2 = ( ) = con vértice en (0, 3) y cortes con el. Tomando la parte continua de cada una de ellas se obtiene la grafica de la función.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2 = ( ) = con vértice en (0, 3) y cortes con el. Tomando la parte continua de cada una de ellas se obtiene la grafica de la función."

Transcripción

1 Septiembre. Ejercicio B. Puntuación máima: puntos) Se considera la función real de variable real definida por: a si f ) Ln ) si > b) Represéntese gráficamente la función para el caso a. Nota: Ln denota al logaritmo neperiano del número. si b. Para representar la función f ) se tiene en cuenta que esta definida por Ln ) si > ) una epresión polinómica de grado dos f ) si eje OX en, ) y, ), y por una función logarítmica f ) Ln ) si > ),, con asíntota vertical ½. con vértice en, ) y cortes con el de dominio Tomando la parte continua de cada una de ellas se obtiene la grafica de la función. Septiembre. Ejercicio A. Puntuación máima: puntos) Se considera la función real de variable real definida por: ) ) f a) Determínense las asíntotas de f. Calcúlense los etremos relativos de f. b) Represéntese gráficamente la función f. Para la resolver el apartado a y b es conveniente operar el numerador f ) a. Asíntotas verticales. Puntos ecluidos del dominio donde el límite sea infinito.

2 ) : Lím Asíntota vertical : Lím Lím ) ) ) ) Asíntota horizontal. Lím f ) Lím Lím Lím ) ± ± ± ± ± La función no tiene asíntotas horizontales. Asíntota oblicua. y m n ) f m Lím Lím Lím Lím ± ± ± ± Lím f ) m) Lím Lím Lím ± ± ± ± Asíntota oblicua y. Etremos relativos. Puntos de la función donde la primera derivada es cero y la segunda es distinta de cero. Criterio: si la segunda derivada es positiva, es un mínimo, si es negativa es un máimo. ) ) ) ) f f ) f ) ) ) ) ) ) ) ) ) : f ) ) f ) < ) ) ) ) ) ) ) ) ) ) f ) Mínimo relativo, ) Máimo relativo, ) b. Para esbozar la gráfica de la función, además de las asíntotas y los etremos relativos, es conveniente calcular los puntos de corte con los ejes. OX y ): ; ;, ) ) : ;, OY: No hace falta calcular el punto de corte porque uno de los puntos de corte con OY es el punto, ). ) ) ) > Mímimo relativo Máimo relativo f ) ),f ),f )

3 Junio. Ejercicio B. Puntuación máima: puntos) Se considera la función real de variable real definida por si f ) si > b) Represéntese gráficamente la función f. b. La función se define por epresiones polinómicas de º grado que representan parábolas. Para representar una parábola basta con calcular el vértice y los puntos de corte con los ejes. b - Vértice: v a yv f v ) - Cortes con OX: y, se resuelve la ecuación - Corte con OY:, es el término independiente del polinomio, c). Primero se representan ambas epresiones y a continuación se representa la función f). y y Vértice : Vértice :, ) OX :, ) ;, ) OY :, ),) OX :, ) ;, ) OY :, ) Teniendo en cuenta los intervalos donde están definidas cada una de las epresiones, la gráfica de la función es: Septiembre. Ejercicio A. Puntuación máima: puntos) Se considera la fundón real de variable real definida por: ) ) f. a) Determínense las asíntotas de f. Calcúlense los etremos relativos de f. b) Represéntese gráficamente la función f. a. Verticales: En los puntos ecluidos del dominio donde el límite quede de la forma [ f ) ] R D La función no tiene asíntotas verticales. k. L Horizontales: y L: Lím ± Lím ± ) ± ± ) Lím ± Asíntota horizontal y. ± ) Posición relativa.

4 ) ) ) f L Lím Lím Lím Lím ± ± ± ± Lím : La función se aproima a la asíntota por debajo. ) Lím : La función se ) aproima a la asíntota por debajo. - Oblicuas: Por tener asíntotas horizontales hacia ±, no tiene oblicua. Máimos y mínimos. Puntos de la función donde la primera derivada es cero y la segunda es distinta de cero, con el criterio de que si la segunda derivada es positiva, es un mínimo, si es negativa es un máimo. ) ) ) ) ) ) ) ) ) f f ) ) ) ) ) ) ) ) f : ) ) ) ) ) f ) ) ) ) f < ) ) ) ) ) ) ) ) ) ) : : ± ) Si y : ) ) Si y > En, ) la función tiene un mínimo En, ) la función tiene un máimo. ) ) ) ), ), ) b. Para esbozar la gráfica de la función, además de la información obtenida en el apartado a, es conveniente calcular los puntos de corte de la función con los ejes. ) Eje OX y ): : :., ) : ) Eje OY ): ) y :, ) Marcando sobre unos ejes la información obtenida:

5 Con la información sobre la gráfica, se traza la gráfica de la función. Junio. Ejercicio B. Puntuación máima: puntos) Se considera la función real de variable real definida por: a si f ) b si > b) Para a, b, represéntese gráficamente la función f. si b. f ) si > y Hipérbola equilátera, con asíntota horizontal y ; asíntota vertical y. y Parábola de eje vertical desplazada verticalmente hacia abajo y deformada. Vértice,, cortes con OX:,) ;,) Por último, para dibujar la gráfica de la función es conveniente calcular los valores que toman ambas epresiones en el punto frontera. ) ; ) ) f f 5

6 Modelo. Ejercicio B. Puntuación máima: puntos) Una empresa produce cable de fibra óptica que vende a un precio de euros el metro. Se estima que la venta diaria de cable en miles de metros) se epresa en términos del precio mediante la función: 6 f ) b) Calcular el precio que ha de fijarse para que el ingreso diario sea máimo y calcular dicho ingreso máimo. c) Determinar las asíntotas de I) y esbozar su gráfica. b. Se pide calcular el punto de máimo de la función de ingresos. El máimo se localiza en los puntos donde la primera derivada se anula y la segunda es negativa. ) ) 6 6 I 6 I ) I ) ) 6 ± ) ) ) ) ) 6 ) I ) I 6 6 : ) I ) ) 6 6 ) 6 ) ) ) 6 6 < Maimo 6 ) ) I Se obtienen unos ingresos máimos de con un precio de /m ) ) ) > Mínimo c. Asíntotas verticales: Rectas de la forma a tal que a Dominio De I). D[ I ) ] { R } R D [ I ) ] R La función I) no tiene asíntotas verticales. Asíntotas horizontales: Rectas de la forma y L tal que L Lím I ) Lím I ± ± ± La función tiene una asíntota horizontal en y. ) Lím Lím ± Asíntotas oblicuas. La función no presenta asíntota oblicua por tener asíntota horizontal Para representar la función, se tiene en cuenta que la función representa los ingresos y la variable el precio de venta de un producto, por lo tanto la eistencia de la función solo tiene sentido para valores de mayores o iguales que cero. 6

7 Septiembre. F.M. Ejercicio A. Puntuación máima: puntos) Se considera la función real de variable real definida por: f ) b) Determínese los etremos relativos de f y esbócese su gráfica. b. Una función tiene etremos relativos en los puntos donde su primera derivada sea cero y su segunda derivada sea distinta de cero, con el siguiente criterio: f a) < : Máimo Sí f a) y f a) en a, fa)) la función tiene un etremo relativo: f a) > : Mínimo f ) : 6 : ) : : f < En, f)) la función tiene un máimo local ) ) f ) f ) f > En, f)) la función tiene un mínimo local, ) Máimo, ) Mínimo. Gráfica. Cortes con los ejes: - OX y ): Mediante Ruffini se calculan las soluciones, ) ;, ) - OY ): y ;, ) Tendencia en los infinitos: Lím Lím ) ) ) ) Conocidos los puntos de corte con los ejes y los etremos relativos y tendencia en los infinitos, se esboza la gráfica de la función. las Septiembre. F.G. Ejercicio B. Puntuación máima: puntos) Se considera la función real de variable real definida por: a si f ) b si < < log a si b) Para a, b, represéntese gráficamente la función f. Nota. La notación log representa al logaritmo neperiano 7

8 si b. Para a, b : f ) si < < log si La función está definida por funciones sencillas cuyas gráficas se representan a continuación. La función f) esta formado por los trazos continuos de cada una de ellas, si los representamos sobre un mismo eje de coordenadas, se obtiene la gráfica de la función. Junio. F.M. Ejercicio A. Puntuación máima: puntos) Se considera la función real de variable real definida por: f ) a) Determínense sus asíntotas. b) Calcúlense sus máimos y mínimos locales. Esbócese la gráfica de f. a. Verticales: Puntos ecluidos del dominio donde el límite quede de la forma D [ f ) ] { R / } R { } k. : Lím Asíntota vertical. Para poder esbozar la gráfica de la función es necesario estudiar la posición de la función respecto de sus asíntotas. Posición relativa. Se estudian los límites laterales en. Lím Lím Horizontal: y L: 8

9 ± ± L Lím Lím ± ± ± ± La función no tiene asíntotas horizontales Oblicua: y m n f ) m Lím Lím Lím Lím ± ± ± ± ± n Lím f ) m) Lím Lím Lím ± ± ) ± ± ± ± Asíntota oblicua: y Posición relativa. Lím f ) m n) ) Lím ) Lím ± ± ± Lím La función se aproima a la asíntota por debajo. Lím La función se aproima a la asíntota por encima. Otra forma: Lím ) ) Lím ± Para estudiar la posición relativa sin tener que hacer límites, se puede dar valores a la función y a la oblicua. y f ) y Ob Comparación ) 999, y f < yob,... y f > y Ob Cuando, la función se acerca a la asíntota por debajo, cuando, la función se acerca a la asíntota por encima. b. Una función tiene etremos relativos en los puntos donde su primera derivada sea cero y su segunda derivada sea distinta de cero, con el siguiente criterio: f a) < : Máimo Sí f a) y f a) en a, fa)) la función tiene un etremo relativo: f a) > : Mínimo ) ) f ) ) 9

10 f f ) ) : ) f : : ) ) :, ) ; f ) :, ) ) ) ) ) ) ) ) ) : : ) ) ) ) f ) <, ) la función tiene un máimo. f ) >, ) la función tiene un mínimo. ) Con los datos obtenidos en los apartados anteriores se puede esbozar la gráfica de la función. Dominio: R { } Asíntota vertical:. Asíntota oblicua: y Punto de corte con los ejes:, ) Mínimo local:, ) Máimo local:, ) Junio. F.M. Ejercicio B. Puntuación máima: puntos) Se considera la función real de variable real definida por: a si f ) si > b b) Para a 6 y b /, determínense los puntos de corte de la gráfica de f con el eje OX. Esbócese la gráfica de f. 6 si b. a 6; b /: f ) si > ], 6 : - Cortes con OX y ): ], No se admite Dominio La función corta al eje OX en el punto, ). - Corte con OY ). y f ) 6 6. La función corta a OY en el punto, 6). Gráfica. La gráfica consta de dos intervalos, el primero, ] parábola abierta hacia con vértice máimo) en: b 5 v ; y V f 6 a )

11 5 V, El segundo intervalo,, ), es una hipérbola equilátera. Por último, se debe calcular el valor que toma la función cuando tiende a por la izquierda y por la derecha. f ) 6 ; f ) Por lo tanto la función en el punto habrá que dibujarla de forma continua. Septiembre 9. Ejercicio A. Puntuación máima: puntos) Se considera la función real de variable real definida por: si f ) 9 si < 5 si > a) Representar gráficamente la función f. a. Función definida por intervalos mediante epresiones polinómicas de º y º grado. Para representar la función basta con hacer una tabla de valores dando a la variable los valores correspondientes al intervalo donde está definida cada epresión. Septiembre 9. Ejercicio B. Puntuación máima: puntos) El beneficio semanal en miles de euros) que obtiene una central lechera por la producción de leche desnatada está determinado por la función: ) 7 B en la representa los hectolitros de leche desnatada producidos en una semana. a) Represéntese gráficamente' la función B) con. a. Función polinómica de º grado. Para representarla se calcula el vértice y los puntos de corte de la función con los ejes coordenados. Hay que tener en cuenta que solo se dibuja para valores de, es decir, a la derecha del eje OY. - Vértice: b 7 7 v ; y f v ) a ) v f V, 9

12 :, ) - Cortes con OX y ): 7 : 5 : 5, ) - Corte con OY ): y 7 :,) Modelo 5. B. Puntuación máima: puntos) Se considera la función real de variable real definida por: si f ) In ) si > b) Esbozar su gráfica. Tomando de cada una de las funciones el intervalo correspondiente, se construye la gráfica de la función pedida.

13 Septiembre. Ejercicio A. Puntuación máima puntos) Se considera la función real definida por f ) a 5, a a b) Calcular los etremos relativos de f ) para a y representar la función. f ) 5 Etremos relativos. Una función presenta etremos relativos en los puntos donde su primera derivada es nula y su segunda derivada no nula, con el siguiente criterio: - Si la segunda derivada es negativa, MÁXIMO - Si la segunda derivada es positiva, MÍNIMO f ) 6 5 : f ) 6 < f ) 6 f ) : 6 5 : 5 f 5) 5 6 > 7 7 f ) 5 : En, f ) tiene un máimo f 5) : En 5, f ) tiene un mínimo Gráfica. Por ser polinómica el dominio es todo R, no tiene asíntotas, las tendencias en el infinito son: Lím 5 Lím 5 es: Por ser continua y tener un máimo en y un mínimo en 5, la monotonía de la función En,) 5, ) f ) > f ) es En, 5) f ) < f ) es decreciente creciente deriva. Los puntos de infleión y la curvatura se obtiene del estudio de los ceros y signo de la segunda Sí < : : Si : Sí > : ) 6 : 6 : f ) <, f ) es concava ) f ) :f ) 7 :, 7) f ) >, f ) es convea ) f Punto de infleión Todos los datos anteriores permiten trazar la gráfica de la función razonadamente.

14 Modelo. A. Puntuación máima: puntos) Se considera la función real de variable real definida por f ) a) Hallar las coordenadas de sus máimos y mínimos relativos. b) Determinar los intervalos de concavidad y conveidad. c) Esbozar la gráfica f). a. La condición necesaria y suficiente para que una función y f ) alcance en un etremo relativo máimo o mínimo) es que la primera derivada sea distinta de cero, con el siguiente criterio. Si f '' ) <, f )) eiste un máimo relativo Si f ' ) Si f '' ) >, f )) eiste un mínimo relativo f ) f ' ) ) f '' ) ) Igualando a cero la primera derivada, se localizan los posibles etremos relativos, la segunda derivada, confirma y diferencia los etremos relativos. f), ) f ' ) : : : ; ± : f ), ) f ' ' ) >, ) Mínimo f ' ' ) <, ) Máimo ) b. La curvatura de una función se estudia con el signo de la ª derivada según el siguiente criterio. Si f '' ) >, la curva estará por encima de la tangente. CONCAVA Si '' ), f < la curva esta por debajo de su tangente. CONVEXA f ' ' ) Si : Si < f > f '' ' ' ) ) < convea > concava c. f ) Dominio: D R { } Corte con los ejes: OX: y : : : R La función no corta al eje OX OY:. La función no está definida en cero. La función no corta al eje OY. Asíntotas:

15 Lím -Vertical: Lím : Lím - Horizontal: Lím Lím No eisten asíntotas horizontales. - Oblicuas: y m n f ) m Lím Lím Lím Lím n Lím f ) m) Lím Lím y Junio. B. Puntuación máima: puntos). Se considera la curva de ecuación: y a) Hallar las coordenadas de sus puntos de intersección con los ejes coordenados y de sus máimos y mínimos relativos, si eisten b) Representar gráficamente la curva c) Calcular el área del recinto plano acotado limitado por la curva y el eje OX a. Puntos de corte: ) :,),,),,) OX : y : : : ± OY : : y,) Máimos y mínimos. La función alcanza etremos relativosmáimos ó mínimos locales) en aquellos puntos donde se anule su primera derivada y sea distinta de cero su segunda derivada. f ) f ) f ) 6 5

16 f ) : 6 y f 6 :, Máimo f 6 < 6 y f 6 :, Mínimo f 6 < b. Gráfica de la función. Se pide esbozar la gráfica de una función cúbica conocidos los puntos de corte con los ejes y los etremos relativos. Teniendo en cuenta además que, las funciones polinómicas no tienen asíntotas y que sus tendencias en este caso son: Lím ) Lím ) la gráfica tiene la forma: Junio. Ejercicio B. Puntuaci6n máima: puntos) Dada la función f ) a) Determínense sus máimos y mínimos relativos. b) Calcúlense sus puntos de infleión. c) Esbócese su gráfica. a. La condición necesaria y suficiente para que una función alcance un etremo relativo en un punto es que en dicho punto la primera derivada de la función sea cero, y la segunda sea distinta de cero, con el siguiente criterio: f ' Sí f o ) y: f ' ' ' o o ) > ) < o, f o )), f )) o o MÍNIMO MÁXIMO Los posibles puntos de etremo relativo se obtiene con los ceros de la ª derivada: f ' resolviendo la ecuación de segundo grado cuya imágenes son: ) ; ' ) f f ; ; ó 6 f ) ) Los posibles etremos relativos de la función f) son los puntos, y, 6 6

17 Para comprobar si son etremos relativos se tendrá en cuenta el criterio de la ª derivada: f ' ') sustituyendo los valores que anulan la ª derivada: f ' ' ) ) < En, MÁXIMO f ' ') > En, MÍNIMO 6 b. Punto de infleión: La condición necesaria y suficiente para que una función tenga un punto de infleión es que en dicho punto la segunda derivada de la función sea cero, y la tercera sea distinta de cero, con el siguiente criterio: )) [ ) )] f o y: f '' ' o ) > o, f o Inflesión Convea Concava f ''' ) <, f )) Inflesión[ Concava ) Convea ) ] Sí ' ' ) o o o Los posibles puntos de infleión se obtienen de los ceros de la ª derivada f ' ') ; f ' ') ; ; cuya imagen en la función es: c. Gráfica 5 ), 5 ) f Para comprobar si en, 5 ) f ' '' ) >, 5 ) un P.I. se tiene en cuenta el criterio de la ª derivada.. P.I. Convea ) Concava ) 7

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas

Más detalles

1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}.

1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}. 6. Estudiar y representar gráficamente las siguientes funciones: a) ( ) f e b) Solución f( ) + 3 + c) f( ) ln + a) Para estudiar la función e se realizan los siguientes pasos: f( ) ) La función no está

Más detalles

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2 Integrales. Calcular las siguientes integrales: i) d ii) d 6 iii) sen d i) Operando se tiene: d = / / / / d = 7 / / / / / = c = c 7 7 ii) Ajustando constantes se tiene: d 6d = 6 c 6 6 iii) Haciendo el

Más detalles

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva. EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta

Más detalles

para = 1. b) Calcúlese f(x)dx. x+a si x < 1 x 2-2 si 1 x 3. x+b si x > 3

para = 1. b) Calcúlese f(x)dx. x+a si x < 1 x 2-2 si 1 x 3. x+b si x > 3 . [4] [ET-A] Se considera la función real de variable real definida por f() = e +. a) Esbócese la gráfica de la función f. b) Calcúlese el área del recinto plano acotado limitado por la gráfica de la función,

Más detalles

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x 1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.

Más detalles

Unidad 5. Funciones. Representación de funciones TEMA 5. REPRESENTACIÓN DE FUNCIONES. José L. Lorente Aragón

Unidad 5. Funciones. Representación de funciones TEMA 5. REPRESENTACIÓN DE FUNCIONES. José L. Lorente Aragón TEMA 5. REPRESENTACIÓN DE FUNCIONES 1. Representación de funciones 1.1. Dominio 1.. Puntos de corte con los ejes 1..1. Con el eje 1... Con el eje y 1.. Signo de la función 1.4. Periodicidad y simetría

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO EXAMEN DE MATEMÁTICAS GRÁFICAS E INTEGRALES Apellidos: Nombre: Curso: º Grupo: C Día: - III- 6 CURSO 05-6. [ punto] Estudia si las siguientes funciones presentan simetría par (respecto del eje de ordenadas)

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

x = 1 Asíntota vertical

x = 1 Asíntota vertical EJERCICIO Sea la función f ( ). a) Indique el dominio de definición de f, sus puntos de corte con los ejes, sus máimos mínimos, eisten, sus intervalos de crecimiento decrecimiento. b) Obtenga las ecuaciones

Más detalles

xln(x+1). 5. [2013] [EXT-A] a) Hallar lim x+1+1 dx. x+1 b) Calcular

xln(x+1). 5. [2013] [EXT-A] a) Hallar lim x+1+1 dx. x+1 b) Calcular . [0] [ET-A] a) Hallar el punto en el que la recta tangente a la gráfica de la función f() = -+ es paralela a la recta de ecuación y = 5-7. b) Calcular el área delimitada por la parábola de ecuación y

Más detalles

REPRESENTACIÓN GRÁFICA DE FUNCIONES

REPRESENTACIÓN GRÁFICA DE FUNCIONES REPRESENTACIÓN GRÁFICA DE FUNCIONES Para representar gráficamente funciones eplícitas (es decir del tipo y f()), deben seguirse los siguientes pasos, representando inmediatamente todos los datos que se

Más detalles

Representaciones gráficas

Representaciones gráficas 1 MAJ99 Representaciones gráficas 1. Se considera la función 3 f ( ) 1 60 3 (a) Hállense sus máimos y mínimos. (b) Determínense sus intervalos de crecimiento y decrecimiento. (c) Represéntese gráficamente.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos

TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos 64 TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos Crecimiento y decrecimiento. Máimos y mínimos relativos; puntos de infleión. Dada la función

Más detalles

Eje OY (Vertical) => Se hace la x = 0, y se despeja la y. Corte (0,y)

Eje OY (Vertical) => Se hace la x = 0, y se despeja la y. Corte (0,y) Estudio de funciones y su representación gráfica. TIPO I. Funciones Polinómicas. Ejemplo: y 4 1º. Dominio. El dominio de una función es el conjunto de valores para los que está definida la función. En

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS

Más detalles

RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN:

RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN: RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN: Ejemplo: 1 Dominio Representación de en el intervalo [,] Los puntos que no pertenecen al dominio de una función racional, son aquellos que anulan

Más detalles

Aplicaciones de la derivada. n la presente Unidad estudiamos la monotonía ( crecimiento y decrecimiento de

Aplicaciones de la derivada. n la presente Unidad estudiamos la monotonía ( crecimiento y decrecimiento de UNIDAD 9 Aplicaciones de la derivada n la presente Unidad estudiamos la monotonía ( crecimiento y decrecimiento de E las funciones), así como sus máimos y mínimos, estos conceptos tienen muchas aplicaciones

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS Ejercicios de continuidad y derivabilidad. Selectividad de 008, 009, 00 y 0 Anális 008 Ejercicio.- Sean f : R R y g : R R las funciones definidas por f() = + a + b y g() = c e -(+). Se sabe que las gráficas

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD EJERCICIOS RESUELTOS DEL BLOQUE DE ANÁLISIS

PRUEBAS DE ACCESO A LA UNIVERSIDAD EJERCICIOS RESUELTOS DEL BLOQUE DE ANÁLISIS PRUEBAS DE ACCESO A LA UNIVERSIDAD EJERCICIOS RESUELTOS DEL BLOQUE DE ANÁLISIS MODELO 2000: OPCIÓN A: a. Calcúlense p y q de modo que la curva y = x $ + px + q contenga al punto ( 2, 1) y presente un mínimo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Funciones en explícitas

Funciones en explícitas Funciones en eplícitas.- Sea la función f() e, se pide:. Dominio.. Signo de f() en función de.. Asíntotas. 4. Crecimiento y decrecimiento. Máimos y mínimos relativos. 5. Concavidad y conveidad. Puntos

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO EXAMEN DE MATEMATICAS II ª ENSAYO (ANÁLISIS) Apellidos: Nombre: Curso: º Grupo: Día: CURSO 56 Instrucciones: a) Duración: HORA y MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN 1.- Derivada de una función en un punto. El estudio de la derivada de una función en un punto surge con el problema geométrico

Más detalles

1 1. [2014] [EXT-A] Dada la función f(x) = x+1 + x

1 1. [2014] [EXT-A] Dada la función f(x) = x+1 + x . [4] [ET-A] Dada la función f() = + +, se pide: +4 a) Determinar el dominio de f y sus asíntotas. b) Calcular f'() y determinar los etremos relativos de f(). c) Calcular f()d 5sen + si

Más detalles

Profesor: Fernando Ureña Portero

Profesor: Fernando Ureña Portero MATEMÁTICAS º BACH CC. Y TECNOL. CURSO 13-14 1.-Dada la función a) (3p.) Dominio de f() b) (3 p.) Calcular. Es posible calcular? Por qué? c) (4p.) Calcular.- Estudiar la continuidad de la función: { 3.-a)

Más detalles

UNIDAD 8.- Funciones racionales (tema 8 del libro)

UNIDAD 8.- Funciones racionales (tema 8 del libro) (tema 8 del libro). FUNCIÓNES DE PROPORCIONALIDAD INVERSA k Las funciones de proporcionalidad inversa son funciones cuya epresión es de la forma f ( ) Las gráficas de estas funciones son o se llaman hipérbolas

Más detalles

lím x 1 r x a, donde a es un nº que cumple que el ) es algún 1. ASÍNTOTAS DE UNA FUNCIÓN

lím x 1 r x a, donde a es un nº que cumple que el ) es algún 1. ASÍNTOTAS DE UNA FUNCIÓN . ASÍNTOTAS DE UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición más formal

Más detalles

Selectividad hasta el año incluido = 0. Página 1 de 13 ANÁLISIS

Selectividad hasta el año incluido = 0. Página 1 de 13 ANÁLISIS ANÁLISIS Selectividad hasta el año 9- incluido Ejercicio. Calificación máima: puntos. (Junio 99 A) Hallar la longitud de los lados del triángulo isósceles de área máima cuyo perímetro sea 6 m. Ejercicio.

Más detalles

Alonso Fernández Galián

Alonso Fernández Galián Alonso Fernández Galián TEMA 3: ESTUDIO Y REPRESENTACIÓN DE FUNCIONES Para representar gráficamente una función deben estudiarse los siguientes aspectos: i) Dominio. ii) Puntos de corte con los ejes de

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de

Más detalles

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo

Más detalles

Propiedades de las funciones derivables. Representación gráfica de funciones. Determinar los puntos de inflexión. (Junio 1997)

Propiedades de las funciones derivables. Representación gráfica de funciones. Determinar los puntos de inflexión. (Junio 1997) Matemáticas II. Curso 008/009 de funciones 1 1. Determinar las asíntotas de f () =. Estudiar la concavidad y conveidad. 1 + Determinar los puntos de infleión. (Junio 1997) 1 Por un lado, lim 1 = 0 y =

Más detalles

( ) Para comprobar que el extremo calculado es un máximo, se utiliza el criterio de la segunda derivada. ( ) Máximo

( ) Para comprobar que el extremo calculado es un máximo, se utiliza el criterio de la segunda derivada. ( ) Máximo Modelo 01. Problema B.- Calificación máima: puntos) El coste de fabricación de una serie de hornos microondas viene dado por la función C) + 0 + 0000, donde representa el número de hornos fabricados. Supongamos

Más detalles

COL LECCIÓ DE PROBLEMES RESOLTS

COL LECCIÓ DE PROBLEMES RESOLTS DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES

Más detalles

Aplicaciones de la integral definida al cálculo de áreas

Aplicaciones de la integral definida al cálculo de áreas Aplicaciones de la integral definida al cálculo de áreas 1º) Interpreta geométricamente el área que define la integral y obtenla. Geométricamente, la integral representa el área de la región del plano

Más detalles

Ejercicios de integración

Ejercicios de integración 1. Calcular las siguientes integrales: 1) ) 8) + 1 d ) + 6 6 + 1 d 5) + + 1 + 1 7) d 8) + Ejercicios de integración d ) + + 1 d 6) ( + 1) + + d + d 9) ( + + 1) ln d + 1 + + 1) d 11) d 1) + + 1 d + 1 1)

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,

Más detalles

CONTINUIDAD Y DERIVABILIDAD

CONTINUIDAD Y DERIVABILIDAD . Sea la función f ( ) = 6 CONTINUIDAD Y DERIVABILIDAD a. Determine sus puntos de corte con los ejes. b. Calcule sus etremos relativos y su punto de infleión. c. Represente gráficamente la función.. Sea

Más detalles

Unidad 8 Representación gráfica de funciones

Unidad 8 Representación gráfica de funciones Unidad 8 Representación gráfica de funciones PÁGINA 187 SOLUCIONES 1. Las funciones quedan: a) f( ) = 8 Dominio: Dom f =R Puntos de corte con el eje OX: Puntos de corte con el eje OY Simetrías: f( ) =

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES 8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta

Más detalles

Hacia la universidad Análisis matemático

Hacia la universidad Análisis matemático Hacia la universidad Análisis matemático OPCIÓN A. a) Deriva las funciones f( ) = 8, g ( ) =, h ( ) = e. f( ) si 0 b) Indica si la función m ( ) = es continua en =. g ( ) si < c) Escribe la ecuación de

Más detalles

, siendo ln(1+x) el logaritmo neperiano de 1+x. x

, siendo ln(1+x) el logaritmo neperiano de 1+x. x Selectividad CCNN 00. [ANDA] [JUN-B] Considera la función f: definida por f() = (+)e -. (a) Halla las asíntotas de la gráfica de f. (b) Determina los etremos de f y los puntos de infleión de su gráfica.

Más detalles

INTEGRALES DEFINIDAS. CÁLCULO DE ÁREAS

INTEGRALES DEFINIDAS. CÁLCULO DE ÁREAS INTEGRALES DEFINIDAS. CÁLCULO DE ÁREAS. Dada la función f() = -. Calcular f () d. a) Representar y = ( ) 3. b b) Calcular la integral indefinida ( 3 ) d a c) Justificar el resultado de b en función de

Más detalles

5x 2 +2 (x-6) 1-2x-e x +sen(3x) 1. [2014] [JUN-A] Calcular justificadamente: a) lim. ; b) lim x. x 2-1 (2x-1)

5x 2 +2 (x-6) 1-2x-e x +sen(3x) 1. [2014] [JUN-A] Calcular justificadamente: a) lim. ; b) lim x. x 2-1 (2x-1) --e +sen(). [04] [JUN-A] Calcular justificadamente: a) lim ; b) lim 5 + (-6) - (-) a+ln(-) si < 0. [04] [JUN-B] Dada la función f() = e - (donde ln denota logaritmo neperiano) se pide: si 0 a) Calcular

Más detalles

Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo.

Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo. UNIDAD. APLICACIONES DE LAS DERIVADAS.. Información etraída de la primera derivada.. Información etraída de la segunda derivada.. Derivabilidad en intervalos: Teorema de Rolle, del valor medio y Caucy..4

Más detalles

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima. cos() - e + a. [04] [ET-A] Sabiendo que lim 0 sen() es finito, calcula a y el valor del límte.. [04] [ET-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima..

Más detalles

1. Calcular el dominio de f(x)= 2. Averiguar en qué valores del intervalo [0,2 ] está definida la función. 3. Calcular

1. Calcular el dominio de f(x)= 2. Averiguar en qué valores del intervalo [0,2 ] está definida la función. 3. Calcular . Calcular el dominio de f()= ln(0 ) ln. Averiguar en qué valores del intervalo [0,] está definida la función f()= 3 sen 3 3sen 3 0 lim 3 5 4 3. Calcular 4. Averiguar el valor de k para que la función

Más detalles

OPCIÓN A. Ejercicio 1. (Mj11) (Puntuación máxima: 3 puntos) Se considera la función real de variable real dada por: a f. si x 1. x x 2 b 4.

OPCIÓN A. Ejercicio 1. (Mj11) (Puntuación máxima: 3 puntos) Se considera la función real de variable real dada por: a f. si x 1. x x 2 b 4. I.E.S. JOSÉ HIERRO EXAMEN DE ANÁLISIS Curso 011-01 MATERIA: MATEMÁTICAS APLICADAS A LAS CC.SOCIALES II INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: El eamen presenta dos opciones: A y B. El alumno

Más detalles

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA Matemáticas º Bachillerato APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA CRECIMIENTO DECRECIMIENTO, CONCAVIDAD CONVEXIDAD Sea y = f() una función continua cuya gráfica es la de la figura. DEFINICIÓN

Más detalles

EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES.

EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. EJERCICIOS RESUELTOS TEMA : DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. Ejercicio 1 Calcula las funciones derivadas de las siguientes funciones y simplifícalas: a) f ( ) sine b)

Más detalles

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a

Más detalles

Matemáticas Problemas resueltos de gráficas de funciones (1) PROBLEMAS RESUELTOS DE GRÁFICAS DE FUNCIONES (1)

Matemáticas Problemas resueltos de gráficas de funciones (1) PROBLEMAS RESUELTOS DE GRÁFICAS DE FUNCIONES (1) PROBLEMAS RESUELTOS DE GRÁFICAS DE FUNCIONES (1) 1) Halle los intervalos de monotonía y los etremos relativos, los intervalos de curvatura y los puntos de infleión de la función g() + +. Represéntela gráficamente.

Más detalles

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente:

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente: INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Crecimiento de una Función en un Intervalo Tasa de Variación Media (T.V.M.) Se llama tasa de variación media (T.V.M.) de una función y f() en un intervalo

Más detalles

CRECIMIENTO Y DECRECIMIENTO. MÁXIMOS Y MÍNIMOS.

CRECIMIENTO Y DECRECIMIENTO. MÁXIMOS Y MÍNIMOS. pág.1 CRECIMIENTO Y DECRECIMIENTO. MÁXIMOS Y MÍNIMOS. En la figura se observa la recta tangente a una función creciente. La recta tangente es siempre creciente también para cualquier punto, por lo que

Más detalles

Nombre: + x + 2, se pide:

Nombre: + x + 2, se pide: IES ATENEA er CONTROL MATEMÁTICAS B 4º ESO GRUPO: BC Nombre: Evaluación: Segunda Fecha: 6 de febrero de 00 NOTA Ejercicio nº - a) Calcula el dominio de definición de función f() b) Calcula la tasa de variación

Más detalles

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1. . [0] [SEP-B] Sea la función f definida por f() = e- para. - a) Estudia las asíntotas de la gráfica de f. b) Halla los etremos relativos (abscisas donde se obtienen y valores que se alcanzan) y los intervalos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 7 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

MATEMÁTICAS 2º BACH CIENCIAS ANÁLISIS: Ejercicios de Exámenes Profesor: Fernando Ureña Portero

MATEMÁTICAS 2º BACH CIENCIAS ANÁLISIS: Ejercicios de Exámenes Profesor: Fernando Ureña Portero MATEMÁTICAS º BACH CIENCIAS ANÁLISIS: Ejercicios de Eámenes.-Calcular los siguientes límites: CURSO 5-6 a) (4 p.)lim +e/ 0 +e / b) (3 p.)lim 0 cos() e sen() c) (3 p.)lim 0 ( e + )/.-a)(4 p.)calcular el

Más detalles

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3.

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3. 6 Aplicando la definición de derivada, calcula la derivada de las siguientes funciones en los puntos que se indican: a) f() en Aplicando la definición de derivada, calcula f () en las funciones que se

Más detalles

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES. a) Eplicar el concepto de función primitiva. b) Sea f () = e + 8, justificar si es primitiva de alguna de las siguientes funciones: g () = e + 8 h

Más detalles

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. Concepto de función. Definición Se llama función (real de variable real) a toda aplicación f : R R f() que a cada número le

Más detalles

SOLUCIÓN. BLOQUE DE FUNCIONES.

SOLUCIÓN. BLOQUE DE FUNCIONES. SOLUCIÓN. BLOQUE DE FUNCIONES. Análisis de funciones 1. a) y c) son funciones, porque para cada valor de hay un único valor de y. b) no es una función, porque para cada valor de hay dos valores de y. 2.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A

Más detalles

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que

Más detalles

6 si x -4 (x+2) 2 si -4 < x -1 4 si x > x+1 si 0 x 1 x si 1 < x < 3 6-x si 3 x 4

6 si x -4 (x+2) 2 si -4 < x -1 4 si x > x+1 si 0 x 1 x si 1 < x < 3 6-x si 3 x 4 . Calcula la derivada de las siguientes funciones:. y = 2-2 +2 2. y = 2-2 2 +2. y = 2 -ln +e 4. y = 2 e 2 5. y = e 6. y = 2 ln 2 7. y = 2-8. y = e. y = 2 + 4. y = ln 2-5. y = 2 2 2 6. y = 2-9. y = e 2

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

TEMA 8 - REPRESENTACIÓN DE FUNCIONES

TEMA 8 - REPRESENTACIÓN DE FUNCIONES Ejercicios Selectividad Tema 8 Representación de funciones Matemáticas CCSSII º Bach 1 TEMA 8 - REPRESENTACIÓN DE FUNCIONES EJERCICIO 1 : Julio 10-11. Optativa (1 + 1,5 + 0,5 ptos) 8 Se considera la función

Más detalles

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?

Más detalles

1.- Concepto de derivada de una función

1.- Concepto de derivada de una función º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 7.- FUNCIONES. DERIVADAS Y APLICACIONES PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

ANÁLISIS. d) No, se podrían haber considerado infinitas funciones diferenciadas en una constante.

ANÁLISIS. d) No, se podrían haber considerado infinitas funciones diferenciadas en una constante. Pruebas de Acceso a la Universidad de Zaragoza. Matemáticas aplicadas a las Ciencias Sociales. ANÁLISIS Junio 99. Sea f: una función cuya primera derivada es f () =. Se pide: a) Determinar los intervalos

Más detalles

x 1. [ANDA] [SEP-B] Considera la función f:[0,4] definida por: f(x) =

x 1. [ANDA] [SEP-B] Considera la función f:[0,4] definida por: f(x) = Selectividad CCNN 00. [ANDA] [SEP-B] Considera la función f:[0,] definida por: f() = +a+b si 0 c si

Más detalles

Tema 7. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización

Tema 7. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Tema 7 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Aplicaciones de la derivada primera para el estudio de la variación de una función El signo de la derivada primera

Más detalles

TEMA 5. REPRESENTACIÓN DE FUNCIONES

TEMA 5. REPRESENTACIÓN DE FUNCIONES 94 TEMA 5. REPRESENTACIÓN DE FUNCIONES 1. Representación de funciones 1.1. Dominio 1.. Puntos de corte con los ejes 1..1. Con el eje 1... Con el eje y 1.. Signo de la función 1.4. Periodicidad y simetría

Más detalles

el blog de mate de aida CS II: Representación de funciones y optimización.

el blog de mate de aida CS II: Representación de funciones y optimización. Pág.1 CRECIMIENTO Y DECRECIMIENTO. En la figura se observa la recta tangente a una función creciente. La recta tangente es siempre creciente también para cualquier punto, por lo que su pendiente será positiva

Más detalles

2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN

2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN 2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN 1.) Resuelve las siguientes derivadas: a) b) c) d) e) f) g) h) i) j) k) l) m) n) o) p) q) r) f(x) = arcsen 2.) Resuelve la siguiente derivada, simplificando

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización

Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Aplicaciones de la derivada primera para el estudio de la variación de una función El signo de la

Más detalles

Si Hallaremos el punto de corte con el eje OY en cualquier función sustituyendo el 0 en la función: f (x) = 1 Punto de corte con el eje O Y

Si Hallaremos el punto de corte con el eje OY en cualquier función sustituyendo el 0 en la función: f (x) = 1 Punto de corte con el eje O Y Tema 4: APLICACIÓN DE LAS DERIVADAS 4.1 Puntos de Corte con el eje de las Y Si Hallaremos el punto de corte con el eje OY en cualquier función sustituyendo el 0 en la función: = 1 Punto de corte con el

Más detalles

ANÁLISIS DE FUNCIONES

ANÁLISIS DE FUNCIONES ANÁLISIS DE FUNCIONES.- Calcula f() de manera que f () = Ln( + ) y que f(0) = 0. (nota: Ln significa logaritmo neperiano). Universidad de Andalucía Se trata de resolver la integral que hemos de hacerlo

Más detalles

a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím

a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím Matemáticas Empresariales I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES si 0. La función f ( ) sen es continua en = 0 si: p si 0 a) p = ½. b) p = 0. Para que sea continua en = 0 debe cumplirse que

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento

Más detalles

4. [2012] [JUN-A] Sea f una función continua en el intervalo [2,3] y F una primitiva de f tal que F(2) = 1 y F(3) = 2. Calcula: 3 5f(x)-7 dx

4. [2012] [JUN-A] Sea f una función continua en el intervalo [2,3] y F una primitiva de f tal que F(2) = 1 y F(3) = 2. Calcula: 3 5f(x)-7 dx . [] [SEP-B] Sea f: la función definida por f() = 9-. a) Halla la ecuación de la recta tangente a la gráfica de f en el punto de abscisa =. b) Esboza el recinto limitado por la gráfica de f, la recta +y

Más detalles

x 2 dx. 2x 2-2x-4 1. [2014] [EXT-A] Calcula x dx. (Sugerencia: integración por partes) cos 2 x 2. [2014] [EXT-B] Calcula

x 2 dx. 2x 2-2x-4 1. [2014] [EXT-A] Calcula x dx. (Sugerencia: integración por partes) cos 2 x 2. [2014] [EXT-B] Calcula . [] [ET-A] Calcula d. --. [] [ET-B] Calcula / d. (Sugerencia: integración por partes) cos. [] [JUN-A] Sean f: y g: las funciones definidas respectivamente por: f() = y g() = +. a) Esboza las gráficas

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Dos curvas interesantes: Unidad 10: REPRESENTACIÓN DE FUNCIONES TRACTRIZ INTRODUCCIÓN

Dos curvas interesantes: Unidad 10: REPRESENTACIÓN DE FUNCIONES TRACTRIZ INTRODUCCIÓN Unidad 10: REPRESENTACIÓN DE FUNCIONES INTRODUCCIÓN Concepto de función Una de las ideas más fecundas y brillantes del siglo XVII fue la de la coneión entre el concepto de función y la representación gráfica

Más detalles

Razonar si son ciertas o falsas las siguientes igualdades: Asociar cada función con su gráfica. (19) Si x 2 > 0, entonces x > 0.

Razonar si son ciertas o falsas las siguientes igualdades: Asociar cada función con su gráfica. (19) Si x 2 > 0, entonces x > 0. Razonar si son ciertas o falsas las siguientes igualdades: ) a + b) = a + b ) ) a + b = a + b e = e 4) a + ab b + a = a 5) 8 + = 6) a ) = a 5 7) 8) a = a 4 = 4 9) 9 = 0) ) e ) = e + = ) e ln = ) ln 0 =

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Junio, Ejercicio, Opción A Reserva, Ejercicio, Opción A Reserva, Ejercicio,

Más detalles

Tema Derivadas. Aplicaciones Matemáticas CCSSI 1º Bachillerato 1

Tema Derivadas. Aplicaciones Matemáticas CCSSI 1º Bachillerato 1 Tema Derivadas. Aplicaciones Matemáticas CCSSI 1º Bachillerato 1 EJERCICIO : A partir de la gráica de (): a b c Cuáles son los puntos de corte con los ejes? Di cuáles son sus asíntotas. Indica la posición

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1

Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1 Modelo. Ejercicio A. Caliicación máima: puntos. Dada la unción < a ; e > se pide: a) ( punto) Determinar el valor de a para que sea continua en. b) ( punto) Para ese valor de a, estudiar la derivabilidad

Más detalles

Idea de Derivada. Tasa de variación media e instantánea

Idea de Derivada. Tasa de variación media e instantánea Idea de Derivada. Tasa de variación media e instantánea.- La variación de la altura de un niño con el paso de los años, se recoge en la guiente tabla: Edad (años) 0 6 9 8 Altura (cm.) 8 6 74 78 80 a) Representar

Más detalles

1. Calcula la tasa de variación media de las siguientes funciones en los intervalos que se indican. 1

1. Calcula la tasa de variación media de las siguientes funciones en los intervalos que se indican. 1 6 Derivadas CRITERIOS DE EVALUACIÓN ACTIVIDADES DE EVALUACIÓN A. Calcular la tasa de variación media de una función en un intervalo.. Calcula la tasa de variación media de las siguientes funciones en los

Más detalles

x 2-4 intervalos de crecimiento y decrecimiento, sus máximos y mínimos, sus intervalos de concavidad y convexidad y sus puntos de inflexión.

x 2-4 intervalos de crecimiento y decrecimiento, sus máximos y mínimos, sus intervalos de concavidad y convexidad y sus puntos de inflexión. . [ANDA] [JUN-A] De la función f: definida por f() = a 3 +b +c+d se sabe que tiene un máimo en = -, que su gráfica corta al eje O en el punto de abscisa = y tiene un punto de infleión en el punto de abscisa

Más detalles