Solemne 1. Fecha: Miércoles 7 de mayo de 2014 Semestre Otoño 2014

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Solemne 1. Fecha: Miércoles 7 de mayo de 2014 Semestre Otoño 2014"

Transcripción

1 Curso: CII2750 Optimización Profesores: Paul Bosch, Juan Pablo Cavada Fernando Paredes, Pablo Rey Solemne 1 Fecha: Miércoles 7 de mayo de 2014 Semestre Otoño 2014 Problema 1 Una empresa importadora de autos, recibe las unidades en tres puertos diferentes, Iquique, San Antonio y Puerto Montt. Con estos embarques, debe satisfacer la demanda de autos en las concesionarias de diferentes ciudades del país. En la Tabla siguiente se muestran en las tres primeras columnas, los costos (en miles de pesos) por unidad transportada, en la última columna se muestra la estimación de la demanda (en cientos) en cada ciudad y en la última fila está la capacidad (en cientos) que tiene la importadora en cada uno de los tres puertos por donde entran los autos. Puertos Costos de envio por unidad en M Demanda Ciudades Iquique San Antonio Puerto Montt Estimada Arica Iquique Antofagasta La Serena Valparaiso Santiago Concepción Valdivia Puerto Montt Capacidad Portuaria (en cientos) (a) (0,7 puntos) Formule un modelo que permita satisfacer la demanda de autos con un costo mínimo de transporte. (b) (1,3 puntos) Considere ahora que la demanda en cada ciudad sube un 20% y usted decide asumir el reto de satisfacer la nueva demanda, para lo cual contempla el aumento de la capacidad portuaria en un sólo puerto. Por cada auto que usted le transporta a las concesionarias, usted obtiene una ganancia de 10 M ( pesos) y el aumento de la capacidad portuaria tiene un costo por unidad adicional de 1000 pesos, 3000 pesos y 1800 pesos para los puertos de Iquique, 1

2 San Antonio y Puerto Montt, respectivamente. Además, se debe incurrir en un costo fijo por concepto de compra de terreno (sólo en el puerto que decidió aumentar su capacidad) para estacionar los autos de 1000 M en los Puertos de Iquique y Puerto Montt, y de 1800 M en el Puerto de San Antonio. Formule un modelo que le permita satisfacer la nueva demanda con el mayor beneficio posible. Problema 2 Dado el siguiente modelo de optimización: min x x x 1 x 1 1 x x x x (P) (a) (0,5 puntos) Sin resolver previamente, demuestre que el problema (P) admite solución óptima. (b) (1,0 punto) Resuelva el problema (P) gráficamente, trazando curvas de nivel de la función objetivo sobre el dominio y utilizando propiedades de su gradiente en los puntos que es diferenciable. (c) (0,5 puntos) Considere el modelo de optimización anterior relajado sin la última restricción, pero ahora como un problema de maximización. Analice si el nuevo problema admite solución óptima. Justifique. Problema 3 Considere la función g : R 2 R definida por: g(x, y) = (x 2 + 4y 2 )e (1 x2 y 2). (a) (0,5 puntos) Identifique cuáles de los puntos p 1 = (0, 0), p 2 = (0, 1), p 3 = (0, 2), p 4 = (1, 0) y p 5 = ( 1, 1) son puntos estacionarios de g. (b) (1,0 punto) Cuáles de los puntos del ítem anterior corresponden a máximos o mínimos locales de g? Justifique. (c) (0,5 puntos) Es la función g convexa en todo R 2? Justifique. 2

3 Pauta Problema 1 (a) Datos Denotemos por: I = {1, 2, 3} : Números de puertos. J = {1, 2,..., 9} : Números de ciudades. c ij : Costo de transporte de una unidad desde el puerto i hasta la ciudad j. d j : Cantidad demandada de autos de la ciudad j. P i : Capacidad del puerto i. Notemos que se cumple la relación: P i = d j = 645 Variables de Decisión x ij : Cantidad de autos que se enviarán a la ciudad j desde el puerto i. Restricciones Demanda. Se debe satisfacer la demanda de autos de cada ciudad: x ij = d j, j J Capacidad Portuaria. La cantidad de autos que salen desde cada puerto no puede ser mayor que la capacidad del puerto: x ij = P i, i I No negatividad. Las variables no pueden ser negativas: x ij 0. Es importante hacer notar que no necesitamos que las variables sean enteras dado que este problema se modela como un Problema de Transporte Clásico. 3

4 Función objetivo Para minimizar los costos, debemos calcular los costos totales de transporte, los cuales están dados por: min z = x ij c ij En resumen, el Modelo Matemático del problema queda de la forma: Pauta Problema 1 (b) s.a min z = x ij c ij x ij = d j, j = 1, 2,..., 9 x ij = P i, i = 1, 2, 3 x ij 0 Debemos agregar los datos adicionales por: Datos G : Ganancia por cada auto transportado (G = pesos). A i : Aumento en el costo de transporte de cada auto asociado al aumento de la capacidad en el puerto i = 1, 2, 3. CF i : Costo fijo por concepto de compra de terreno en el puerto i. Observación. Notemos que si denotamos por 9 x ij la cantidad de autos que se trasporta desde cada puerto i, entonces la cantidad de autos adicionales que necesitaríamos que saliesen desde cada puerto está expresado como Variables de Decisión x ij P i x ij : Cantidad de autos que se enviarán a la ciudad j desde el puerto i. Para i = 1, 2, 3 tenemos { 1 : Si se decide ampliar el puerto i y i = 0 : en caso contrario 4

5 Restricciones Demanda. Se debe satisfacer la demanda que subió en un 20%: x ij = 1.2 d j, j J Capacidad Portuaria. La cantidad de autos que llegan a las ciudades no puede ser mayor que la cantidad de autos que salen desde los puertos, sin embargo debemos considerar que un puerto será ampliado, para lo cual, si denotamos por M = 0.2 d j = 129, entonces las restricciones para cada puerto quedan de la forma: x ij = P i + My i, i I Se aumenta la capacidad portuaria en un solo puerto: y i = 1 Naturaleza de las variables. Las variables x ij no pueden ser negativas dado que representan cantidades x ij 0, i, j I J y las variables y i tienen que ser binarias y i {0, 1}, i I Función objetivo En este caso, se busca maximizar el beneficio. Las ganancias están dadas por la cantiadad de autos que se transporta a las consecionarias de cada ciudad: Por otro lado, los costos asociados son: G El costo fijo por la compra del terreno en caso de que el puerto se amplie: x ij CF i y i 5

6 El costo por transporte de cada auto sin considerar la ampliación: x ij c ij El costo por unidad adicional de auto transportado para el puerto que se amplió se expresa como: ( ) A i y i = M A i y i x ij P i) ( Note que este costo por unidad adicional es independiente de a que ciudad se transporta el auto. Por lo tanto, la posible función objetivo queda de la forma: ( max z = G x ij CF i y i + x ij c ij + M En resumen, el modelo matemático queda de la forma: ( max z = G x ij CF i y i + x ij c ij + M s.a x ij = 1.2d j, j = 1, 2,..., 9 x ij = P i + My i, i = 1, 2, 3 y i = 1 x ij 0 y i {0, 1} ) A i y i ) A i y i 6

7 Pauta pregunta 2 (a) (i) El dominio es no vacío ya que contiene al menos el punto (5,2). (ii) La función objetivo es continua en R 2 ya que es un polinomio. Luego en particular es continua en el dominio R 2. (iii) El dominio es cerrado ya que está definido por restricciones amplias ( ), las cuales están definidas por funciones continuas ( polinomios ). (iv) El dominio D es acotado ya que si (x 1, x 2 ) pertenece al dominio, entonces (x 1, x 2 ) 2 8 (porque cumple la tercera restricción). Luego, Teorema de B-W el problema (P) admite solución óptima. (b) Trazando curvas de nivel de la función objetivo sobre el dominio y utilizando propiedades de su gradiente en los puntos que es diferenciable, es decir en R 2, se tiene la familia de circunferencias concéntricas, con centro en el punto (-1,0), a saber: {(x 1, x 2 ) : x 1 + 1) 2 + x 2 2 = c} donde c es una constante mayor o igual a cero. Ahora tomando la dirección de máximo descenso definida por f(x 1, x 2 ) = (2(x 1 + 1), 2x 2 ), con f la función objetivo del problema (P), se obtienen las soluciones óptimas (5, ±2) (ver figura). (c) Ahora al relajar la última restricción, se obtiene un dominio no acotado y f(x 1, x 2 = 0) = x x 1 para x 1 y entonces se tiene que el nuevo problema no admite solución óptima. 7

8 Pauta pregunta 3 (a) Las derivadas parciales de g son: g x = 2x(4y2 + x 2 1)e ( x2 y2 +1) g y = 2y(x2 + 4y 2 4)e ( x2 y2 +1). Reemplazando los valores de cada punto, obtenemos que: g(p 1 ) = g(0, 0) = (0, 0) g(p 2 ) = g(0, 1) = (0, 0) g(p 3 ) = g(0, 2) = (0, 4 12 e 15 ) (0, 0) g(p 4 ) = g(1, 0) = (0, 0) g(p 5 ) = g( 1, 1) = (2 4e, 2 4e) (0, 0) Los puntos p 1, p 2 y p 4 son puntos críticos, mientras que p 3 y p 5, no. (b) La matriz hessiana de g es: 2e ( x2 y 2 +1) (2x 4 + x 2 (8y 2 5) 4y 2 + 1) 4xy e ( x2 y 2 +1) (x 2 + 4y 2 5) Hg(x, y) = 4xy e ( x2 y 2 +1) (x 2 + 4y 2 5) 2e ( x2 y 2 +1) (x 2 (2y 2 1) + 8y 4 20y 2 + 4) Evaluando en los tres puntos encontrados en (a) queda: ( ) 2e 0 Hg(0, 0) = mínimo. 0 2e ( ) 4 0 Hg(1, 0) = punto silla. 0 6 ( ) 6 0 Hg(0, 1) = máximo (c) Para que una función dos veces diferenciable sea convexa, se debe cumplir que su Hessiano debe ser semidefinido positivo en todo punto. En la parte (b) se han identificado dos puntos donde esto no sucede, por lo tanto, la función g no es convexa. 8

CONVEXIDAD DE CONJUNTOS.-

CONVEXIDAD DE CONJUNTOS.- CONVEXIDAD DE CONJUNTOS.- Conjunto convexo Conjunto no convexo No lo es ya que se trata de la circunferencia de centro (0,0) y radio 1. Dos puntos de ella, por ejemplo, son los de coordenadas (1, 0) y

Más detalles

Optimización Clásica. Yolanda Hinojosa

Optimización Clásica. Yolanda Hinojosa Optimización Clásica Yolanda Hinojosa Contenido Optimización no lineal sin restricciones. Condiciones necesarias y suficientes de óptimo Optimización no lineal con restricciones de igualdad. Condiciones

Más detalles

Optimización Clásica. Yolanda Hinojosa

Optimización Clásica. Yolanda Hinojosa Optimización Clásica Yolanda Hinojosa Contenido Optimización no lineal sin restricciones. Condiciones necesarias y suficientes de óptimo Optimización no lineal con restricciones de igualdad. Condiciones

Más detalles

Matemáticas para Economistas

Matemáticas para Economistas Matemáticas para Economistas Parte II Optimización Clásica y con Restricciones Tema 5 Optimización sin Restricciones 5 Optimización sin Restricciones 5.1 Optimización sin Restricciones con una variable

Más detalles

x +3y 2t = 1 2x +y +z +t = 2 3x y +z t = 7 2x +6y +z +t = a (a) Realizamos transformaciones elementales sobre la matriz ampliada del sistema

x +3y 2t = 1 2x +y +z +t = 2 3x y +z t = 7 2x +6y +z +t = a (a) Realizamos transformaciones elementales sobre la matriz ampliada del sistema UCM Matemáticas II Examen Final, 8/05/014 Soluciones 1 Dado el parámetro a R, se considera el sistema lineal x +y t = 1 x +y +z +t = x y +z t = 7 x +6y +z +t = a (a (6 puntos Discutir el sistema según

Más detalles

Universidad del Rosario Economía Matemática II Taller 8 - Kuhn Tucker

Universidad del Rosario Economía Matemática II Taller 8 - Kuhn Tucker . En los siguientes problemas de optimización: Universidad del Rosario Economía Matemática - 202-II Taller 8 - Kuhn Tucker a. Dibuje el conjunto K de puntos factibles y las curvas de nivel de la función

Más detalles

Tema 4 Funciones convexas y optimización convexa

Tema 4 Funciones convexas y optimización convexa Tema 4 Funciones convexas y optimización convexa José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 4 Repaso de algunos resultados sobre optimización de funciones.

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15.

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Curso 2012/2013 21 de junio de 2013 4 p.) 1) Se considera la función fx) = x 4 e 1 x 2. a) Calcular los intervalos de

Más detalles

0 (0) = 0 (0) = 0. L [ 00 + ]( ) = L [ ( )] ( ) (Linealidad) L [ 00 ]( )+L[ ]( ) = L [ ( )] ( ) (Derivación) 2 ( )+ ( ) =L [ ( )] ( )

0 (0) = 0 (0) = 0. L [ 00 + ]( ) = L [ ( )] ( ) (Linealidad) L [ 00 ]( )+L[ ]( ) = L [ ( )] ( ) (Derivación) 2 ( )+ ( ) =L [ ( )] ( ) Ampliación de Matemáticas II Grado en Ingeniería en Tecnologías Industriales 8 de junio 6. Dado el siguiente problema de valor inicial: ()+() = () () = () = a) (.5 puntos) Resuelve el problema utilizando

Más detalles

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS.

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. Cálculo III, Examen Final. Semestre Primavera 1 Tiempo: 11 min. Problema 1 [1,5 puntos] La curvatura de una trayectoria

Más detalles

Programación NO Lineal (PNL) Optimización sin restricciones

Programación NO Lineal (PNL) Optimización sin restricciones Programación NO Lineal (PNL) Optimización sin restricciones Ejemplos de los problemas que se aplica la programación NO Lineal: Problema de transporte con descuentos por cantidad : El precio unitario de

Más detalles

Introducción a la Programación Matemática. Yolanda Hinojosa

Introducción a la Programación Matemática. Yolanda Hinojosa Introducción a la Programación Matemática Yolanda Hinojosa Contenido Planteamiento general de un problema de programación matemática. Convexidad. ANEXO: Derivadas Sucesivas. Fórmula de Taylor. Clasificación

Más detalles

(x x 0 ) y 0. O bien z z 0 = x 0. y notamos a este límite ᾱ (t 0 ) = dᾱ dt (t 0).

(x x 0 ) y 0. O bien z z 0 = x 0. y notamos a este límite ᾱ (t 0 ) = dᾱ dt (t 0). O bien z z 0 = x 0 z 0 (x x 0 ) y 0 z 0 (y y 0 ). Para obtener la ecuación cartesiana de este plano hacemos x 0 (x x 0 )+y 0 (y y 0 )+z 0 (z z 0 ) = 0, como x 0 + y0 + z0 = x 0 + y0 + r (x 0 + y0) = r

Más detalles

OPTIMIZACIÓN CLÁSICA. En el problema de optimización

OPTIMIZACIÓN CLÁSICA. En el problema de optimización OPTIMIZACIÓN CLÁSICA Definición En el problema de optimización ( ) ópt f (x 1,..., x n ), (x 1,..., x n ) F D el conjunto F recibe el nombre de conjunto factible y la función f el de función objetivo.

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Departamento de Economía Examen final de Matemáticas II. 20 de Junio de 2007. IMPORTANTE: DURACIÓN DEL EXAMEN: 2h. 30min. NO se permite el uso de calculadoras. Sólo se

Más detalles

9. Diferenciación de funciones reales de varias variables reales

9. Diferenciación de funciones reales de varias variables reales 9.2. Extremos 9.2.1. POLINOMIOS DE TAYLOR Polinomios de Taylor y de McLaurin Se llama polinomio de Taylor de orden n 1 de la función f(x, y) en (a, b) al polinomio: f(a, b) f(a, b) n (x, y) = f(a, b) +

Más detalles

UNIVERSIDAD DE MANAGUA Al más alto nivel

UNIVERSIDAD DE MANAGUA Al más alto nivel UNIVERSIDAD DE MANAGUA Al más alto nivel Programación Lineal Encuentro #3 Tema: Introducción a la programación lineal Prof.: MSc. Julio Rito Vargas A. Grupos: CCEE y ADMVA /2016 Objetivos: Obtener las

Más detalles

Guía Semana 8 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 8 1. RESUMEN. Universidad de Chile. Ingeniería Matemática 1. RESUMEN FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables 08-1 Guía Semana 8 Puntos críticos y optimización sin restricciones. Dada f : Ω Ê, los puntos x 0

Más detalles

PROGRAMACIÓN MATEMÁTICA

PROGRAMACIÓN MATEMÁTICA PROGRAMACIÓN MATEMÁTICA TEMA 1. INTRODUCCIÓN A LA PROGRAMACIÓN MATEMÁTICA. CONJUNTOS CONVEXOS. CONVEXIDAD DE UNA FUNCIÓN. PLANTEAMIENTO FORMAL DEL PROBLEMA DE PROGRAMACION MATEMATICA. - Función Objetivo:

Más detalles

Optimización de Problemas no lineales.

Optimización de Problemas no lineales. Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN34A: Clase Auxiliar Optimización de Problemas no lineales. Marcel Goic F. Esta es una versión bastante

Más detalles

Curso 2010/ de julio de (2.75 p.) 1) Se considera la función f : (0, ) (0, ) definida por

Curso 2010/ de julio de (2.75 p.) 1) Se considera la función f : (0, ) (0, ) definida por Cálculo I Curso 2010/2011 Universidade de Vigo Departamento de Matemática Aplicada II ETSI Minas 5 de julio de 2011 (275 p) 1) Se considera la función f : (0, ) (0, ) definida por f(x) = 1 + ex x e x a)

Más detalles

Clase 9 Programación No Lineal

Clase 9 Programación No Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 9 Programación No Lineal ICS 110 Optimización Profesor : Claudio Seebach Apuntes de Clases

Más detalles

ax + b (x 1)(x 4). c) (2.0 pto.) Sabiendo que f(0) = 2, escriba el desarrollo de Taylor de orden 3 para f en torno a x 0 = 0.

ax + b (x 1)(x 4). c) (2.0 pto.) Sabiendo que f(0) = 2, escriba el desarrollo de Taylor de orden 3 para f en torno a x 0 = 0. Pauta Control 1 MA1002 Cálculo Diferencial e Integral Fecha: 21 de Abril de 2017 Problema 1. Considere la función f : R \ {1, 4} R, tal que su derivada es f (x) = ax + b (x 1)(x 4). a) (1.0 ptos.) Sabiendo

Más detalles

Powered by TCPDF (

Powered by TCPDF ( Powered by TCPDF (www.tcpdf.org) Análisis Matemático II - Curso 2018 Nota sobre formas cuadráticas y aplicación al análisis de extremos de una función Breve resumen acerca de las formas cuadráticas Necesitamos

Más detalles

a de un conjunto S de R n si

a de un conjunto S de R n si 1 235 Máximos, mínimos y puntos de ensilladura Definición.- Se dice que una función real f( x) tiene un máximo absoluto en un punto a de un conjunto S de R n si f( x) f( a) (2) para todo x S. El número

Más detalles

EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I. 1. (2.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que

EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I. 1. (2.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I DEBE CONTESTAR ÚNICAMENTE A 4 DE LOS SIGUIENTES 5 EJERCICIOS 1. (.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que Sea

Más detalles

2. Sea f(x, y) = x 2 2xy+y 2. Aquí el discriminante es igual a cero. Qué son los puntos críticos: mínimos locales, máximos locales o puntos silla?

2. Sea f(x, y) = x 2 2xy+y 2. Aquí el discriminante es igual a cero. Qué son los puntos críticos: mínimos locales, máximos locales o puntos silla? 1. Sea f(x, y) = Ax 2 + B con A 0. Cuáles son los puntos críticos de f? Son máximos locales o mínimos locales? Solución. Los puntos críticos son aquellos en los que las derivadas parciales son iguales

Más detalles

Clase 8 Nociones Básicas de Convexidad

Clase 8 Nociones Básicas de Convexidad Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 8 Nociones Básicas de Convexidad ICS 1102 Optimización Profesor : Claudio Seebach Apuntes

Más detalles

Examen final. 8 de enero de 2013

Examen final. 8 de enero de 2013 Cálculo I Examen final Universidade de Vigo Departamento de Matemática Aplicada II ETSI Minas 8 de enero de 2013 3 p 1 Se considera la función escalar de una variable real fx = lnx a Calcular el dominio

Más detalles

1.3.1 Fundamentos de cálculo vectorial

1.3.1 Fundamentos de cálculo vectorial 131 Fundamentos de cálculo vectorial 1 Función escalar Una función se define como una representación escalar que está dada en términos de un vector Un ejemplo analítico puede darse por la función f(x)

Más detalles

Soluciones a los ejercicios propuestos: Matemáticas III. Curso Tema 9

Soluciones a los ejercicios propuestos: Matemáticas III. Curso Tema 9 Soluciones a los ejercicios propuestos: Matemáticas III. Curso 10 11 9 Tema 9 1. Consideremos el problema min F x, ys.a.:gx, y = b. Siendo F y g funciones con derivadas parciales continuas en IR. Supongamos

Más detalles

(tres ejemplos) 1. Sea f : R 2 R dada por f (x, y) = x 4 + y 4 2(x y) 2.

(tres ejemplos) 1. Sea f : R 2 R dada por f (x, y) = x 4 + y 4 2(x y) 2. EXTREMOS LIBRES: LOCALES Y ABSOLUTOS (tres ejemplos) 1. Sea f : R 2 R dada por f (x, y) = x 4 + y 4 2(x y) 2. a) Probar que (0, 0) es un punto crítico pero no extremo b) Probar que ± 2(1, 1) son mínimos

Más detalles

FUNCIONES DE VARIAS VARIABLES EJERCICIOS DE APLICACIÓN A LA ECONOMÍA

FUNCIONES DE VARIAS VARIABLES EJERCICIOS DE APLICACIÓN A LA ECONOMÍA Índice Presentación... 3 Introducción... 4 Descripción matemática mediante una función de varias variables... 5 Funciones marginales de funciones económicas... 6 Maximización de beneficios... 8 Optimización

Más detalles

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 5 Condiciones de Karush-Kuhn-Tucker (KKT). Problemas

Más detalles

MATEMATICAS III (Lic. en Economía. 14/07/04) Convocatoria adelantada de Septiembre

MATEMATICAS III (Lic. en Economía. 14/07/04) Convocatoria adelantada de Septiembre Departamento de Métodos Cuantitativos en Economía y Gestión Universidad de Las Palmas de G.C. MATEMATICAS III (Lic. en Economía. 14/7/4) Convocatoria adelantada de Septiembre 1. (*) Sea f(x, y) : { ax

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 10 de septiembre de 2008

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 10 de septiembre de 2008 UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 10 de septiembre de 2008 Problema 1. (2 puntos) Trabajas en una compañía de transporte aéreo de mercancías. Tienes

Más detalles

Tema 5 Aplicaciones del cálculo diferencial

Tema 5 Aplicaciones del cálculo diferencial Tema 5 Aplicaciones del cálculo diferencial 1. APLICACIONES EN UNA VARIABLE 1.1. Extremos relativos. Proposición 1.1: Monotonía Sea f : [a, b] R continua en [a, b] y derivable en (a, b), entonces: (1)

Más detalles

EL PROBLEMA GENERAL DE OPTIMIZACION

EL PROBLEMA GENERAL DE OPTIMIZACION EL PROBLEMA GENERAL DE OPTIMIZACION Terminología Tipos de soluciones Resultados teóricos sobre existencia y unicidad de soluciones Método gráfico de resolución Problemas de optimización Este tipo de problemas

Más detalles

Clase 10: Extremos condicionados y multiplicadores de Lagrange

Clase 10: Extremos condicionados y multiplicadores de Lagrange Clase 10: Extremos condicionados y multiplicadores de Lagrange C.J. Vanegas 7 de abril de 008 1. Extremos condicionados y multiplicadores de Lagrange Estamos interesados en maximizar o minimizar una función

Más detalles

Algunos conceptos que utilizaremos en lo sucesivo son: Sistema de restricciones lineales: conjunto de todas las restricciones.

Algunos conceptos que utilizaremos en lo sucesivo son: Sistema de restricciones lineales: conjunto de todas las restricciones. A partir del planteamiento del problema de Programación Lineal expresado en su formulación estándar, vamos a estudiar las principales definiciones y resultados que soportan el aspecto teórico del procedimiento

Más detalles

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f 1 228 Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) z u = f x x u + f y y u z v = f x x v + f y y v z w = f x

Más detalles

Para hallar, gráficamente, la solución de un problema de Programación Lineal con dos variables, procederemos del siguiente modo:

Para hallar, gráficamente, la solución de un problema de Programación Lineal con dos variables, procederemos del siguiente modo: Siempre que el problema incluya únicamente dos o tres variables de decisión, podemos representar gráficamente las restricciones para dibujar en su intersección el poliedro convexo que conforma la región

Más detalles

(a) (0.5 puntos) Compruebe que esta ecuación tiene exactamente una solución en el intervalo

(a) (0.5 puntos) Compruebe que esta ecuación tiene exactamente una solución en el intervalo UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERÍA. INSTITUTO DE CIENCIAS BÁSICAS. Cálculo Numérico, Control 1. Semestre Otoño 007 Problema 1. Se desea encontrar una raíz de la función f(x) = cos (x) x.

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

Análisis Matemático 2

Análisis Matemático 2 Análisis Matemático 2 Una resolución de ejercicios con hipervínculos a videos on-line Autor: Martín Maulhardt Revisión: Fernando Acero y Ricardo Sirne Análisis Matemático II y II A Facultad de Ingeniería

Más detalles

Matemáticas I - Grupo 2 Tema 7: Optimización con restricciones. Extremos condicionados

Matemáticas I - Grupo 2 Tema 7: Optimización con restricciones. Extremos condicionados Matemáticas I - Grupo 2 Tema 7: Optimización con restricciones. Extremos condicionados Motivación Supongamos que f : Ω R 2 R es la función que nos proporciona la altura de cada punto con respecto al nivel

Más detalles

Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria.

Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria. Dualidad 1 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. Condiciones de holgura complementaria. 6 Solución dual óptima en la tabla. 7 Interpretación

Más detalles

Optimización y Programación Lineal

Optimización y Programación Lineal Optimización y Programación Lineal Problemas resueltos con el método gráfico 4 de junio de 2014 1. Resuelva el siguiente PL por el método gráfico Max z = x 1 + x 2 x 1 + x 2 4 x 1 x 2 5 En la figura 1

Más detalles

Introducción a la Optimización Matemática

Introducción a la Optimización Matemática Introducción a la Optimización Matemática Modelos de Optimización Tienen como propósito seleccionar la mejor decisión de un número de posibles alternativas, sin tener que enumerar completamente todas ellas.

Más detalles

Optimización, Solemne 2. Semestre Otoño 2012 Profesores: Paul Bosch, Rodrigo López, Fernando Paredes, Pablo Rey Tiempo: 110 min.

Optimización, Solemne 2. Semestre Otoño 2012 Profesores: Paul Bosch, Rodrigo López, Fernando Paredes, Pablo Rey Tiempo: 110 min. UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. ESCUELA DE INGENIERIA INDUSTRIAL. Optimización, Solemne. Semestre Otoño Profesores: Paul Bosch, Rodrigo López, Fernando Paredes, Pablo Rey Tiempo: min.

Más detalles

Matemática II Tema 14: valores extremos

Matemática II Tema 14: valores extremos Matemática II Tema 14: valores extremos 2012 2013 Índice Valores extremos y puntos silla 1 Criterio de las derivadas para extremos locales 1 Máximos y mínimos absolutos 5 Trabajo práctico 7 Valores extremos

Más detalles

Introducción a la optimización con algoritmos. Ejercicios. 0 2 f(x + t(y x))(y x)dt. J(x + t(y x))(y x)dt siendo J la matriz Jacobiana de F.

Introducción a la optimización con algoritmos. Ejercicios. 0 2 f(x + t(y x))(y x)dt. J(x + t(y x))(y x)dt siendo J la matriz Jacobiana de F. Introducción a la optimización con algoritmos Ejercicios Preliminares 1. Demostrar que si f C 2 (IR n ), f : IR n IR entonces f(y) f(x) = 1 0 2 f(x + t(y x))(y x)dt. 2. Demostrar que si F C 1 (IR n ),

Más detalles

Matemáticas III Andalucía-Tech

Matemáticas III Andalucía-Tech Matemáticas III Andalucía-Tech Tema Optimización en campos escalares Índice 1. Formas cuadráticas y matrices simétricas reales 1. Extremos relativos de un campo escalar 3.1. Polinomio de Taylor de un campo

Más detalles

(dos ejemplos) 1. Hallar los valores extremos absolutos que toma la función f (x, y) = xy en la región

(dos ejemplos) 1. Hallar los valores extremos absolutos que toma la función f (x, y) = xy en la región EXTREMO LIGADO (dos ejemplos). Hallar los valores extremos absolutos que toma la función f (x, y) = xy en la región x + y =, x, y Notemos que lo que se nos está pidiendo es encontrar los extremos absolutos

Más detalles

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009 Cálculo 2. Cálculo diferencial de funciones de varias variables Mayo, 2009 Definición IR 2 = {(x 1,x 2 )/x 1 IR,x 2 IR} Sean dos puntos a y b, de coordenadas respectivas (a 1,a 2 ) y (b 1,b 2 ). Definición

Más detalles

Auxiliar 7: Dualidad

Auxiliar 7: Dualidad IN3701: Modelamiento y Optimización Profs: Richard Weber, Rodrigo Wolf Coordinador: M. Siebert Aux: V. Bucarey, N. Devia, P. Obrecht Auxiliar 7: Dualidad Lunes 5 de Diciembre de 2011 Pregunta 1: Dualidad

Más detalles

PROGRAMACION DE REDES. MODELOS DE TRANSPORTE

PROGRAMACION DE REDES. MODELOS DE TRANSPORTE PROGRAMACION DE REDES. MODELOS DE TRANSPORTE El modelo de transporte o modelo de distribución es un ejemplo de un problema de optimización de redes. Se aplican para resolver ciertos tipos de problemas

Más detalles

L [1] ( ) = 1 L [ ( )] ( ) =2 L[1] ( )+L[( 3) 3 ( )] ( ) = 2 + 3

L [1] ( ) = 1 L [ ( )] ( ) =2 L[1] ( )+L[( 3) 3 ( )] ( ) = 2 + 3 Ampliación de Matemáticas II Grado en Ingeniería en Tecnologías Industriales Convocatoria 9 Junio 5. ( puntos) Resolver utilizando la transformada de Laplace la ED ( + + +( 3) 3 (), (), (). Determinar

Más detalles

I N T >. y y

I N T >. y y I N T - 1 7 5 3 >. y y S Santiago, octubre de 1963 MODELOS DE TRANSPORTE (Programa especial) * Apuntes del Sr. Norman Gillmore, Consultor en Transporte. Utilizado como material de estudio y referencia

Más detalles

(1.5 p.) 2) Hallar el polinomio de Taylor de grado 3 de la función g(x) = e 1 x2 centrado en x 0 = 1 y usarlo para dar una aproximación de e 5/4.

(1.5 p.) 2) Hallar el polinomio de Taylor de grado 3 de la función g(x) = e 1 x2 centrado en x 0 = 1 y usarlo para dar una aproximación de e 5/4. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Examen final 0 de enero de 0.75 p. Se considera la función escalar de una variable real fx = lnlnx. lnx a Calcular el

Más detalles

PAUTA C1. ] si z [x, , y] si z ( 2 )] si z [x, x ( x+y. 2 ] si z ( x ( x+y. )] si z [( ( y x+y

PAUTA C1. ] si z [x, , y] si z ( 2 )] si z [x, x ( x+y. 2 ] si z ( x ( x+y. )] si z [( ( y x+y MA3701 - Optimización, Primavera 018 Profesores: J. Amaya, V. Acuña PAUTA C1 P1.a) Sea C un subconjunto de IR n. Se dice que es un convexo de punto medio si para cada par x, y C se tiene que 1 x + 1 y

Más detalles

Soluciones a los ejercicios del examen final

Soluciones a los ejercicios del examen final Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Curso 201/14 20 de diciembre de 201 Soluciones a los ejercicios del examen final 1) Se considera la función f : R R

Más detalles

Tema 7: Programación matemática

Tema 7: Programación matemática Tema 7: Programación matemática Formulación general: Optimizar f( x) sujeto a x X f : D R n R..................................................................... función objetivo x = (x 1, x 2,..., x

Más detalles

Convocatoria de Septiembre 9 de Septiembre de Nombre y Apellidos: (6 p.) 1) Se considera la función f : R R definida por

Convocatoria de Septiembre 9 de Septiembre de Nombre y Apellidos: (6 p.) 1) Se considera la función f : R R definida por Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria de Septiembre 9 de Septiembre de 26 Nombre y Apellidos: DNI: (6 p. Se considera la función f : R R definida

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones de Modelos de LP 25 de julio de 2004. Descripción del Método ualquier problema de Programación Lineal de sólo 2 variables puede

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Soluciones de los ejercicios del primer examen parcial

Soluciones de los ejercicios del primer examen parcial Matemáticas III (GIC, curso 2015 2016) Soluciones de los ejercicios del primer examen parcial EJERCICIO 1. Determina en qué ecuación se transforma la ecuación en derivadas parciales z yy + 3z xy + 2z xx

Más detalles

FUNCIONES: DOMINIO, RANGO Y GRAFICA

FUNCIONES: DOMINIO, RANGO Y GRAFICA FUNCIONES: DOMINIO, RANGO Y GRAFICA Dominio, Codominio y Rango de una función Dominio El dominio de una función son todos los valores reales que la variable X puede tomar y la gráfica queda bien definida,

Más detalles

Tema 2. Fundamentos Teóricos de la. programación dinámica Teorema de Optimalidad de Mitten

Tema 2. Fundamentos Teóricos de la. programación dinámica Teorema de Optimalidad de Mitten Tema 2 Fundamentos Teóricos de la Programación Dinámica 2.1. Teorema de Optimalidad de Mitten El objetivo básico en la programación dinámica consiste en descomponer un problema de optimización en k variables

Más detalles

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Matemáticas para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul 1 Unidad V. (Capítulos 12 y 13 del texto) APLICACIONES DE LA DERIVADA 5.1 Función creciente y decreciente. 5.2 Extremos

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

MATEMÁTICAS II Examen del 2/12/2004 Solución Importante

MATEMÁTICAS II Examen del 2/12/2004 Solución Importante MATEMÁTICAS II Examen del //004 Solución Importante Las calificaciones se harán públicas en la página web de la asignatura y en el tablón de anuncios del Dpto. de Métodos Cuantitativos en Economía y Gestión

Más detalles

Guía Semana 7 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática

Guía Semana 7 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática . RESUMEN FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables 08- Guía Semana 7 Teorema de la función inversa. Sea f : Ω Ê N Ê N, Ω abierto, una función de clase

Más detalles

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena 1 Universidad Simón Bolívar. Preparaduría nº 3. christianlaya@hotmail.com ; @ChristianLaya Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena Derivada

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Departamento de Economía Examen final de Matemáticas II. Junio de 2011. Apellidos: Nomre: DNI: Titulación: Grupo: DURACIÓN DEL EXAMEN: 2h NO se permite el uso de calculadoras.

Más detalles

MATE Método Simplex maximización estándar

MATE Método Simplex maximización estándar MATE 3012 Método Simplex maximización estándar Problema de maximización estándar Un problema de maximización de programación lineal está en la forma estándar, si la función objetiva w = c 1 x 1 + c 2 x

Más detalles

Optimización. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Optimización 1 / 19

Optimización. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Optimización 1 / 19 Optimización Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Optimización 1 / 19 Introducción Problema general de optimización (minimización) Dado f : Ω R

Más detalles

Polinomio de Taylor. Extremos.

Polinomio de Taylor. Extremos. CAPÍTULO 6 Polinomio de Taylor. Extremos. En este capítulo trabajamos con el polinomio de Taylor de una función de varias variables y su aplicación al estudio de los extremos de funciones de más de una

Más detalles

Polinomio de Taylor. Extremos.

Polinomio de Taylor. Extremos. CAPÍTULO 6 Polinomio de Taylor. Extremos. En este capítulo trabajamos con el polinomio de Taylor de una función de varias variables y su aplicación al estudio de los extremos de funciones de más de una

Más detalles

Breve sobre Kuhn-Tucker

Breve sobre Kuhn-Tucker Breve sobre Kuhn-Tucker Alejandro Lugon 20 de agosto de 2010 Resumen Se presentan a manera de manual de referencia los resultados relevantes para la solución de problemas de maximización usando los resultados

Más detalles

Mini-apunte teoría primer parcial de Análisis Matemático II

Mini-apunte teoría primer parcial de Análisis Matemático II Mini-apunte teoría primer parcial de Análisis Matemático II 1. Ecuaciones Diferenciales Definición 1.1 (ED). Una Ecuación Diferencial es una ecuación en la que intervienen una o más variables independientes,

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE: UNI-NORTE PRIMER PARCIAL DE INVESTIGACIÓN DE OPERACIONES I (SOLUCIÓN)

UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE: UNI-NORTE PRIMER PARCIAL DE INVESTIGACIÓN DE OPERACIONES I (SOLUCIÓN) UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE: UNI-NORTE PRIMER PARCIAL DE INVESTIGACIÓN DE OPERACIONES I Prof.: MSc. Ing. Julio Rito Vargas Avilés (SOLUCIÓN) I. Representar gráficamente la región determinada

Más detalles

Optimización con restricciones de desigualdad: Condiciones de Kuhn-Tucker

Optimización con restricciones de desigualdad: Condiciones de Kuhn-Tucker Optimización con restricciones de desigualdad: Condiciones de Kuhn-Tucker Hasta ahora, hemos estudiado como maximizar o minimizar una función sujeta a restricciones en forma de ecuaciones de igualdad.

Más detalles

Licenciatura en Administración y Dirección de Empresas

Licenciatura en Administración y Dirección de Empresas Licenciatura en Administración y Dirección de Empresas Programación Matemática de junio de 200 Ejercicio 3 pt. Considera el siguiente problema de programación no lineal:. Se trata de un problema convexo?

Más detalles

1. Sensibilidad en caso de restricciones de igualdad

1. Sensibilidad en caso de restricciones de igualdad FACULTAD CS. FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA57B Optimización No Lineal. Semestre 2007-1 Profesor: Héctor Ramírez C. Auxiliar: Oscar Peredo. Clase Auxiliar #4 Análisis de Sensibilidad en Optimización

Más detalles

Optimización. Optimización Con Restricciones de Igualdad ITESM. Optimización Con Restricciones de Igualdad Profr. E. Uresti - p. 1/31. Dr.

Optimización. Optimización Con Restricciones de Igualdad ITESM. Optimización Con Restricciones de Igualdad Profr. E. Uresti - p. 1/31. Dr. Optimización Optimización Con Restricciones de Igualdad Dr. E Uresti ITESM Optimización Con Restricciones de Igualdad Profr. E. Uresti - p. 1/31 ducción En esta lectura veremos el problema de optimizar

Más detalles

(2) Dada la matriz A 3 (a) Halla el polinomio caracter stico y comprueba que los autovalores son =y 2 =2. >Cuál de ellos es doble? (b) Determina l

(2) Dada la matriz A 3 (a) Halla el polinomio caracter stico y comprueba que los autovalores son =y 2 =2. >Cuál de ellos es doble? (b) Determina l Universidad Carlos III de Madrid Departamento de Econom a Examen nal de Matemáticas II. Septiembre de 26. IMPORTANTE: ffl DURACIÓN DEL EXAMEN: 2h. 3min. ffl NO se permite el uso de calculadoras. ffl Sólo

Más detalles

Optimización con restricciones de desigualdad. Yolanda Hinojosa

Optimización con restricciones de desigualdad. Yolanda Hinojosa Optimización con restricciones de desigualdad Yolanda Hinojosa Contenido Optimización no lineal con restricciones de desigualdad. Condiciones necesarias y suficientes de óptimo Análisis de sensibilidad.

Más detalles

Auxiliar N 5 07 de Noviembre de 2007

Auxiliar N 5 07 de Noviembre de 2007 Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN34A Optimización Auxiliar N 5 07 de Noviembre de 2007 Profesores: Francisco Cisternas Richard Weber

Más detalles

Temas 1 y 2: Cálculo Diferencial y Optimización ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Temas 1 y 2: Cálculo Diferencial y Optimización ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO CÁLCULO II. Ejercicio de Examen Final Temas 1 y : Cálculo Diferencial y Optimización FECHA: 1/07/1 TIEMPO RECOMENDADO: 40 m Puntuación/TOTAL:,5/10 ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO w w 1. Dada

Más detalles

c) Calcular las asíntotas horizontales y verticales de f y representar de forma aproximada

c) Calcular las asíntotas horizontales y verticales de f y representar de forma aproximada Universidade de Vigo Departamento de Matemática Aplicada II ETSI Minas Cálculo I Curso 2011/2012 2 de julio de 2012 (75 p) 1) Se considera la función f : R R definida por f(x) = ex 2 e x + 1 a) Determinar

Más detalles

Métodos de Optimización para la toma de decisiones

Métodos de Optimización para la toma de decisiones Facultad de Ingeniería Departamento de Ciencias de la Ingeniería Magíster en Logística y Gestión de Operaciones Métodos de Optimización para la toma de decisiones MLG-521 Programación Entera 1º Semestre

Más detalles

Programación Lineal Entera.

Programación Lineal Entera. Fundamentos de Investigación de Operaciones. S2/2003 Programación Lineal Entera. 1. El consejo directivo de la General Wheels Co. Está considerando siete grandes inversiones de capital. Estas inversiones

Más detalles

ENCUESTA NACIONAL DE PRECIOS DE COMBUSTIBLES LÍQUIDOS (18 de abril de 2013)

ENCUESTA NACIONAL DE PRECIOS DE COMBUSTIBLES LÍQUIDOS (18 de abril de 2013) ENCUESTA NACIONAL DE PRECIOS DE COMBUSTIBLES LÍQUIDOS (18 de abril de 2013) 1. Antecedentes. Con motivo de la variación de precios a los distribuidores mayoristas en los combustibles líquidos anunciado

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) y = ex cos y. e x cos y e x sin y. y 2.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) y = ex cos y. e x cos y e x sin y. y 2. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES HOJA 4: Derivadas de orden superior 4-1. Sea u : R R definida por u(x, y e x sen y. Calcula las cuatro parciales segundas,

Más detalles

). Derivando e igualando a cero: u (x) = 0. x = 4 y = 4. 2 La segunda derivada: u (x) = u (4) = < 0, luego en 18 el punto (4,4) hay un máximo.

). Derivando e igualando a cero: u (x) = 0. x = 4 y = 4. 2 La segunda derivada: u (x) = u (4) = < 0, luego en 18 el punto (4,4) hay un máximo. TEMA.- OPTIMIZACIÓN CON RESTRICCIONES DE IGUALDAD El problema consiste en optimizar una función de n variables z = f(x, x,..., x n ) sujeta a las m condiciones: g (x, x,..., x n ) = b g (x, x,..., x n

Más detalles