. 1. (2.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que

EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I. 1. (2.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I DEBE CONTESTAR ÚNICAMENTE A 4 DE LOS SIGUIENTES 5 EJERCICIOS 1. (.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que Sea

Más detalles

CÁLCULO. Ejercicio 1. Modelo Se considera la función real de variable real 4

CÁLCULO. Ejercicio 1. Modelo Se considera la función real de variable real 4 Ejercicio. Modelo.04 4 si x 0 { x + si x > 0 x + a. Determínense las asíntotas de la función y los puntos de corte con los ejes.. b. Calcúlese f(x)dx Ejercicio. Modelo.04 La figura representa la gráfica

Más detalles

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009 ANÁLISIS I MATEMÁTICA ANÁLISIS II (Computación) Práctica 5 - Verano 2009 Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior. Calcular las derivadas

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) y = ex cos y. e x cos y e x sin y. y 2.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) y = ex cos y. e x cos y e x sin y. y 2. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES HOJA 4: Derivadas de orden superior 4-1. Sea u : R R definida por u(x, y e x sen y. Calcula las cuatro parciales segundas,

Más detalles

Fundamentos matemáticos. Tema 6 Aplicaciones de la derivada

Fundamentos matemáticos. Tema 6 Aplicaciones de la derivada Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 6 Aplicaciones de la derivada José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es

Más detalles

Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Eamen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Dadas las matrices 2 4 2 2 0 A = 1 m m ; B = 0 X = y O = 0 1 2 1 1 z 0 (1 punto). Estudiar el rango

Más detalles

Programación Lineal Continua

Programación Lineal Continua Elisenda Molina Universidad Carlos III de Madrid elisenda.molina@uc3m.es 8 de octubre de 2008 Esquema 1 Formulación y Ejemplos 2 3 Ejemplo: Producción de carbón Una empresa minera produce lignito y antracita.

Más detalles

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 4 Optimización no Lineal

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 4 Optimización no Lineal OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 4 Optimización no Lineal ORGANIZACIÓN DEL TEMA Sesiones: El caso sin restricciones: formulación, ejemplos Condiciones de optimalidad, métodos Caso con restricciones:

Más detalles

Investigación Operativa I. Programación Lineal. Informática de Gestión

Investigación Operativa I. Programación Lineal.  Informática de Gestión Investigación Operativa I Programación Lineal http://invop.alumnos.exa.unicen.edu.ar/ - 2013 Exposición Introducción: Programación Lineal Sistema de inecuaciones lineales Problemas de optimización de una

Más detalles

MATEMÁTICAS II (PAUU XUÑO 2011)

MATEMÁTICAS II (PAUU XUÑO 2011) MATEMÁTICAS II (PAUU XUÑO 0) OPCIÓN A. a) Sean C, C, C 3 las columnas primera, segunda y tercera, respectivamente, de una matriz cuadrada M de orden 3 con det (M ) = 4. Calcula enunciando las propiedades

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

Notas sobre el teorema minimax

Notas sobre el teorema minimax Notas sobre el teorema mini Antonio Martinón Abril de 2012 1 Teoremas mini Sean X e Y dos conjuntos no vacíos y consideremos una función Se verifica sup inf efectivamente, dado x X resulta claro que f

Más detalles

APUNTE: Introducción a la Programación Lineal

APUNTE: Introducción a la Programación Lineal APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La

Más detalles

MODELOS DE EXÁMENES. Pruebas de acceso a la universidad Matemáticas II. Universidad Complutense (Madrid)

MODELOS DE EXÁMENES. Pruebas de acceso a la universidad Matemáticas II. Universidad Complutense (Madrid) COLEGIO INTERNACIONAL SEK EL CASTILLO Departamento de Ciencias MODELOS DE EXÁMENES Pruebas de acceso a la universidad Matemáticas II Universidad Complutense (Madrid) UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD

Más detalles

C alculo Octubre 2010

C alculo Octubre 2010 Cálculo Octubre 2010 Derivada. Introducción Recordemos la definición de pendiente de una recta: α y 1 y0 x 0 x 1 Pendiente= m = tanα = y 1 y 0 x 1 x 0 Y ahora consideremos las pendientes de las rectas

Más detalles

Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos

Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Análisis I Matemática I Análisis II (C) Cuat II - 2009 Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior 1. Calcular las derivadas

Más detalles

Departamento de Matemáticas. ITAM Programación lineal (+ extensiones). Objetivos y panorama del c

Departamento de Matemáticas. ITAM Programación lineal (+ extensiones). Objetivos y panorama del c Programación lineal (+ extensiones). Objetivos y panorama del curso. Departamento de Matemáticas. ITAM. 2008. Introducción Programación lineal http://allman.rhon.itam.mx/ jmorales La programación lineal

Más detalles

Estudia si la función siguiente es cóncava, convexa o ni cóncava ni convexa:

Estudia si la función siguiente es cóncava, convexa o ni cóncava ni convexa: Estudia si la función siguiente es cóncava, convexa o ni cóncava ni convexa: f(x,y,z) = 2x 2 +8y 2 z 2 +8xy +2xz +4yz MATEMÁTICAS II Grupo GM Estudia si la función siguiente es cóncava, convexa o ni cóncava

Más detalles

Ejemplo 1: Programación Entera

Ejemplo 1: Programación Entera Repaso Prueba 2 Ejemplo 1: Programación Entera Supongamos que una persona está interesada en elegir entre un conjunto de inversiones {1,,7} y quiere hacer un modelo 0,1 para tomar la decisión. Modelar

Más detalles

Cálculo diferencial de funciones reales de variable real

Cálculo diferencial de funciones reales de variable real Cálculo diferencial de funciones reales de variable real María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I (1 o Ingeniería Electrónica Automática e Industrial) M. Muñoz (U.P.C.T.) Cálculo diferencial

Más detalles

Coordinación de Matemáticas III (MAT 023) x a. Además, diremos que f es continua en U si f es continua en cada punto de U.

Coordinación de Matemáticas III (MAT 023) x a. Además, diremos que f es continua en U si f es continua en cada punto de U. Coordinación de Matemáticas III (MAT 023) 1 er Semestre de 2013 Continuidad de Funciones en Varias Variables 1. Continuidad Definición 1.1. Sean U R n abierto, a U y f : U R una función real de varias

Más detalles

PAU Madrid. Matemáticas II. Año Examen de septiembre. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen de septiembre. Opción A. Ejercicio 1. Valor: 2 puntos. Opción A. Ejercicio. Valor: 2 puntos. Se considera la función real de variable real definida por: f(x) = a) ( punto) Determinar sus máximos y mínimos relativos x x 2 + b) ( punto) Calcular el valor de

Más detalles

Conjuntos y funciones convexas

Conjuntos y funciones convexas Conjuntos y funciones convexas Un conjunto X R n se dice convexo si para todo par de puntos x 1 y x 2 en X, λ x 1 + ( 1- λ) x 2 X, para todo λ [0,1] Qué significa esto geométricamente? Un punto λ x 1 +

Más detalles

1. INECUACIONES LINEALES CON DOS INCÓGNITAS.

1. INECUACIONES LINEALES CON DOS INCÓGNITAS. TEMA 2: PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS. Se llama inecuación lineal con dos incógnitas a una inecuación de la forma: a x +b y c ( puede ser >,

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID. PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) MODELO DE EXAMEN (Curso )

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID. PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) MODELO DE EXAMEN (Curso ) UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) MODELO DE EXAMEN (Curso 00-003) MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES:

Más detalles

Derivación. Aproximaciones por polinomios.

Derivación. Aproximaciones por polinomios. Derivación... 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Matemáticas (Grado en Químicas) Contenidos Derivada 1 Derivada 2 3 4 5 6 Outline Derivada 1 Derivada 2 3 4 5 6 Definición

Más detalles

Prácticas de Matemáticas II: Álgebra lineal

Prácticas de Matemáticas II: Álgebra lineal Prácticas de Matemáticas II: Álgebra lineal Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Prácticas de Matemáticas II: Álgebra lineal

Más detalles