Universidad Carlos III de Madrid

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Universidad Carlos III de Madrid"

Transcripción

1 Universidad Carlos III de Madrid Ejercicio Total Puntos Departamento de Economía Eamen Final de Matemáticas I 20 de Enero de 206 APELLIDOS: Duración del Eamen: 2 horas. NOMBRE: DNI: Titulación: Grupo: () Sea la función f() = 2 ln. Se pide: (a) Representar gráficamente la función, calculando previamente su dominio, intervalos de crecimiento y decrecimiento, asíntotas, etremos globales (si los hay) e imagen de f(). (b) Considerar la función f () = f() (definida solo en el intervalo en el que f() es creciente). Hallar el dominio y la imagen, concavidad y/o conveidad y dibujar la gráfica de la función f (). Sugerencia: para la concavidad y/o conveidad de f (), estudiar primero la concavidad/conveidad de f. No intentar hallar la epresión analítica de f (). 0,6 puntos apartado a); 0,4 puntos apartado b) a) El dominio de la función anterior es { : > 0} = (0, ). Además, como f () = 2 ln + = (2 ln + ), se deduce que f es decreciente en (0, e /2 ] y creciente en [e /2, ), pues + 2 ln() = 0 ln = 2 = e /2 y, como el logaritmo es creciente, + 2 ln() < 0 si < e /2 (o, equivalentemente, f () < 0 en dicho intervalo); y + 2 ln() > 0 si > e /2 (o, equivalentemente, f () > 0 en dicho intervalo). Como la función es continua en su dominio, solo hay que estudiar la posible asíntota vertical en 0 + : lim 0 +f() = lim ln() 0 + / 2 = lim / = 0; luego la función no tiene asíntotas 0 + 2/3 verticales. Estudiemos a continuación el comportamiento de la función en : lim f() = = lim f() ; luego la función no tiene asíntota horizontal ni oblicua. Por lo tanto, la función alcanzará un mínimo global en = e /2, y su valor será: f(e /2 ) = e ln(e /2 ) = 2 e. Luego la imagen de la función será: [ 2 e, ). Por lo tanto, la gráfica de f tendrá un aspecto, aproimadamente, como el de la primera figura: y = f - () y=f() e -/2 e -/2 -_ e - 2 -_ - e 2 b) Hemos definido f = f : [e /2, ) [ 2 e, ), que es creciente y biyectiva. Luego f : [ 2 e, ) [e /2, ) es también creciente y biyectiva. Por otro lado, f es convea, pues f () = 2 ln = 2 ln + 3, y, como f () es creciente, si > e /2 = f () > 2 ln e /2 + 3 = 2 > 0. Como f es convea y creciente, se deduce que f () es cóncava y creciente. Por lo tanto, la gráfica de f será, aproimadamente, como el de la segunda figura.

2 (2) Dada la función y = f(), definida de forma implícita mediante la ecuación y 2 + y 6 = 2 en un entorno del punto = 0, y =, se pide: (a) Hallar la ecuación de la recta tangente a f() en a = 0, y probar que f() es cóncava cerca de dicho punto. (b) Representar la función cerca de a = 0 y calcular aproimadamente el área limitada por la gráfica de dicha función, el eje horizontal, y las rectas verticales = δ, = δ, para δ > 0 pequeño. Es dicha aproimación por defecto o por eceso? Sugerencia para b: si no se ha hallado la recta tangente, considerese y = + m. punto a) En primer lugar, calculamos la derivada primera de la función: 8 + 2yy + 6y 5 y = 8 + (2y + 6y 5 )y = 0 sustituyendo = 0, y(0) = se deduce que y (0) = f (0) = 0. Análogamente, calculamos la derivada segunda de la función: 8 + (2y + 30y 4 y )y + (2y + 6y 5 )y = 0 sustituyendo y(0) =, y (0) = 0 se deduce que y (0) = f (0) = Luego la ecuación de la recta tangente será: y = 0( 0), es decir, y =. Y, obviamente, la función implícita es cóncava pues f (0) < 0.. b) Como la gráfica de f quedará debajo de la recta tangente y =, la representación será, cerca del punto = 0, aproimadamente así, tomando δ = 0, : y= (0,) -0, 0, y=f() Y, como la función es positiva cerca del punto = 0, el área coincidirá con la integral δ f()d, que será, aproimadamente, la misma que sustituir f() por la recta δ tangente y =. Es decir, δ δ f() δ.d = 2δ. δ Como la función es cóncava, la gráfica queda debajo de la recta tangente, luego la aproimación es por eceso. Observación: si se tomó como recta tangente y = + m, el resultado no varía, pues el área de un rectángulo de base 2δ y altura es la misma que la de un trapecio de misma base y altura media.

3 (3) Sea C () = 0, y I () = 0, las funciones de costes e ingresos marginales de una empresa monopolista, siendo 0 el número de unidades producidas de cierta mercancía. Se pide: (a) Determinar la producción que maimiza el beneficio. Para este nivel de producción, cual será el beneficio adicional (aproimado) de producir una unidad menos? (b) Sabiendo que el coste de producir 00 unidades es de 600 unidades monetarias, hallar la producción que minimiza el coste medio. Para este nivel de producción, cual será el beneficio adicional (aproimado) de producir una unidad más? 0,4 puntos apartado a); 0,6 puntos apartado b) a) Si calculamos la primera y segunda derivada de B : B () = I () C () = 0, (0, ) = 0, ; B () = 0, 2 < 0 luego vemos que B tiene un único punto crítico en = 500 y, como B es una función cóncava, este punto crítico es el único maimizador global. A este nivel de producción el beneficio adicional de producir una unidad de más o menos sería, aproimadamente, 0, pues B(50) B(500) B (500) = 0, B(500) B(499) B (500) = 0.. b) La función de costes es C() = 0, C 0. Como C(00) = 0, C 0 = 600 = C 0 = 200, luego la función de coste medio es C m () = C() = , 02. Si calculamos su dos primeras derivadas: C m() = , 02; C m () = > 0 observamos que = 200 0, 02 = 00 es el único punto crítico y, como C m() es una función convea, dicho punto crítico es el único minimizador global. Por lo tanto, la producción que minimiza el coste medio será: = 00. Para este nivel de producción, el beneficio adicional de producir una unidad más sería, aproimadamente, 80, pues: B(0) B(00) B (00) = = 80

4 ANEXO SOLUCIONES PARA LOS PROBLEMAS, 2 Y 3

5 4. Sea la función f() = e. Se pide: (a) Enunciar el teorema de Rolle y utilizarlo para demostrar que no pueden eistir tres puntos distintos < 2 < 3 tales que f( ) = f( 2 ) = f( 3 ). Qué sucede si sustituimos f() por una función convea y derivable g()? Sugerencia: aplicar el teorema de Rolle a dos intervalos distintos. Además, en este problema, como en todos, conveidad siempre es en sentido estricto. (b) Estudiar si f() es convea, hallar el polinomio de Taylor de grado 2 de f() en a = 0 y calcular el valor aproimado de f( 4 ). 0,6 puntos apartado a); 0,4 puntos apartado b) a) Aplicando el teorema de Rolle a f en el intervalo [, 2 ], se deduce la eistencia de c (, 2 ) tal que f (c ) = 0. Aplicando el teorema de Rolle a f en el intervalo [ 2, 3 ], se deduce la eistencia de c 2 ( 2, 3 ) tal que f (c 2 ) = 0. Como f () = e + e = ( + )e, el único cero de la función f es =. Así pues, f solo puede tomar el mismo valor dos veces. Análogamente, una función convea solo puede tener un punto crítico, luego tampoco pueden eistir tres puntos distintos < 2 < 3 tales que g ( ) = g( 2 ) = g( 3 ). La situación de una función que tomase tres veces el mismo valor puede representarse, aproimadamente, así: c 2 c 2 3 b) Como f () = e + ( + )e = ( + 2)e, se deduce que f() no es convea en (, 2). Además, como f(0) = 0, f (0) =, f (0) = 2, se deduce que P () = + 2. Por lo tanto: f( 4 ) P ( 4 ) = 5/6.

6 5. Sea el conjunto A = {(, y) R 2 : 2 y 2 )}. Se pide: (a) Representar el conjunto A y hallar, si eisten, los maimales y minimales, máimo y mínimo de A. (b) Calcular el área del conjunto dado. Y el área de B= {(, y) R 2 : 2 + y 3 )}? Sugerencia para a: el orden de Pareto viene dado por: ( 0, y 0 ) P (, y ) 0, y 0 y. 0,6 puntos apartado a); 0,4 puntos apartado b) a) Como el conjunto A es simétrico respecto del eje vertical, es suficiente describirlo cuando 0. Para dichos valores, (, y) A cuando f() = 2 y 2 = g(). Las gráficas de ambas funciones y = 2, y = 2 se cortan en =. Por lo tanto, el dibujo de A será, aproimadamente, así: y= 2 - y=2- Por lo tanto, como g() es decreciente en [0, ] y f() tambien decrece en [, 0], el orden de Pareto nos describe al conjunto así: máimo(a) no eiste, {maimales(a)} = {(, 2 ) : 0 }. mínimo(a) no eiste, {minimales(a)} = {(, 2 ) : 0}. b) Como ya hemos dicho, basta con hallar el área de la parte del conjunto que queda a la derecha del eje vertical. Así pues, A = 2 (g() f())d = 2 (2 2 )d = 2[ ] 0 = 0 0 = 7 3 unidades de área. Por otro lado, B no es sino una traslación vertical de una unidad del conjunto A, luego el área de B es la misma que la de A.

7 6. Dada la función f() = e, si > 0, se pide: (a) Hallar la primitiva de f() que tome el valor 0 en =. (b) Sea g continua tal que g() + 2 si. Calcular las asíntotas, si eisten de la función G() = g(t)dt. Sugerencia para b: en primer lugar, comprobar que punto a) Sea F () = e d la primitiva general de f(). lim G() =. Haciendo el cambio de variable = t 2, d = 2tdt, se obitene que: e t t 2tdt = 2 e t dt = 2e t + C = 2e + C Y ahora, como F () = 2e + C = 0 = C = 2e. Por lo tanto, F () = 2e 2e.. b) Como g() + 2 cuando = G() = g(t)dt ( + 2 t)dt cuando, por tanto G() no puede tener asíntota horizontal. Como tampoco puede tener asíntota vertical, pues G() es continua en su dominio, solo queda comprobar que no tiene asíntota oblícua. Y como G() lim = G () =(aplicando L Hopital)= lim = lim g() = Luego tampoco tiene asíntotas oblícuas.

8 ANEXO SOLUCIONES PARA LOS PROBLEMAS 4, 5 Y 6

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Eercise 2 3 4 5 6 Total Points Departmento de Economía Mathematicas I Eamen Final 22 enero 208 APELLIDOS: Duración: 2 horas. NOMBRE: ID: GRADO: GRUPO: () Sea la función

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Ejercicio 3 4 5 6 Total Puntos Departamento de Economía Eamen Final de Matemáticas I 3 de Junio de 7 Duración del Eamen: horas. APELLIDOS: NOMBRE: DNI: Titulación: Grupo:

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Ejercicio 1 3 4 5 6 Total Puntos Departamento de Economía Examen Final de Matemáticas I 0 de Enero de 015 APELLIDOS: Duración del Examen: horas NOMBRE: DNI: Titulación:

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Ejercicio 3 4 5 6 7 8 total Puntos Universidad Carlos III de Madrid Departamento de Economía Eamen final de Matemáticas I 0 de septiembre de 007 APELLIDOS: NOMBRE: DNI: Titulación: Grupo: MODELO : Dada

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Ejercicio 2 3 5 6 7 8 total Puntos Universidad Carlos III de Madrid Departamento de Economía Eamen final de Matemáticas I 8 de febrero de 2007 APELLIDOS: NOMBRE: DNI: Titulación: Grupo: MODELO : Dada la

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Ejercicio 1 2 3 4 5 6 Total Puntos Departamento de Economía Examen Final de Matemáticas I 21 de Enero de 2014 Duración del Examen: 2 horas. APELLIDOS: NOMBRE: DNI: Titulación:

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Ejercicio 1 2 3 4 5 6 Total Puntos Departmento de Economía Matematicas I Examen Final 16 enero 2019 APELLIDOS: Duración: 2 horas. NOMBRE: ID: GRADO: GRUPO: (1) Sea la función

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Ejercicio 3 4 5 6 Total Puntos Departamento de Economía Examen Final de Matemáticas I 6 de Junio de 04 Duración del Examen: horas. APELLIDOS: NOMBRE: DNI: Titulación: Grupo:

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Departamento de Economía Eamen Final de Matemáticas I 22 de Enero de 2010 Duración del Eamen: 2 horas. APELLIDOS: NOMBRE: DNI: Titulación: Grupo: 2 + 1 1. Sea la función

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Exercise 3 4 5 6 Total Points Departamento de Economía Matemáticas I Examen Final 0 enero 07 Duración: horas. APELLIDOS: NOMBRE: ID: GRADO: GRUPO: () Sea la unción (x)

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Departamento de Economía Examen final de Matemáticas I 3 de enero de 006 APELLIDOS: NOMBRE: DNI: Titulación: Grupo: MODELO : Sea A x, y R : x y 6 x Se pide: a) Representar

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Ejercicio 2 3 4 5 6 7 8 total Puntos Universidad Carlos III de Madrid Departamento de Economía Examen final de Matemáticas I 9 de septiembre de 2005 APELLIDOS: NOMBRE: DNI: Titulación: Grupo: MODELO :.

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Ejercicio 3 4 5 6 7 8 total Puntos Universidad Carlos III de Madrid Departamento de Economía Examen final de Matemáticas I 9 de septiembre de 006 APELLIDOS: NOMBRE: DNI: Titulación: Grupo: MODELO :. Sea

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Ejercicio 2 3 4 5 6 Total Puntos Departamento de Economía Examen Final de Matemáticas I 24 de Junio de 26 Duración del Examen: 2 horas. APELLIDOS: NOMBRE: DNI: Titulación:

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Departamento de Economía Examen final de Matemáticas I 3 de febrero de 2005 APELLIDOS: NOMBRE: DNI: Titulación: Grupo: MODELO :. Considera la función f!x"! ln! x ""!. Se

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Ejercicio 1 2 4 5 6 Total Puntos Departamento de Economía Examen Final de Matemáticas I 16 de Enero de 201 APELLIDOS: Duración del Examen: 2 horas. NOMBRE: DNI: Titulación:

Más detalles

a) Calcular las asíntotas, el máximo y el mínimo absolutos de f (x). 4. (SEP 04) Sabiendo que una función f (x) tiene como derivada

a) Calcular las asíntotas, el máximo y el mínimo absolutos de f (x). 4. (SEP 04) Sabiendo que una función f (x) tiene como derivada Matemáticas II - Curso - EJERCICIOS DE CÁLCULO DIFERENCIAL E INTEGRAL PROPUESTOS EN LAS PRUEBAS DE ACCESO COMUNIDAD DE MADRID (JUN ) Calcular la base y la altura del triángulo isósceles de perímetro 8

Más detalles

1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}.

1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}. 6. Estudiar y representar gráficamente las siguientes funciones: a) ( ) f e b) Solución f( ) + 3 + c) f( ) ln + a) Para estudiar la función e se realizan los siguientes pasos: f( ) ) La función no está

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Ejercicio 1 2 3 4 5 6 Nota Puntos Nota Ex. Nota clase Nota Final Universidad Carlos III de Madrid Departamento de Economía Examen Final de Matemáticas I 16 de Junio de 2009 APELLIDOS: NOMBRE: DNI: Titulación:

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Departamento de Economía Examen final de Matemáticas I 9 de septiembre de 004 APELLIDOS: NOMBRE: DNI: Titulación: Grupo: MODELO :. Sea A x,y R : x ; e x y e x. Se pide:

Más detalles

Funciones en explícitas

Funciones en explícitas Funciones en eplícitas.- Sea la función f() e, se pide:. Dominio.. Signo de f() en función de.. Asíntotas. 4. Crecimiento y decrecimiento. Máimos y mínimos relativos. 5. Concavidad y conveidad. Puntos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS:

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL APELLIDOS: NOMBRE: D.N.I. CUESTIONARIO DE RESPUESTA MÚLTIPLE (5%) (Cada respuesta incorrecta resta, puntos)

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Departamento de Economía Examen final de Matemáticas I 3 de febrero de 4 APELLIDOS: NOMBRE: DNI: Titulación: Grupo: MODELO :. Sea A!!x,y"! R : x" y " ; x # " y si " x ;

Más detalles

EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES.

EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. EJERCICIOS RESUELTOS TEMA : DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. Ejercicio 1 Calcula las funciones derivadas de las siguientes funciones y simplifícalas: a) f ( ) sine b)

Más detalles

Matemáticas II Hoja 9: Derivadas y Aplicaciones. Representación de Funciones.

Matemáticas II Hoja 9: Derivadas y Aplicaciones. Representación de Funciones. Profesor: Miguel Ángel Baeza Alba (º Bachillerato) Matemáticas II Hoja 9: Derivadas y Aplicaciones Representación de Funciones Ejercicio 1: (Continuación del Ejercicio 1 de la Hoja 8) + 1 a 1 e < 0 0 Para

Más detalles

Propiedades de las funciones derivables. Representación gráfica de funciones. Determinar los puntos de inflexión. (Junio 1997)

Propiedades de las funciones derivables. Representación gráfica de funciones. Determinar los puntos de inflexión. (Junio 1997) Matemáticas II. Curso 008/009 de funciones 1 1. Determinar las asíntotas de f () =. Estudiar la concavidad y conveidad. 1 + Determinar los puntos de infleión. (Junio 1997) 1 Por un lado, lim 1 = 0 y =

Más detalles

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva. EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta

Más detalles

1 1. [2014] [EXT-A] Dada la función f(x) = x+1 + x

1 1. [2014] [EXT-A] Dada la función f(x) = x+1 + x . [4] [ET-A] Dada la función f() = + +, se pide: +4 a) Determinar el dominio de f y sus asíntotas. b) Calcular f'() y determinar los etremos relativos de f(). c) Calcular f()d 5sen + si

Más detalles

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2 Integrales. Calcular las siguientes integrales: i) d ii) d 6 iii) sen d i) Operando se tiene: d = / / / / d = 7 / / / / / = c = c 7 7 ii) Ajustando constantes se tiene: d 6d = 6 c 6 6 iii) Haciendo el

Más detalles

( ) ( ) ( ) f h f h h h h. h 0 h h 0 h h 0 h h 0. f h f h h h h

( ) ( ) ( ) f h f h h h h. h 0 h h 0 h h 0 h h 0. f h f h h h h Eamen de cálculo diferencial e integral /4/9 Opción A Ejercicio. (Puntuación máima: puntos) Sea la función f ( ) = 4 a. Estudiar su continuidad y derivabilidad. b. Dibujar su gráfica. c. Calcular el área

Más detalles

RESOLUCIÓN DE ACTIVIDADES

RESOLUCIÓN DE ACTIVIDADES RESOLUCIÓN DE ACTIVIDADES Actividades iniciales. En las siguientes funciones estudia las características: dominio, los puntos de corte con los ejes, las simetrías, la periodicidad, las asíntotas, la monotonía,

Más detalles

Selectividad hasta el año incluido = 0. Página 1 de 13 ANÁLISIS

Selectividad hasta el año incluido = 0. Página 1 de 13 ANÁLISIS ANÁLISIS Selectividad hasta el año 9- incluido Ejercicio. Calificación máima: puntos. (Junio 99 A) Hallar la longitud de los lados del triángulo isósceles de área máima cuyo perímetro sea 6 m. Ejercicio.

Más detalles

TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos

TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos 64 TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos Crecimiento y decrecimiento. Máimos y mínimos relativos; puntos de infleión. Dada la función

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo.

Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo. UNIDAD. APLICACIONES DE LAS DERIVADAS.. Información etraída de la primera derivada.. Información etraída de la segunda derivada.. Derivabilidad en intervalos: Teorema de Rolle, del valor medio y Caucy..4

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x 1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.

Más detalles

xln(x+1). 5. [2013] [EXT-A] a) Hallar lim x+1+1 dx. x+1 b) Calcular

xln(x+1). 5. [2013] [EXT-A] a) Hallar lim x+1+1 dx. x+1 b) Calcular . [0] [ET-A] a) Hallar el punto en el que la recta tangente a la gráfica de la función f() = -+ es paralela a la recta de ecuación y = 5-7. b) Calcular el área delimitada por la parábola de ecuación y

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO EXAMEN DE MATEMÁTICAS GRÁFICAS E INTEGRALES Apellidos: Nombre: Curso: º Grupo: C Día: - III- 6 CURSO 05-6. [ punto] Estudia si las siguientes funciones presentan simetría par (respecto del eje de ordenadas)

Más detalles

COL LECCIÓ DE PROBLEMES RESOLTS

COL LECCIÓ DE PROBLEMES RESOLTS DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES

Más detalles

2 = ( ) = con vértice en (0, 3) y cortes con el. Tomando la parte continua de cada una de ellas se obtiene la grafica de la función.

2 = ( ) = con vértice en (0, 3) y cortes con el. Tomando la parte continua de cada una de ellas se obtiene la grafica de la función. Septiembre. Ejercicio B. Puntuación máima: puntos) Se considera la función real de variable real definida por: a si f ) Ln ) si > b) Represéntese gráficamente la función para el caso a. Nota: Ln denota

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A

Más detalles

FUNCIONES. 7.(99).- Hallar la longitud de los lados del triángulo isósceles de área máxima cuyo perímetro sea 60 m.

FUNCIONES. 7.(99).- Hallar la longitud de los lados del triángulo isósceles de área máxima cuyo perímetro sea 60 m. Enunciados de problemas de selectividad. Matemáticas II. Funciones FUNCIONES.(97).- Hay alguna función f() que no tenga límite cuando y que, sin embargo, [f()] sí tenga límite cuando?. Si la respuesta

Más detalles

Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Propuestos

Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Propuestos Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Propuestos Crecimiento y decrecimiento. Máimos y mínimos relativos; puntos de infleión

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

x + y + bz = a x + y + az = b bx + ay + 4z = 1

x + y + bz = a x + y + az = b bx + ay + 4z = 1 UC3M Matemáticas para la Economía Eamen Final, 3 de junio de 017 RESUELTO 1 Dados los parámetros a y b, se considera el sistema de ecuaciones lineales + y + bz = a + y + az = b b + ay + 4z = 1 (a) (5 puntos)

Más detalles

ln x dx = x ln x 2x ln x + 2x = (e 2e + 2e) 2 = (e 2) u

ln x dx = x ln x 2x ln x + 2x = (e 2e + 2e) 2 = (e 2) u Tema: Integrales definidas. Áreas Ejercicios PAU - JUNIO GENERAL Ejercicio.- Calcule d + Sea F() = d = + = + d d ln ln + = ln ln ln 5 + ln = A B + = + + = A( + ) + B = = A = = B A =, B = d = ln ln ln 5

Más detalles

lim x sen(x) Apellidos: Nombre: Curso: 2º Grupo: A Día: 23-II-2015 CURSO Instrucciones:

lim x sen(x) Apellidos: Nombre: Curso: 2º Grupo: A Día: 23-II-2015 CURSO Instrucciones: EXAMEN DE MATEMATICAS II ª EVALUACIÓN Apellidos: Nombre: Curso: º Grupo: A Día: II5 CURSO 5 Instrucciones: a) Duración: HORA y MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios de

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO EXAMEN DE MATEMATICAS II ª ENSAYO (ANÁLISIS) Apellidos: Nombre: Curso: º Grupo: Día: CURSO 56 Instrucciones: a) Duración: HORA y MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización

Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Aplicaciones de la derivada primera para el estudio de la variación de una función El signo de la

Más detalles

x = 1 Asíntota vertical

x = 1 Asíntota vertical EJERCICIO Sea la función f ( ). a) Indique el dominio de definición de f, sus puntos de corte con los ejes, sus máimos mínimos, eisten, sus intervalos de crecimiento decrecimiento. b) Obtenga las ecuaciones

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS

Más detalles

1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN. Ejemplo: Estudiar la monotonía (intervalos de crecimiento y decrecimiento) de la función 2

1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN. Ejemplo: Estudiar la monotonía (intervalos de crecimiento y decrecimiento) de la función 2 UNIDAD 11.- APLICACIONES DE LAS DERIVADAS 1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN Estudiando el signo de la derivada primera podemos saber cuándo una función es creciente o decreciente.

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento

Más detalles

TEMA 7. Representación gráfica de funciones y Optimización Problemas Resueltos

TEMA 7. Representación gráfica de funciones y Optimización Problemas Resueltos Matemáticas Aplicadas a las Ciencias Sociales II. Soluciones de los problemas propuestos. Tema 7 TEMA 7. Representación gráfica de funciones y Optimización Problemas Resueltos Crecimiento y decrecimiento.

Más detalles

5 APLICACIONES DE LA DERIVADA

5 APLICACIONES DE LA DERIVADA 5 APLICACIONES DE LA DERIVADA La derivada va a ser la herramienta más potente a la hora de dar forma a la representación gráfica de una función. Ella determinará con toda fidelidad el crecimiento, decrecimiento,

Más detalles

Tema 4: Representación de Funciones

Tema 4: Representación de Funciones Tema 4: Representación de Funciones.- Dominio y recorrido: Dominio: Valores de para los que está definida (eiste) f () Recorrido: Valores que toma f () Funciones Polinómicas, son de la forma f ( ) ao a...

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 07 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

Selectividad Junio 2007 JUNIO 2007

Selectividad Junio 2007 JUNIO 2007 Selectividad Junio 7 JUNIO 7 PRUEBA A PROBLEMAS 1.- Sea el plano π + y z 5 = y la recta r = y = z. Se pide: a) Calcular la distancia de la recta al plano. b) Hallar un plano que contenga a r y sea perpendicular

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL Septiembre de 00 APELLIDOS: NOMBRE: DNI CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) (Cada respuesta incorrecta

Más detalles

5x 2 +2 (x-6) 1-2x-e x +sen(3x) 1. [2014] [JUN-A] Calcular justificadamente: a) lim. ; b) lim x. x 2-1 (2x-1)

5x 2 +2 (x-6) 1-2x-e x +sen(3x) 1. [2014] [JUN-A] Calcular justificadamente: a) lim. ; b) lim x. x 2-1 (2x-1) --e +sen(). [04] [JUN-A] Calcular justificadamente: a) lim ; b) lim 5 + (-6) - (-) a+ln(-) si < 0. [04] [JUN-B] Dada la función f() = e - (donde ln denota logaritmo neperiano) se pide: si 0 a) Calcular

Más detalles

Examen de Análisis Matemático. a) (1 punto) Calcula las derivadas de las siguientes funciones: (1 + 3x) 1 2

Examen de Análisis Matemático. a) (1 punto) Calcula las derivadas de las siguientes funciones: (1 + 3x) 1 2 Curso º Bachillerato 16/05/017 Ejercicio 1 a) (1 punto) Calcula las derivadas de las siguientes funciones: f() = 1+3 ; g() = ln(1 5) + e7 b) (1 punto) Estudia la derivabilidad de la función dada por: a)

Más detalles

Unidad 5. Funciones. Representación de funciones TEMA 5. REPRESENTACIÓN DE FUNCIONES. José L. Lorente Aragón

Unidad 5. Funciones. Representación de funciones TEMA 5. REPRESENTACIÓN DE FUNCIONES. José L. Lorente Aragón TEMA 5. REPRESENTACIÓN DE FUNCIONES 1. Representación de funciones 1.1. Dominio 1.. Puntos de corte con los ejes 1..1. Con el eje 1... Con el eje y 1.. Signo de la función 1.4. Periodicidad y simetría

Más detalles

Eje OY (Vertical) => Se hace la x = 0, y se despeja la y. Corte (0,y)

Eje OY (Vertical) => Se hace la x = 0, y se despeja la y. Corte (0,y) Estudio de funciones y su representación gráfica. TIPO I. Funciones Polinómicas. Ejemplo: y 4 1º. Dominio. El dominio de una función es el conjunto de valores para los que está definida la función. En

Más detalles

TEMA: ESTUDIO LOCAL DE FUNCIONES DERIVABLES

TEMA: ESTUDIO LOCAL DE FUNCIONES DERIVABLES TEMA: ESTUDIO LOCAL DE FUNCIONES DERIVABLES 1 DOMINIO DE DEFINICIÓN DE UNA FUNCIÓN El dominio de una función está formado por aquellos valores de (números reales) para los que se puede calcular f(). PUNTOS

Más detalles

EXAMEN DE MATEMÁTICAS (2º DE BACHILLERATO) ANÁLISIS (DERIVADAS)

EXAMEN DE MATEMÁTICAS (2º DE BACHILLERATO) ANÁLISIS (DERIVADAS) EXAMEN DE MATEMÁTICAS (º DE BACHILLERATO) ANÁLISIS (DERIVADAS) 009 1 (CLS09) (1 punto) Probar que la ecuación e + 0 tiene alguna solución (CLJ13) (1 punto) Sea la función + Calcula sus asíntotas y estudia

Más detalles

PROPIEDADES GLOBALES DE LAS FUNCIONES. =, para x 0.

PROPIEDADES GLOBALES DE LAS FUNCIONES. =, para x 0. PROPIEDADES GLOBALES DE LAS FUNCIONES Ejercicio. Sea f: R R la función definida por f ( ) Ln( + ), siendo Ln la función logaritmo neperiano. (a) [ punto] Determina los intervalos de crecimiento y decrecimiento

Más detalles

2. [ANDA] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.

2. [ANDA] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima. cos(3) - e + a 1. [ANDA] [EXT-A] Sabiendo que lim 0 sen() es finito, calcula a y el valor del límte. 2. [ANDA] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES El estudio de la derivada de una función, junto con otras consideraciones sobre las funciones tales como el estudio de su campo de eistencia (dominio), de sus puntos de corte

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

Alonso Fernández Galián

Alonso Fernández Galián Alonso Fernández Galián TEMA 3: ESTUDIO Y REPRESENTACIÓN DE FUNCIONES Para representar gráficamente una función deben estudiarse los siguientes aspectos: i) Dominio. ii) Puntos de corte con los ejes de

Más detalles

( ) ( ( ) ( ) ) ( ( ) ( x) ( 2) ( ) ( ) ( )

( ) ( ( ) ( ) ) ( ( ) ( x) ( 2) ( ) ( ) ( ) Modelo. Problema B.- Caliicación máima: puntos) La igura representa la gráica de una unción : [ 6; 5] R. Contéstese razonadamente a las preguntas planteadas.? a) Para qué valores de es > b) En qué puntos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Tema 5 Funciones(V). Representación de Funciones

Tema 5 Funciones(V). Representación de Funciones Tema 5 Funciones(V). Representación de Funciones 1. Representación de funciones 1.1. Dominio 1.. Puntos de corte con los ejes 1..1. Con eje OX 1... Con eje OY 1.. Signo de la función 1.4. Simetría y periodicidad

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción B Junio, Ejercicio, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A Reserva,

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las cuestiones de una de las opciones

Más detalles

Tema 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización

Tema 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización 09 Tema 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Aplicaciones de la derivada primera para el estudio de la variación de una función El signo de la derivada primera

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES El estudio de la derivada de una función, junto con otras consideraciones sobre las funciones tales como el estudio de su campo de eistencia (dominio), de sus puntos de corte

Más detalles

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo

Más detalles

ANÁLISIS. d) No, se podrían haber considerado infinitas funciones diferenciadas en una constante.

ANÁLISIS. d) No, se podrían haber considerado infinitas funciones diferenciadas en una constante. Pruebas de Acceso a la Universidad de Zaragoza. Matemáticas aplicadas a las Ciencias Sociales. ANÁLISIS Junio 99. Sea f: una función cuya primera derivada es f () =. Se pide: a) Determinar los intervalos

Más detalles

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN cuya derivada es

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN cuya derivada es ANÁLISIS (Selectividad ) ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN Aragón, junio a) Determina la función f () cuya derivada es f ( ) b) Calcula: lim a) La función f () es una primitiva de f f 5 (

Más detalles

a) Se trata de integrar una función racional cuyo denominador tiene raíces reales simples. Por tanto, se descompone en fracciones simples:

a) Se trata de integrar una función racional cuyo denominador tiene raíces reales simples. Por tanto, se descompone en fracciones simples: . a.sen() e Sabiendo que lim es finito, calcula el valor de a y el de dicho límite. lim L'Hôpital a.sen() e a.cos (e e ) lim L'Hôpital a. sen e (e e ) a. sen e e lim lim L'Hôpital El parámetro a puede

Más detalles

Aplicaciones de las derivadas

Aplicaciones de las derivadas Aplicaciones de las derivadas. Recta tangente a una curva en un punto La pendiente de la recta tangente a la gráfica de la función f() en el punto ( 0, f( 0 )) viene dada por f ( 0 ) siempre que la función

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES 8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Profesor: Fernando Ureña Portero

Profesor: Fernando Ureña Portero MATEMÁTICAS º BACH CC. Y TECNOL. CURSO 13-14 1.-Dada la función a) (3p.) Dominio de f() b) (3 p.) Calcular. Es posible calcular? Por qué? c) (4p.) Calcular.- Estudiar la continuidad de la función: { 3.-a)

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN 1.- Derivada de una función en un punto. El estudio de la derivada de una función en un punto surge con el problema geométrico

Más detalles

en el intervalo - 1-cos(x) 2 si x > 0 sen(x)

en el intervalo - 1-cos(x) 2 si x > 0 sen(x) . [04] [ET-A] Sea la función f() = e -. Determinar sus intervalos de crecimiento y decrecimiento, etremos relativos, intervalos de concavidad y conveidad, puntos de infleión y asíntotas. Esbozar su gráfica..

Más detalles

ln( = x, como x = f -1 (y), cambiamos y por x, entonces Ej 1. (2 puntos) Sea f ( x ) = 2e + 8, entonces: a) La función inversa de f es:

ln( = x, como x = f -1 (y), cambiamos y por x, entonces Ej 1. (2 puntos) Sea f ( x ) = 2e + 8, entonces: a) La función inversa de f es: ANÁLIS. MAT. ING. - EXACTAS C 7 APELLIDO: NOMBRES: SOBRE Nº: Duración del eamen: hs DNI/CI/LC/LE/PAS. Nº: E-MAIL: CALIFICACIÓN: TEMA - --7 TELÉFONOS part: cel: Apellido del evaluador: + Ej. ( puntos) Sea

Más detalles