Soluciones a los ejercicios del examen final

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Soluciones a los ejercicios del examen final"

Transcripción

1 Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Curso 201/14 20 de diciembre de 201 Soluciones a los ejercicios del examen final 1) Se considera la función f : R R definida por f(x) = x2 1 + x 2. a) Calcular los intervalos de crecimiento y decrecimiento de f. b) Calcular los intervalos de concavidad y convexidad de f. c) Hallar las asíntotas horizontales de la gráfica de f y dibujar de forma aproximada dicha gráfica. d) Determinar el conjunto Im(f) = {f(x) / x R} y hallar la expresión de la aplicación inversa f 1 en ese conjunto. a) Aplicando la regla de la derivada del cociente y simplificando obtenemos que f (x) = 2x (1 + x 2 ) 2. Como el denominador se siempre positivo, f (x) > 0 x > 0 y f (x) < 0 x < 0. Por tanto, f es decreciente en (, 0), creciente en (0, ) y tiene un mínimo global en x = 0. b) Derivando de nuevo el cociente y simplificando, se tiene que la derivada segunda de f es f (x) = 2 6x2 (1 + x 2 ). Por tanto, f (x) = 0 2 6x 2 = 0 x = ± 1. Analizando el signo de 2 6x 2 en cada intervalo, se tiene que f (x) > 0 1/ < x < 1/ y por tanto f es convexa en ( 1/, 1/ ), cóncava en (, 1/ ) (1/, ) y tiene dos puntos de inflexión en 1/ y 1/. c) La recta y = 1 es una asíntota horizontal a la gráfica de f en y + porque lím f(x) = lím f(x) = 1. x x Teniendo en cuenta el estudio realizado y que f(0) = 0, la gráfica de f tiene la forma mostrada en la figura 1.

2 1-1/ 0 1/ Figura 1 Representación aproximada de la gráfica de f. d) Es claro que Im(f) = [0, 1). Para obtener la expresión de f 1 despejamos x en la ecuación f(x) = y: x 2 y 1 + x 2 = y x2 = y + yx 2 x 2 (1 y) = y x = 1 y = f 1 (y). 2) La velocidad de una partícula viene dada por la función V (t, x) = x 2 t + e xt, donde t 0 es el tiempo y x > 0 es la densidad del medio. La partícula se detiene en el instante t en que V (t, x) = 0. a) Calcular la derivada parcial de V respecto de x y deducir que la velocidad decrece si aumentamos la densidad en un instante concreto t > 0. b) Suponiendo que la ecuación V (t, x) = 0 define implícitamente a t como función de x, usar derivación implícita para probar que el instante t = t(x) en el que la partícula se detiene es una función decreciente de x. c) Para una densidad constante x = 1, se define la función escalar h(t) = V (t, 1). i) Probar que la ecuación h(t) = 0 tiene una única solución en [0, ) y acotarla en un intervalo de longitud 1/2. ii) Hallar el polinomio de Taylor de grado de h centrado en t = 0 y usarlo para estimar el valor de e 1. a) La derivada parcial de V respecto de x representa la tasa de variación de V al incrementar el valor de x manteniendo t constante. Como x > 0, V x = 2xt te xt < 0, t > 0, de donde se deduce que la velocidad decrece al aumentar la densidad. b) Teniendo en cuenta que t = t(x) y aplicando la regla de la cadena en la expresión V V (t, x) = x 2 t + e xt = 0, se obtiene (véase el diagrama de dependencias al margen): x t x V x + V t t x = 0 = t (x) = t x = V/ x = V/ t Como t (x) < 0, t(x) es una función decreciente de x. 2xt + te xt x 2 < 0, t > 0, x > 0. xe xt

3 c) i) La función es h(t) = t + e t. Es claro que Por otra parte, h(1/2) > 0 ya que h(0) = 1 > 0 ; h(1) = 1 + e 1 < 0. e < 4 = e 1/2 = e < 2 = e 1/2 > 1/2 = h(1/2) = ( 1/2) + e 1/2 > 0. Como h es continua, el teorema de Bolzano garantiza que existe un punto t 0 (1/2, 1) tal que h(t 0 ) = 0. Una aplicación del teorema de Rolle justifica que este punto es único ya que h (t) = 1 e t < 0, t > 0. ii) El polinomio de Taylor de grado de h centrado en 0 es p(t) = h(0) + h (0) t + h (0) 2! t 2 + h (0)! Como h(t) = t + e t, h (t) = 1 e t, h (t) = e t y h (t) = e t, se tiene: p(t) = 1 2 t t2 1 6 t. t. Como h(1) = 1 + e 1 p(1) = 2/, se deduce que e = 1. ) Se considera una superficie z = G(x, y), donde G es un campo escalar de clase C 1 en R 2. Sabiendo que la ecuación del plano tangente a la superficie en el punto (x 0, y 0, z 0 ) = (2, 1, 2) es 2x + y z =, se pide: a) Calcular la dirección de máximo crecimiento de G a partir del punto (2, 1). b) Dada la función escalar g : R R definida por g(t) = G(2t, t 2 ), calcular la ecuación de la recta tangente a la gráfica de g en el punto (1, g(1)). a) Denotemos por G x = G x, G y = G. La dirección de máximo crecimiento de G a partir y del punto (2, 1) es la del vector gradiente, es decir, G(2, 1) = (G x (2, 1), G y (2, 1)). La ecuación del plano tangente a z = G(x, y) en el punto (2, 1, 2) es z + 2 = G x (2, 1) (x 2) + G y (2, 1) (y + 1) = 2x + y 1, ya que 2x + y z = z + 2 = 2x + y 1. Por tanto, G x (2, 1) = 2, G y (2, 1) = = G(2, 1) = (2, ). b) Podemos escribir g(t) = G(h(t)), donde h(t) = (2t, t 2 ). Por la regla de la cadena:

4 g (t) = G(h(t)) h (t) = g (1) = G(h(1)) h (1) = G(2, 1) h (1) = (2, ) (2, 2) = 2, ya que h(1) = (2, 1), h (t) = (2, 2t) y, por el apartado anterior, G(2, 1) = (2, ). Como g(1) = G(2, 1) = 2, la ecuación de la recta tangente a la gráfica de g en (1, g(1)) es y g(1) = g (1)(x 1) y + 2 = 2(x 1) 2x + y = 0. 4) La temperatura de un gas en cada punto (x, y, z) R viene dada por la expresión T (x, y, z) = x y xy + 2y z. a) Calcular la tasa de variación ρ(x, y, z) de T en la dirección del vector u = (1, 1, 1) a partir de cada punto (x, y, z) R. b) Determinar los puntos críticos de la función ρ(x, y, z) calculada en el apartado anterior y estudiar si alguno de ellos es un máximo local o un mínimo local. a) La tasa de variación de T en la dirección de u es la derivada direccional D u T (x, y, z) = T (x, y, z) u u = 1 ( x 2 y y, x x + 6y 2, z 2) = 1 ( x 2 y y x + x 6y 2 z 2) := ρ(x, y, z). 1 = 1 1 b) Para simplificar, consideramos la función F (x, y, z) = ρ(x, y, z) = x 2 y y x + x 6y 2 z 2, que evidentemente tiene los mismos puntos críticos que ρ. Buscamos los puntos que anulan el gradiente de F : 6xy x 2 + = 0 F (x, y, z) = (F x, F y, F z ) = (0, 0, 0) x 2 12y = 0 6z = 0 La tercera ecuación proporciona z = 0. Sumando las dos primeras se obtiene: y = 0 6xy 12y = 0 y(6x 12) = 0 ó x = 2 Para y = 0, la primera ecuación da x 2 = 1. Por tanto x = ±1, de donde se obtienen los puntos críticos P 1 = (1, 0, 0) y P 2 = ( 1, 0, 0). Para x = 2, la primera ecuación da 12y = 9. Por tanto y = /4, de donde se obtiene el punto crítico P = (2, /4, 0). Estudiamos el carácter de los puntos críticos analizando la matriz hessiana:

5 F xx F xy F xz 6y 6x 6x 0 HF (x, y, z) = F yx F yy F yz = 6x F zx F zy F zz Sustituyendo en los puntos críticos: = 6 < 0 HF (1, 0, 0) = = 2 = 6 > 0 = Definida negativa. = 216 < 0 HF ( 1, 0, 0) = = 6 > = 2 = 108 < 0 = Indefinida. = 648 > 0 15/ = 15/2 < 0 HF (2, /4, 0) = = 2 = 54 < 0 = Indefinida. = 24 > 0 Por tanto, ρ alcanza un máximo local en P 1 = (1, 0, 0), mientras que en P 2 y P tiene dos puntos de silla.

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15.

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Curso 2012/2013 21 de junio de 2013 4 p.) 1) Se considera la función fx) = x 4 e 1 x 2. a) Calcular los intervalos de

Más detalles

Soluciones a los ejercicios del examen final

Soluciones a los ejercicios del examen final Cálculo I Curso 2016/17 19 de junio de 2017 Soluciones a los ejercicios del examen final 1) Se considera la función f : [0, ) R definida por { 1 + x(ln(x) 1) si x > 0, f(x) = 1 si x = 0. (a) Probar que

Más detalles

c) Calcular las asíntotas horizontales y verticales de f y representar de forma aproximada

c) Calcular las asíntotas horizontales y verticales de f y representar de forma aproximada Universidade de Vigo Departamento de Matemática Aplicada II ETSI Minas Cálculo I Curso 2011/2012 2 de julio de 2012 (75 p) 1) Se considera la función f : R R definida por f(x) = ex 2 e x + 1 a) Determinar

Más detalles

(1.5 p.) 2) Hallar el polinomio de Taylor de grado 3 de la función g(x) = e 1 x2 centrado en x 0 = 1 y usarlo para dar una aproximación de e 5/4.

(1.5 p.) 2) Hallar el polinomio de Taylor de grado 3 de la función g(x) = e 1 x2 centrado en x 0 = 1 y usarlo para dar una aproximación de e 5/4. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Examen final 0 de enero de 0.75 p. Se considera la función escalar de una variable real fx = lnlnx. lnx a Calcular el

Más detalles

Examen final. 8 de enero de 2013

Examen final. 8 de enero de 2013 Cálculo I Examen final Universidade de Vigo Departamento de Matemática Aplicada II ETSI Minas 8 de enero de 2013 3 p 1 Se considera la función escalar de una variable real fx = lnx a Calcular el dominio

Más detalles

Curso 2010/ de julio de (2.75 p.) 1) Se considera la función f : (0, ) (0, ) definida por

Curso 2010/ de julio de (2.75 p.) 1) Se considera la función f : (0, ) (0, ) definida por Cálculo I Curso 2010/2011 Universidade de Vigo Departamento de Matemática Aplicada II ETSI Minas 5 de julio de 2011 (275 p) 1) Se considera la función f : (0, ) (0, ) definida por f(x) = 1 + ex x e x a)

Más detalles

Convocatoria de Septiembre 9 de Septiembre de Nombre y Apellidos: (6 p.) 1) Se considera la función f : R R definida por

Convocatoria de Septiembre 9 de Septiembre de Nombre y Apellidos: (6 p.) 1) Se considera la función f : R R definida por Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria de Septiembre 9 de Septiembre de 26 Nombre y Apellidos: DNI: (6 p. Se considera la función f : R R definida

Más detalles

Nombre y Apellidos: x e 1 x 1 x f(x) = ln(x) x

Nombre y Apellidos: x e 1 x 1 x f(x) = ln(x) x Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Nombre y Apellidos: Cálculo I Convocatoria de Diciembre de Diciembre de 008 DNI: (6.5 p.) ) Se considera la función f : R R definida

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Ejercicio 2 3 4 5 6 7 8 total Puntos Universidad Carlos III de Madrid Departamento de Economía Examen final de Matemáticas I 9 de septiembre de 2005 APELLIDOS: NOMBRE: DNI: Titulación: Grupo: MODELO :.

Más detalles

Nombre y Apellidos: e f(x) dx. Estudiar si converge la integral impropia

Nombre y Apellidos: e f(x) dx. Estudiar si converge la integral impropia Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria de Febrero 27 de Enero de 26 Nombre y Apellidos: DNI: 6.25 p.) ) Se considera la función f : [, ) R definida

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Departamento de Economía Examen final de Matemáticas I 3 de febrero de 2005 APELLIDOS: NOMBRE: DNI: Titulación: Grupo: MODELO :. Considera la función f!x"! ln! x ""!. Se

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Ejercicio 1 2 3 4 5 6 Total Puntos Departmento de Economía Matematicas I Examen Final 16 enero 2019 APELLIDOS: Duración: 2 horas. NOMBRE: ID: GRADO: GRUPO: (1) Sea la función

Más detalles

Nombre y Apellidos: x (1 + ln(x)) si x > 0 f(x) = 0 si x = 0.

Nombre y Apellidos: x (1 + ln(x)) si x > 0 f(x) = 0 si x = 0. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria de Septiembre de Septiembre de 008 Nombre y Apellidos: DNI: (6.5 p.) ) Se considera la función f : [0,

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Ejercicio 2 3 4 5 6 Total Puntos Departamento de Economía Examen Final de Matemáticas I 24 de Junio de 26 Duración del Examen: 2 horas. APELLIDOS: NOMBRE: DNI: Titulación:

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Departamento de Economía Examen final de Matemáticas I 9 de septiembre de 004 APELLIDOS: NOMBRE: DNI: Titulación: Grupo: MODELO :. Sea A x,y R : x ; e x y e x. Se pide:

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Departamento de Economía Examen final de Matemáticas I 3 de enero de 006 APELLIDOS: NOMBRE: DNI: Titulación: Grupo: MODELO : Sea A x, y R : x y 6 x Se pide: a) Representar

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Ejercicio 1 2 3 4 5 6 Nota Puntos Nota Ex. Nota clase Nota Final Universidad Carlos III de Madrid Departamento de Economía Examen Final de Matemáticas I 16 de Junio de 2009 APELLIDOS: NOMBRE: DNI: Titulación:

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) y = ex cos y. e x cos y e x sin y. y 2.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) y = ex cos y. e x cos y e x sin y. y 2. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES HOJA 4: Derivadas de orden superior 4-1. Sea u : R R definida por u(x, y e x sen y. Calcula las cuatro parciales segundas,

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Ejercicio 3 4 5 6 7 8 total Puntos Universidad Carlos III de Madrid Departamento de Economía Examen final de Matemáticas I 9 de septiembre de 006 APELLIDOS: NOMBRE: DNI: Titulación: Grupo: MODELO :. Sea

Más detalles

= f (a) R. f(x) f(a) x a. recta por (a, f(a)) de pendiente f(a+h2) f(a) recta tangente por (a, f(a)) de pendiente f (a)

= f (a) R. f(x) f(a) x a. recta por (a, f(a)) de pendiente f(a+h2) f(a) recta tangente por (a, f(a)) de pendiente f (a) 1 1. DERIVACIÓN 1.1. DEFINICIONES Y RESULTADOS PRINCIPALES Definición 1.1. Derivada. Sea f una función definida en un intervalo abierto I con a I. Decimos que f es derivable en a si existe y es real el

Más detalles

x y +az +bt = 20 (a) Realizamos transformaciones elementales sobre la matriz ampliada del sistema a b a 1 b 2 10

x y +az +bt = 20 (a) Realizamos transformaciones elementales sobre la matriz ampliada del sistema a b a 1 b 2 10 UC3M Matemáticas para la Economía Examen Final, 26/6/24 RESUELTO Dados los parámetros a, b 2 R, se considera el sistema lineal 8 < x 2y +z +2t = 2x 3y +4z 2t = 2 : x y +az +bt = 2 (a) (6 puntos) Discutir

Más detalles

Departamento de Matemática Aplicada a la I.T. de Telecomunicación

Departamento de Matemática Aplicada a la I.T. de Telecomunicación Departamento de Matemática Aplicada a la I.T. de Telecomunicación ASIGNATURA: CÁLCULO I (Examen Final) CONVOCATORIA: FEBRERO FECHA: de Enero de 3 Duración del examen: 3 horas Fecha publicación notas: 8--3

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Ejercicio 3 4 5 6 7 8 total Puntos Universidad Carlos III de Madrid Departamento de Economía Eamen final de Matemáticas I 0 de septiembre de 007 APELLIDOS: NOMBRE: DNI: Titulación: Grupo: MODELO : Dada

Más detalles

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009 ANÁLISIS I MATEMÁTICA ANÁLISIS II (Computación) Práctica 5 - Verano 2009 Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior. Calcular las derivadas

Más detalles

Universidad Simón Bolıvar. Departamento de Matemáticas puras y aplicadas. MA1111. Tercer Parcial. Sept-Dic 2009 (30 pts).

Universidad Simón Bolıvar. Departamento de Matemáticas puras y aplicadas. MA1111. Tercer Parcial. Sept-Dic 2009 (30 pts). Universidad Simón Bolıvar. Departamento de Matemáticas puras y aplicadas. MA1111. Tercer Parcial. Sept-Dic 2009 (30 pts). Nombre: Carnét: 1. Responda con verdadero o falso, cada una de las siguientes proposiciones,

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Departamento de Economía Examen final de Matemáticas I 3 de febrero de 4 APELLIDOS: NOMBRE: DNI: Titulación: Grupo: MODELO :. Sea A!!x,y"! R : x" y " ; x # " y si " x ;

Más detalles

2. Sea f(x, y) = x 2 2xy+y 2. Aquí el discriminante es igual a cero. Qué son los puntos críticos: mínimos locales, máximos locales o puntos silla?

2. Sea f(x, y) = x 2 2xy+y 2. Aquí el discriminante es igual a cero. Qué son los puntos críticos: mínimos locales, máximos locales o puntos silla? 1. Sea f(x, y) = Ax 2 + B con A 0. Cuáles son los puntos críticos de f? Son máximos locales o mínimos locales? Solución. Los puntos críticos son aquellos en los que las derivadas parciales son iguales

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) 1er. Cuatrimestre 2017 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable 1. Vericar que se

Más detalles

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02 Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 0/02 x 2 + y 4. (a) Comprueba que el siguiente límite no existe lim (x,y) (0,0) x 2 + y. 2 (b) Busca una trayectoria a través de la

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Ejercicio 1 2 3 4 5 6 Total Puntos Departamento de Economía Examen Final de Matemáticas I 21 de Enero de 2014 Duración del Examen: 2 horas. APELLIDOS: NOMBRE: DNI: Titulación:

Más detalles

Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos

Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Análisis I Matemática I Análisis II (C) Cuat II - 2009 Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior 1. Calcular las derivadas

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Ejercicio 3 4 5 6 Total Puntos Departamento de Economía Examen Final de Matemáticas I 6 de Junio de 04 Duración del Examen: horas. APELLIDOS: NOMBRE: DNI: Titulación: Grupo:

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) Primer Cuatrimestre - 03 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable. Vericar que se

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Exercise 3 4 5 6 Total Points Departamento de Economía Matemáticas I Examen Final 0 enero 07 Duración: horas. APELLIDOS: NOMBRE: ID: GRADO: GRUPO: () Sea la unción (x)

Más detalles

Soluciones de los ejercicios del primer examen parcial

Soluciones de los ejercicios del primer examen parcial Matemáticas III (GIC, curso 2015 2016) Soluciones de los ejercicios del primer examen parcial EJERCICIO 1. Determina en qué ecuación se transforma la ecuación en derivadas parciales z yy + 3z xy + 2z xx

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Ejercicio 1 3 4 5 6 Total Puntos Departamento de Economía Examen Final de Matemáticas I 0 de Enero de 015 APELLIDOS: Duración del Examen: horas NOMBRE: DNI: Titulación:

Más detalles

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 54 4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE En esta sección realizaremos algunos ejercicios sobre el estudio de funciones de una variable. En la

Más detalles

x +3y 2t = 1 2x +y +z +t = 2 3x y +z t = 7 2x +6y +z +t = a (a) Realizamos transformaciones elementales sobre la matriz ampliada del sistema

x +3y 2t = 1 2x +y +z +t = 2 3x y +z t = 7 2x +6y +z +t = a (a) Realizamos transformaciones elementales sobre la matriz ampliada del sistema UCM Matemáticas II Examen Final, 8/05/014 Soluciones 1 Dado el parámetro a R, se considera el sistema lineal x +y t = 1 x +y +z +t = x y +z t = 7 x +6y +z +t = a (a (6 puntos Discutir el sistema según

Más detalles

Derivada Aplicaciones. Prof. Alberto Alvaradejo IVº Medio Calculo II 2017

Derivada Aplicaciones. Prof. Alberto Alvaradejo IVº Medio Calculo II 2017 Derivada Aplicaciones Prof. Alberto Alvaradejo IVº Medio Calculo II 2017 I. Función creciente Una función continua f es estrictamente creciente en un intervalo I si cumple x 0 < x 1 < x 2 f (x 0 ) < f

Más detalles

Derivación. Aproximaciones por polinomios.

Derivación. Aproximaciones por polinomios. Derivación... 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Matemáticas (Grado en Químicas) Contenidos Derivada 1 Derivada 2 3 4 5 6 Outline Derivada 1 Derivada 2 3 4 5 6 Definición

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0100. (1) Obtener la ecuación de la recta tangente a la curva x 3 + y 3 6xy =0

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0100. (1) Obtener la ecuación de la recta tangente a la curva x 3 + y 3 6xy =0 CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0100 (1) Obtener la ecuación de la recta tangente a la curva x + y 6xy =0 en el punto, 8 ). (2) A un depósito cilíndrico de base circular de

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 2 Cálculo Diferencial en una variable 2.1. Derivadas La derivada nos proporciona una manera de calcular la tasa de cambio de una función Calculamos la velocidad media como la razón entre la distancia

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0900

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0900 CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0900 (1) La posición vertical de una pelota está dada por h(t) = 128 + 16t 16t 2 en donde t se mide en segundos y h(t) se mide en pies. Durante

Más detalles

Polinomio de Taylor. Extremos.

Polinomio de Taylor. Extremos. CAPÍTULO 6 Polinomio de Taylor. Extremos. En este capítulo trabajamos con el polinomio de Taylor de una función de varias variables y su aplicación al estudio de los extremos de funciones de más de una

Más detalles

Polinomio de Taylor. Extremos.

Polinomio de Taylor. Extremos. CAPÍTULO 6 Polinomio de Taylor. Extremos. En este capítulo trabajamos con el polinomio de Taylor de una función de varias variables y su aplicación al estudio de los extremos de funciones de más de una

Más detalles

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( )

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( ) Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 4 (APLICACIONES DE LA DERIVADA) Profesora: Yulimar Matute Febrero 2012 RECTA

Más detalles

< La recta y = -4/5 es una asíntota horizontal en +4. < La misma recta es también asíntota en -4. < y asíntota y = -4/5 = -0,8

< La recta y = -4/5 es una asíntota horizontal en +4. < La misma recta es también asíntota en -4. < y asíntota y = -4/5 = -0,8 Ramas infinitas de una curva. Asíntotas horizontales Ejemplo 1. Analizar si la curva tiene o no asíntotas horizontales Análisis del comportamiento de la función en +4 : x 6 +4 < La recta y = -4/5 es una

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Definiciones 3 2. Herramientas 5 2.1. Reglas de derivación............................

Más detalles

Matemáticas III Andalucía-Tech

Matemáticas III Andalucía-Tech Matemáticas III Andalucía-Tech Tema Optimización en campos escalares Índice 1. Formas cuadráticas y matrices simétricas reales 1. Extremos relativos de un campo escalar 3.1. Polinomio de Taylor de un campo

Más detalles

Hoja 2: Derivadas direccionales y diferenciabilidad.

Hoja 2: Derivadas direccionales y diferenciabilidad. Sonia L. Rueda ETS Arquitectura. UPM Curso 2011-2012. 1 CÁLCULO Hoja 2: Derivadas direccionales y diferenciabilidad. 1. Sea f : R 2 R la función definida por x 4 (x 2 +y 2 ) 2, (x, y) (0, 0) 0, (x, y)

Más detalles

ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0)

ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0) facultad de ciencias exactas y naturales uba primer cuatrimestre 2007 ANÁLISIS II Computación Práctica 4 Derivadas parciales 1. Calcular a) f y (2, 1) para f(x, y) = xy + x y b) f z (1, 1, 1) para f(x,

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Ejercicio 1 2 4 5 6 Total Puntos Departamento de Economía Examen Final de Matemáticas I 16 de Enero de 201 APELLIDOS: Duración del Examen: 2 horas. NOMBRE: DNI: Titulación:

Más detalles

Tarea 1 - Vectorial

Tarea 1 - Vectorial Tarea - Vectorial 2050. Part :. - 3.2.. Un cerro se queda en las montañas en la altura de 6 mil metros. El cerro tiene la forma del gráfico de la función z = f(x, y) = x 2 y 2. Observamos que plaquitas

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES ) 3-1. Calcular, para las siguientes funciones. a) fx, y) x cos x sen y b) fx, y) e xy c) fx, y) x + y ) lnx + y )

Más detalles

ANALISIS II Computación. Práctica 4. x 3. x 2 + y 2. x 2 + y 2 si (x, y) (0, 0) 0 si (x, y) = (0, 0)

ANALISIS II Computación. Práctica 4. x 3. x 2 + y 2. x 2 + y 2 si (x, y) (0, 0) 0 si (x, y) = (0, 0) facultad de ciencias exactas y naturales uba curso de verano 2006 ANALISIS II Computación Práctica 4 Derivadas parciales 1. Calcular (a) f xy y (2, 1) para f(x, y) = + x y (b) f z (1, 1, 1) para f(x, y,

Más detalles

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE Análisis de funciones de una variable 49 4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE En esta sección realizaremos algunos ejercicios sobre el estudio de funciones de una variable: En la parte final hay ejercicios

Más detalles

Problemas tipo examen

Problemas tipo examen Problemas tipo examen La división en temas no es exhaustiva. Las referencias (H n- m) indican el problema m de la hoja n y las referencias (A- cd), con A en números romanos indican un examen del mes A

Más detalles

Selectividad Matemáticas II junio 2017, Andalucía

Selectividad Matemáticas II junio 2017, Andalucía Selectividad Matemáticas II junio 07, Andalucía Pedro González Ruiz 3 de junio de 06. Opción A Problema. Se quiere hacer una puerta rectangular coronada por un semicírculo como el de la figura. El hueco

Más detalles

REPRESENTACIÓN GRÁFICA DE FUNCIONES

REPRESENTACIÓN GRÁFICA DE FUNCIONES Página 1 de 5 REPRESENTACIÓN GRÁFICA DE FUNCIONES 1 Determinar en cuál de los siguientes intervalos la función f(x) = ln (x+1) es estrictamente cóncava. A (-, 0) B [-1, 1] C (-1, ) D Nunca es estrictamente

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 203 Capítulo 7 Año 2006 7.. Modelo 2006 - Opción A Problema 7.. 2 puntos Un punto de luz situado

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Marzo 2015) Selectividad-Opción A Tiempo: 90 minutos. mx+ 2y+ mz = 4 mx y+ 2z = m 3x+ 5z = 6

Examen de Matemáticas Aplicadas a las CC. Sociales II (Marzo 2015) Selectividad-Opción A Tiempo: 90 minutos. mx+ 2y+ mz = 4 mx y+ 2z = m 3x+ 5z = 6 Examen de Matemáticas Aplicadas a las CC. Sociales II (Marzo 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos)dado el sistema mx+ 2y+ mz = 4 mx y+ 2z = m 3x+ 5z = 6 1. (2 puntos). Discutir

Más detalles

Índice: Criterio de la variación del signo de la derivada segunda. Criterio de la derivada primera. Condición necesaria de punto de inflexión.

Índice: Criterio de la variación del signo de la derivada segunda. Criterio de la derivada primera. Condición necesaria de punto de inflexión. DERIVADAS LECCIÓN 21 Índice: Criterio de la variación del signo de la derivada segunda. Criterio de la derivada primera. Condición necesaria de punto de inflexión. Problemas. 1.- Criterio de la variación

Más detalles

OCW-Universidad de Málaga, (2014). Bajo licencia. Creative Commons Attribution- NonComercial-ShareAlike 3.

OCW-Universidad de Málaga,  (2014). Bajo licencia. Creative Commons Attribution- NonComercial-ShareAlike 3. OCW-Universidad de Málaga, http://ocw.uma.es (014). Bajo licencia Creative Commons Attribution- NonComercial-ShareAlike 3.0 Spain Matemáticas III Relación de ejercicios Tema 1 Ejercicios Ej. 1 Encuentra

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n.

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n. April 15, 2009 En este capítulo D denota un subconjunto abierto de R n. 1. Introducción Definición 1.1. Dada una aplicación f : D R, definimos la derivada parcial segunda de f como D ij f = 2 f = ( ) x

Más detalles

Tema 8: Derivación. José M. Salazar. Noviembre de 2016

Tema 8: Derivación. José M. Salazar. Noviembre de 2016 Tema 8: Derivación. José M. Salazar Noviembre de 2016 Tema 8: Derivación. Lección 9. Derivación: teoría fundamental. Lección 10. Aplicaciones de la derivación. Índice 1 Extremos de funciones y clasificación

Más detalles

Problemas resueltos correspondientes a la selectividad de Matemáticas II de septiembre de 2011, Andalucía

Problemas resueltos correspondientes a la selectividad de Matemáticas II de septiembre de 2011, Andalucía Problemas resueltos correspondientes a la selectividad de Matemáticas II de septiembre de 011, Andalucía Pedro González Ruiz septiembre de 011 1. Opción A Problema 1.1 Calcular la base y la altura del

Más detalles

Examen de Análisis Matemático. a) (1 punto) Calcula las derivadas de las siguientes funciones: (1 + 3x) 1 2

Examen de Análisis Matemático. a) (1 punto) Calcula las derivadas de las siguientes funciones: (1 + 3x) 1 2 Curso º Bachillerato 16/05/017 Ejercicio 1 a) (1 punto) Calcula las derivadas de las siguientes funciones: f() = 1+3 ; g() = ln(1 5) + e7 b) (1 punto) Estudia la derivabilidad de la función dada por: a)

Más detalles

MATEMÁTICA AGRONOMÍA RESPUESTAS AL SEGUNDO PARCIAL Primer Cuatrimestre Tema 1

MATEMÁTICA AGRONOMÍA RESPUESTAS AL SEGUNDO PARCIAL Primer Cuatrimestre Tema 1 Ejercicio Considerando la recta R que pasa por los puntos A = (; 0; ) y B = (2; ; 5) y el punto P = (2; ; ), hallar la ecuación implícita del plano π que es perpendicular a la recta R y contiene al punto

Más detalles

DERIVADAS DE FUNCIONES DE UNA VARIABLE

DERIVADAS DE FUNCIONES DE UNA VARIABLE DERIVADAS DE FUNCIONES DE UNA VARIABLE DERIVADAS DE FUNCIONES DE UNA VARIABLE [4.] Estudiar la derivabilidad de la función los puntos en los que esté definida. 3 f( ) y obtener f ( ) en En primer lugar

Más detalles

h = 16t t h(t) h(a) t a t a

h = 16t t h(t) h(a) t a t a CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E100 (1) Si se lanza verticalmente un objeto hacia arriba desde el nivel del suelo con una velocidad inicial de 0 pies/s, entonces su distancia h arriba

Más detalles

2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN

2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN 2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN 1.) Resuelve las siguientes derivadas: a) b) c) d) e) f) g) h) i) j) k) l) m) n) o) p) q) r) f(x) = arcsen 2.) Resuelve la siguiente derivada, simplificando

Más detalles

SEGUNDO TURNO TEMA 1

SEGUNDO TURNO TEMA 1 TEMA 1 Ejercicio 1 ( puntos) Dada la función polinómica f(x) = x + 2x 2 x 2, hallar los intervalos de positividad y negatividad de f sabiendo que el gráfico de dicha función corta al eje x en el punto

Más detalles

MODELO DE EXAMEN MATEMÁTICAS II PRIMERA EVALUACIÓN CURSO 2017/2018

MODELO DE EXAMEN MATEMÁTICAS II PRIMERA EVALUACIÓN CURSO 2017/2018 MODELO DE EXAMEN MATEMÁTICAS II PRIMERA EVALUACIÓN CURSO 2017/2018 Límites de funciones. Continuidad Derivadas Aplicaciones de las derivadas Primitiva de una función Integral definida EJERCICIO 1. Dada

Más detalles

Examen de Matemáticas 2 o de Bachillerato Mayo 2003

Examen de Matemáticas 2 o de Bachillerato Mayo 2003 Examen de Matemáticas o de Bachillerato Mayo 1. (a) Dibuja el recinto limitado por las curvas y = e x+, y = e x y x =. (b) Halla el área del recinto considerado en el apartado anterior. (a) El dominio

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Ejercicio 2 3 5 6 7 8 total Puntos Universidad Carlos III de Madrid Departamento de Economía Eamen final de Matemáticas I 8 de febrero de 2007 APELLIDOS: NOMBRE: DNI: Titulación: Grupo: MODELO : Dada la

Más detalles

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación Soluciones de los ejercicios del examen de del 29 de junio de 27 Primero de Ingeniería de Telecomunicación Ejercicio a Justifica que la ecuación x 2 = x sen x+ cos x tiene exactamente dos soluciones reales.

Más detalles

x 2 + ln(x + z) y = 0 yz + e xz 1 = 0 define una curva C regular en un entorno de (1, 1, 0) y halle el plano normal a C en dicho punto.

x 2 + ln(x + z) y = 0 yz + e xz 1 = 0 define una curva C regular en un entorno de (1, 1, 0) y halle el plano normal a C en dicho punto. 1 Sea f : R R una función C 3 que satisface f(1, ) = (0, 0), y cuya matriz ( Hessiana ) en (1, ) es: 1 0 H = 0 Hallar todos los b ɛ R de manera que la función: g( = f( + 1 b b (y ) ) tenga extremo en (1,

Más detalles

Práctica 3: Diferenciación I

Práctica 3: Diferenciación I Análisis I Matemática I Análisis II (C) Cuat II - 009 Práctica 3: Diferenciación I Derivadas parciales y direccionales. Sea f una función continua en x = a. Probar que f es derivable en x = a si y solo

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E1100

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E1100 CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E1100 A) Primer parcial 1) Si se lanza verticalmente un objeto hacia arriba desde el nivel del suelo, con una velocidad inicial de 0 pies/s, entonces

Más detalles

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9 Asignatura: Matemáticas II ºBachillerato página 1/8 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9 Hoja 1. Problema 9 Resuelto por José Antonio Álvarez

Más detalles

Problemas resueltos correspondientes a la selectividad de Matemáticas II de septiembre de 2012, Andalucía

Problemas resueltos correspondientes a la selectividad de Matemáticas II de septiembre de 2012, Andalucía Problemas resueltos correspondientes a la selectividad de Matemáticas II de septiembre de, Andalucía Pedro González Ruiz 3 de septiembre de. Opción A Problema. Sea la función continua f : R R definida

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Departamento de Economía Examen final de Matemáticas II. 20 de Junio de 2007. IMPORTANTE: DURACIÓN DEL EXAMEN: 2h. 30min. NO se permite el uso de calculadoras. Sólo se

Más detalles

1.- DOMINIO DE LA FUNCIÓN

1.- DOMINIO DE LA FUNCIÓN En este resumen vamos a tratar los puntos que necesitamos para poder representar gráficamente una función. Empezamos viendo la información que podemos obtener de la expresión matemática de la función.

Más detalles

EJERCICIOS DE ANÁLISIS PRIMERA EVALUACIÓN - MATEMÁTICAS II 2 BACH A Soluciones en Ejercicios resueltos de la PAU

EJERCICIOS DE ANÁLISIS PRIMERA EVALUACIÓN - MATEMÁTICAS II 2 BACH A Soluciones en Ejercicios resueltos de la PAU EJERCICIOS DE ANÁLISIS PRIMERA EVALUACIÓN - MATEMÁTICAS II 2 BACH A Soluciones en Ejercicios resueltos de la PAU Problema 1 (2 puntos) De una función derivable f (x) se conoce que pasa por el punto A(-1,

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Primer Cuatrimestre - 010 Práctica 3: Diferenciación Derivadas parciales y direccionales 1. Sea f una función continua en x = a. Probar que f es derivable en x =

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

Unidad 8: Derivadas. Técnicas de derivación. Aplicación al estudio y representación de funciones. Primitiva de una función (integración).

Unidad 8: Derivadas. Técnicas de derivación. Aplicación al estudio y representación de funciones. Primitiva de una función (integración). representación de funciones Primitiva de una función (integración) 1 Unidad 8: Derivadas Técnicas de derivación Aplicación al estudio y representación de funciones Primitiva de una función (integración)

Más detalles

Cálculo Diferencial de una Variable

Cálculo Diferencial de una Variable Departamento de Matemática Aplicada Universitat Politècnica de València, España Fundamentos Matemáticos para la Ingenieria Civil Esquema Esquema de la exposición Definición. Interpretación geométrica de

Más detalles

Listado 1 Cálculo III (2025) PLEV Hallar adherencia, interior, conjunto de puntos de acumulación y frontera para:

Listado 1 Cálculo III (2025) PLEV Hallar adherencia, interior, conjunto de puntos de acumulación y frontera para: Universidad de Concepción Facultad de Ciencias Físicas y Matemáticas Departamento de Matemática Listado 1 Cálculo III (2025) PLEV 2018 1. Hallar adherencia, interior, conjunto de puntos de acumulación

Más detalles

MATEMÁTICAS I BOLETÍN DE PROBLEMAS 3.DIFERENCIABILIDAD DE FUNCIONES REALES DE VARIABLE REAL. Moebius

MATEMÁTICAS I BOLETÍN DE PROBLEMAS 3.DIFERENCIABILIDAD DE FUNCIONES REALES DE VARIABLE REAL. Moebius 2018-19 MATEMÁTICAS I BOLETÍN DE PROBLEMAS 3.DIFERENCIABILIDAD DE FUNCIONES REALES DE VARIABLE REAL. 1. Halle la derivada de las siguientes funciones: a) f(x) = 3x 4 + 2 x 5 + 5 x 2 b) f(x) = 2x 1 2x+1

Más detalles

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA Supongamos que tenemos una función. Consideramos la recta que corta a la gráfica en los puntos A y B. Esta recta se llama secante

Más detalles

Estudio local de una función.

Estudio local de una función. Estudio local de una función. A partir de una cartulina cuadrada de 60 cm de lado, se va a construir una caja de base cuadrada, sin tapa, recortando cuatro cuadrados iguales en las esquinas de la cartulina

Más detalles

Lcdo. Eliezer Montoya Matemática I 1. Universidad Nacional Experimental Politécnica de las Fuerzas Armadas Núcleo Barinas

Lcdo. Eliezer Montoya Matemática I 1. Universidad Nacional Experimental Politécnica de las Fuerzas Armadas Núcleo Barinas Lcdo. Eliezer Montoya Matemática I 1 Universidad Nacional Experimental Politécnica de las Fuerzas Armadas Núcleo Barinas Asignatura Matemática I código 114 Primera Versión 14-06-08 Facilitador: Licdo Eliezer

Más detalles

PEP II. (1.2) Determine la recta normal a la curva dada por la ecuación x sen(2y) = y cos(2x), en el punto ( π 4, π 2 ) x 3 2

PEP II. (1.2) Determine la recta normal a la curva dada por la ecuación x sen(2y) = y cos(2x), en el punto ( π 4, π 2 ) x 3 2 Universidad de Santiago de Chile, Facultad de Ciencia, Departamento de Matemática y C.C. Asignatura Cálculo I, Módulo Básico Ingenieria, Segundo Semestre 0 Problema. PEP II.) Encuentre ellos) puntos) de

Más detalles

Ecuación de la recta tangente

Ecuación de la recta tangente Ecuación de la recta tangente Pendiente de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. Recta tangente a una curva en un punto

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Ejercicio 2 3 4 5 6 Total Puntos Departamento de Economía Eamen Final de Matemáticas I 20 de Enero de 206 APELLIDOS: Duración del Eamen: 2 horas. NOMBRE: DNI: Titulación:

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 13 Capítulo 6 Año 5 6.1. Modelo 5 - Opción A Problema 6.1.1 ( puntos) Justificar razonadamente

Más detalles