SOLUCIÓN DE INECUACIONES DE UNA VARIABLE
|
|
|
- María del Pilar Prado Rivas
- hace 10 años
- Vistas:
Transcripción
1 SOLUCIÓN DE INECUACIONES DE UNA VARIABLE Resolver una inecuación es hallar el conjunto de soluciones de las incógnitas que satisfacen la inecuación. Terminología: ax + b > cx + d Primer miembro Segundo miembro Resolver cada una de las siguientes inecuaciones o desigualdades, expresando cada conjunto de soluciones en notación por desigualdad, intervalo y gráfico: 1. Resolviendo una inecuación lineal > + Operando el segundo miembro: 6 >12 Dividiendo entre 6 a ambos lados para despejar x: 6 >12 Simplificando resulta que (solución por desigualdad): >2 Por consiguiente el conjunto solución para x son todos los valores mayores que 2. Solución por intervalo: (2, ) Gráficamente: ( 2
2 2. Resolviendo una inecuación lineal < +5 Solución: Pasando x al primer miembro y 3 al segundo: 2 <5+3 Operando término a término resulta que (solución por desigualdad): <8 Por consiguiente el conjunto solución para x son todos los valores menores que 8. Solución por intervalo: (,8) Gráficamente: ) 8 3. Resolviendo una inecuación lineal con fracciones Solución: Multiplicando cada miembro por 2 y simplificando: 1 3x 2 (x 4) 2 3x 2x 8 Pasando 2x al primer miembro y el 2 al segundo: 3x 2x 8 2 Operando término a término: 5x 1 Dividiendo entre -5 a ambos lados e invirtiendo el sentido de la desigualdad: 5x 1
3 Simplificando resulta que (solución por desigualdad): x 2 Por consiguiente el conjunto solución para x son todos los valores menores o iguales que 2. Solución por intervalo: (,2] Gráficamente: ] 2 4. Resolviendo una inecuación con nociones algebraicas ( + )( )<( ) + Aplicando la propiedad distributiva en el primer miembro y resolviendo el producto notable en el segundo: x +2x 3<x 2x+1+3x Suprimiendo en ambos miembros y transponiendo términos semejantes: <1+3 <4 Por consiguiente el conjunto solución para x son todos los valores menores que 4. Solución por intervalo: (,4) Gráficamente: ) 4
4 5. Resolviendo una inecuación lineal con fracciones algebraicas > Multiplicando en cruz el primer miembro: (x+3)(x+2) 12 3(x+2) > x 3 Multiplicando por 3 a ambos lados y simplificando: (x+3)(x+2) 12 > x (x+2) 3 (x+3)(x+2) 12 > (x+2) Pasando x al primer miembro y multiplicando en cruz en el mismo: (x+3)(x+2) 12 (x+2) x> (x+3)(x+2) 12 x(x+2) (x+2) > Efectuando operaciones algebraicas en el numerador y simplificando: x +2x+3x+6 12 x 2x (x+2) > 3x 6 (x+2) > 3(x 2) (x+2) >, ahora multiplicando por 1 a ambos lados,quedando inalmentes: 3 (x 2) (x+2) >
5 Observación: a diferencia de los ejemplos anteriores no se puede multiplicar a ambos lados (x+2) puesto que se estaría eliminando una solución. Así que el paso a seguir es sacar los valores críticos (valores que anulan el numerador y denominador) los cuales se obtienen igualando a cero tanto al numerador como al denominador por separado, de la siguiente manera: 2= =2 x+2= = 2 Los valores críticos son: x = 2 y x = -2. (Éstos se ubican en la recta numérica) Aplicando el método del cementerio podemos obtener la solución del mismo: ( 2) ( +2) (+) ( ) (+) ) [ -2 2 Ahora como la inecuación es mayor que cero, entonces el conjunto de soluciones consiste de todos los números reales en el intervalo (, 2) [2, ). Nótese que el valor de -2 en la solución no se incluye puesto que éste hace cero al denominador.
6 6. Resolviendo una inecuación con fracciones algebraicas Solución Factorizando cada una de las expresiones del denominador: 2 x(x+1) > 2 x(x 1) + 3 (x 1)(x+1) Sacando el m.c.m (mínimo común múltiplo) al segundo miembro: x(x 1)(x+1) 2 x(x+1) > 2(x+1)+3x x(x 1)(x+1) > + Pasando el segundo miembro al primero y realizando los cálculos y simplificaciones respectivas: 2 x(x+1) 2(x+1)+3x x(x 1)(x+1) > 2(x 1) 2(x+1) 3x x(x 1)(x+1) 2x 2 2x 2 3x x(x 1)(x+1) > >,recuerda el cambio de signo 4 3x >, factorizando el signo negativo en el numerador x(x 1)(x+1) (4+3x) >, cambiando el sentido de la desigualdad,queda inalmente: x(x 1)(x+1) 3x+4 < ( ) x(x 1)(x+1) Es importante tener en cuenta que para aplicar el método del cementerio, hay que encontrar los valores críticos tanto del numerador como del denominador, los cuales son: 3 +4= = 4 3 =
7 1= =1 +1= = 1 Aplicando el método del cementerio podemos obtener la solución del mismo: (3 +4) / ( 1) ( +1) ( )( ) (+) ( ) (+) ( ) (+) [ ) ( ) -4/3-1 1 Ahora como lo que interesa son los valores menores que debido a ( ), el conjunto de soluciones consiste de todos los números reales en el intervalo, 1 (,1). Nótese que los valores de -1, y 1 en la solución no se incluyen puesto que éstos hacen cero al denominador.
8 7. Resolviendo una inecuación racional Nota aclaratoria: aun cuando éste ejercicio parezca mucho más sencillo que los dos anteriores, éste tiene un caso particular: Pasando el 3 al primer miembro: 2x 7 x 5 3 Sumando fracciones y simplificando términos semejantes: 2x 7 3(x 5) x 5 2x 7 3x+15 x 5 x+8 x 5 8 x ( ) x 5 Así como en los dos ejercicios anteriores, el paso a seguir es sacar los valores críticos: 8 = =8 x 5= =5 Aplicando el método del cementerio podemos obtener la solución del mismo: Observe el cambio de posición de los signos (8 ) ( 5) ( ) (+) ( ) 5 8 ) [ 5 8
9 Ahora como lo que interesa son los valores menores que debido a ( ), el conjunto de soluciones consiste de todos los números reales en el intervalo (,5) [8, ). Nótese que el valor de 5 en la solución no se incluye puesto que éste hace cero al denominador. 8. Resolviendo una doble desigualdad <3 Agregando +1 a cada parte de la desigualdad y simplificando: 3+ 6x 1+ <3+ 2 6x<4 Dividiendo cada parte por 6 y simplificando: 2 6x <4 1 3 x<2 3 Por consiguiente el conjunto de soluciones son todos los números reales que son mayores o iguales a y menores que. Solución por intervalo:, Gráficamente: [ ) -1/3 2/3
10 9. Resolviendo una doble desigualdad Agregando -2 a cada parte de la desigualdad y simplificando: 1 2 3x x<9 Dividiendo cada parte por 3, invirtiendo el sentido de la desigualdad y simplificando: 3 3x 9 3 x 1 Por consiguiente el conjunto de soluciones son todos los números reales que son mayores o iguales a 3 y menores o iguales a 1. Solución por intervalo: [ 3, 1) Gráficamente: [ ] Resolviendo una doble desigualdad con fracciones x 2<2 3<6+ x Agregando +3 y 2 x a cada parte de la desigualdad y simplificando: x 2+ <2 3+ <6+2 3 x+ 1<2 2 3 <9
11 Operando el centro de la desigualdad, multiplicando por a cada parte de la desigualdad y simplificando: 1< 4 3 x<9 1< 4 3 x< < <27 4 Por consiguiente el conjunto de soluciones son todos los números reales que son mayores a y menores a. Solución por intervalo:, Gráficamente: ( ) 3/4 27/4 11. Resolviendo una inecuación con valor absoluto 5 <2 Recordar que: x < equivale a decir a< <. Reescribiendo la desigualdad aplicando la equivalencia anterior: 2< 5<2 Agregando +5 a cada parte de la desigualdad y simplificando: 2+ < 5+ <2+ 3< <7
12 Por consiguiente el conjunto de soluciones son todos los números reales que son mayores a 3 y menores a 7. Solución por intervalo: (3,7) Gráficamente: ( ) Resolviendo una inecuación con valor absoluto +3 7 Recordar que: > equivale a decir < > Reescribiendo la desigualdad aplicando la equivalencia anterior: Agregando 3 a cada lado de las dos desigualdades y simplificando: Por consiguiente el conjunto de soluciones son todos los números reales que son menores o iguales a 1 o mayores o iguales a 4. Solución por intervalo: (, 1] [4, ) Gráficamente: ] [ -1 4
13 13. Resolviendo una inecuación con valor absoluto A diferencia de los dos anteriores en éste hay que tener la expresión de valor absoluto en un solo lado de la desigualdad. Pasando el 8 al segundo miembro y simplificando: Multiplicando a ambos lados por ( 1) y cambiando el sentido de la desigualdad: Reescribiendo la desigualdad aplicando la equivalencia correspondiente: Agregando +1 a cada parte de la desigualdad y simplificando: Dividiendo entre 2 cada parte de la desigualdad y simplificando: Por consiguiente el conjunto de soluciones son todos los números reales que son mayores o iguales a y menores o iguales a. Solución por intervalo:, Gráficamente: [ ] -1/2 3/2
14 14. Resolviendo una inecuación no lineal: 6< Observación: para resolver inecuaciones no lineales se debe hacer uso de los casos de factorización. Factorizando el primer miembro: ( 3)( +2)< Los valores críticos son: 3= =3 +2= = 2 Aplicando el método del cementerio podemos obtener la solución del mismo: ( 3) ( +2) -2 (+) ( ) (+) ( 3)( +2) ( ) Ahora como la inecuación es menor que cero, el conjunto de soluciones consiste de todos los números reales en el intervalo ( 2,3).
15 15. Resolviendo una inecuación no lineal Solución Observación: Para desarrollar inecuaciones no lineales lo primero que hay que hacer es pasar todos los términos a un solo lado de la desigualdad, dejando siempre el segundo miembro como cero. Pasando 5 al primer miembro y organizando el polinomio: 2x +2x 5x 2x 5x +2x Factorizando el primer miembro dos veces: (2x 5x+2) (x 2)(2x 1) Los valores críticos son: = 2= =2 2 1= = 1 2 Aplicando el método del cementerio podemos obtener la solución del mismo: ( 2) (2 1) /2 ( ) (+) ( ) (+) (x 2)(2x 1) [ ] [ 3 1/2 2
16 Ahora como la inecuación es mayor o igual que cero, el conjunto de soluciones consiste de todos los números reales en el intervalo, [ 2, )
Propiedades de les desigualdades.
Desigualdades Inecuaciones Diremos que a < b a es menor que b si b a es un número positivo. Gráficamente, a queda a l esquerra de b. Diremos que a > b a mayor que b si a b es un número positivo. Gráficamente,
INTERVALOS, DESIGUALDADES Y VALOR ABSOLUTO
INTERVALOS, DESIGUALDADES Y VALOR ABSOLUTO INTERVALOS Los Intervalos son una herramienta matemática que se utiliza para delimitar un conjunto determinado de números reales. Por ejemplo el intervalo [-5,3]
Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos
MATEMÁTICAS BÁSICAS DESIGUALDADES DESIGUALDADES DE PRIMER GRADO EN UNA VARIABLE La epresión a b significa que "a" no es igual a "b ". Según los valores particulares de a de b, puede tenerse a > b, que
Números Reales DESIGUALDADES DESIGUALDADES. Solución de desigualdades. 2x + 4 < 6x +1 6x + 3 8x 7 x 2 > 3x 2 5x + 8. INECUACIONES o DESIGUALDADES
Números Reales INECUACIONES o DESIGUALDADES DESIGUALDADES Una desigualdad en una variable es una expresión donde se establece una relación entre dos cantidades. Las relaciones de orden son: ,, Ejemplos:
1.4.- D E S I G U A L D A D E S
1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y
a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)
Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,
Teoría Tema 1 Inecuaciones
página 1/7 Teoría Tema 1 Inecuaciones Índice de contenido Qué es una inecuación?...2 Inecuaciones de primer grado...3 Sistemas de inecuaciones con una incógnita...4 Inecuaciones de segundo grado...5 Inecuaciones
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 3 y #4 Desigualdades Al inicio del Capítulo 3, estudiamos las relaciones de orden en los número reales y el signi cado de expresiones
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES
INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo
INECUACIONES: DESIGUALDADES. 3. Usa métodos para solucionar desigualdades lineales y cuadráticas.
FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Matemáticas Docente: Mónica Bibiana Velasco Borda [email protected] CICLO: V INICIADORES DE LOGRO INECUACIONES: DESIGUALDADES
AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES
AXIOMASDECUERPO(CAMPO) DELOSNÚMEROSREALES Ejemplo: 6 INECUACIONES 15 VA11) x y x y. VA12) x y x y. Las demostraciones de muchas de estas propiedades son evidentes de la definición. Otras se demostrarán
MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño
MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad Nacional de Colombia
+ 7 es una ecuación de segundo grado. es una ecuación de tercer grado.
ECUACIONES Y DESIGUALDADES UNIDAD VII VII. CONCEPTO DE ECUACIÓN Una igualdad es una relación de equivalencia entre dos epresiones, numéricas o literales, que se cumple para algún, algunos o todos los valores
Biblioteca Virtual Ejercicios Resueltos
EJERCICIO 13 13 V a l o r n u m é r i c o Valor numérico de expresiones compuestas P r o c e d i m i e n t o 1. Se reemplaza cada letra por su valor numérico 2. Se efectúan las operaciones indicadas Hallar
TEMA 2 POLINOMIOS Y FRACCIONES ALGEBRAICAS
Matemáticas B 4º E.S.O. Tema : Polinomios y fracciones algebraicas. 1 TEMA POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS 4º.1.1 COCIENTE DE MONOMIOS 4º El cociente de un monomio entre otro
Operatoria algebraica
Eje temático: Algebra y funciones Contenidos: Operatoria algebraica Ecuaciones de primer grado Nivel: 1 Medio Operatoria algebraica 1. Operatoria algebraica 1.1. Términos semejantes Un término algebraico
Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul
Matemáticas para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Curso Propedéutico de Matemáticas Unidad IV Secciones 6 y 8) 0.6 Operaciones con epresiones algebraicas. 0.8 fracciones
4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN
4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN Bloque 2. POLINOMIOS. (En el libro Tema 3, página 47) 1. Definiciones. 2. Valor numérico de una expresión algebraica. 3. Operaciones con polinomios: 3.1. Suma,
Ejercicios Resueltos del Tema 4
70 Ejercicios Resueltos del Tema 4 1. Traduce al lenguaje algebraico utilizando, para ello, una o más incógnitas: La suma de tres números consecutivos Un número más la mitad de otro c) El cuadrado de la
4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA
4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA Una ecuación con una incógnita es de segundo grado si el exponente de la incógnita es dos. Ecuaciones de segundo grado con una incógnita son: Esta última ecuación
Fundación Uno. ) 2n, el resultado es: D) b a E)1. entonces el valor de "y" es: II) x y = 3 A)16 B)9 C)4 D)1 E)2. Desarrollo
ENCUENTRO # 27 TEMA: Inecuaciones. CONTENIDOS: 1. Desigualdades.Propiedades. 2. Inecuación lineal o de primer grado. 3. Inecuación cuadrática o de segundo grado. Ejercicio Reto 1. Al simplificar ( a 2
DESIGUALDADES página 1
DESIGUALDADES página 1 1.1 CONCEPTOS Y DEFINICIONES Una igualdad en Álgebra es aquella relación que establece equivalencia entre dos entes matemáticos. Es una afirmación, a través del signo =, de que dos
UNIDAD DE APRENDIZAJE IV
UNIDAD DE APRENDIZAJE IV Saberes procedimentales 1. Interpreta y utiliza correctamente el lenguaje simbólico ara el manejo de expresiones algebraicas. 2. Identifica operaciones básicas con expresiones
Qué son los monomios?
Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes
Descomposición factorial de polinomios
Descomposición factorial de polinomios Contenidos del tema Introducción Sacar factor común Productos notables Fórmula de la ecuación de segundo grado Método de Ruffini y Teorema del Resto Combinación de
MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta.
ECUACIONES SIMULTÁNEAS DE PRIMER GRADO CON DOS INCÓGNITAS. Dos o más ecuaciones con dos incógnitas son simultáneas cuando satisfacen iguales valores de las incógnitas. Para resolver ecuaciones de esta
De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente.
3 Ecuaciones 17 3 Ecuaciones Una ecuación es una igualdad en la que aparecen ligados, mediante operaciones algebraicas, números y letras Las letras que aparecen en una ecuación se llaman incógnitas Existen
Problemas Resueltos de Desigualdades y Programación Lineal
Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Matemáticas. Problemas Resueltos de Desigualdades y Programación Lineal Para el curso de Cálculo Diferencial de Químico Biólogo
Inecuaciones y Sistemas de Inecuaciones Lineales con una Incóg
PreUnAB Inecuaciones y Sistemas de Inecuaciones Lineales con una Incógnita Clase # 11 Agosto 2014 Intervalos Reales Orden en R Dados dos números reales a y b, se dice que a es menor que b, a < b, si b
EXPRESIONES ALGEBRAICAS
EXPRESIONES ALGEBRAICAS Un grupo de variables representadas por letras junto con un conjunto de números combinados con operaciones de suma, resta, multiplicación, división, potencia o etracción de raíces
Resolución de ecuaciones lineales. En general para resolver una ecuación lineal o de primer grado debemos seguir los siguientes pasos:
Resolución de ecuaciones lineales En general para resolver una ecuación lineal o de primer grado debemos seguir los siguientes pasos: 1º Quitar paréntesis. Si un paréntesis tiene el signo menos delante,
Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =
T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente
Ecuaciones e Inecuaciones
5 Ecuaciones e Inecuaciones Objetivos En esta quincena aprenderás a: Resolver ecuaciones de primer y segundo grado. Resolver ecuaciones bicuadradas y factorizadas. Identificar y resolver inecuaciones de
Colegio Las Tablas Tarea de verano Matemáticas 3º ESO
Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y
Polinomios y fracciones algebraicas
UNIDAD Polinomios y fracciones algebraicas U n polinomio es una expresión algebraica en la que las letras y los números están sometidos a las operaciones de sumar, restar y multiplicar. Los polinomios,
EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO
RECONOCER OBJETIVO EL GRADO Y LOS ELEMENTOS QUE ORMAN UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma algebraica de monomios, que son los términos del polinomio.
BOLETIN Nº 4 MATEMÁTICAS 3º ESO Operaciones con radicales
Radicales " Raíz: se llama raíz de un número o de una expresión algebraica a todo número o expresión algebraica que elevada a una potencia "n"; reproduce la expresión dada. " Elementos de la raíz. - Radical:
Polinomios y fracciones algebraicas
829566 _ 0249-008.qxd 27/6/08 09:21 Página 27 Polinomios y fracciones algebraicas INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de
Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice
Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice 1 Polinomios Dedicaremos este apartado al repaso de los polinomios. Se define R[x] ={a 0 + a 1 x + a 2 x 2 +... +
ECUACIONES DE PRIMER GRADO
ECUACIONES DE PRIMER GRADO 1- ECUACION DE PRIMER GRADO CON UNA INCOGNITA Una ecuación de primer grado con una incógnita es una igualdad en la que figura una letra sin eponente y que es cierta para un solo
POLINOMIOS Y FRACCIONES ALGEBRAICAS
POLINOMIOS Y FRACCIONES ALGEBRAICAS Página 66 PARA EMPEZAR, REFLEXIONA Y RESUELVE Múltiplos y divisores. Haz la división: 4 + 5 0 + 5 A la vista del resultado, di dos divisores del polinomio 4 + 5 0. (
6 Ecuaciones de 1. er y 2. o grado
8985 _ 009-08.qd /9/07 5:7 Página 09 Ecuaciones de. er y. o grado INTRODUCCIÓN La unidad comienza diferenciando entre ecuaciones e identidades, para pasar luego a la eposición de los conceptos asociados
FRACCIONES. Una fracción tiene dos términos, numerador y denominador, separados por una raya horizontal.
FRACCIONES Las fracciones representan números (son números, mucho más exactos que los enteros o los decimales), Representa una o varias partes de la unidad. Una fracción tiene dos términos, numerador y
CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS
CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS Guía de Estudio para examen de Admisión de Matemáticas CONTENIDO PRESENTACIÓN... 3 I. ARITMÉTICA... 4 1. OPERACIONES CON FRACCIONES...
PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables
Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver
CAPÍTULO III. FUNCIONES
CAPÍTULO III LÍMITES DE FUNCIONES SECCIONES A Definición de límite y propiedades básicas B Infinitésimos Infinitésimos equivalentes C Límites infinitos Asíntotas D Ejercicios propuestos 85 A DEFINICIÓN
ax + b < 0, ax + b > 0, ax + b 0 o ax + b 0, multiplicamos ambos miembros de la inecuación por 6 para quitar denominadores. De esta forma se tiene
8 UNIDAD I. A modo de repaso. Preliminares Inecuaciones Una inecuación es una desigualdad en la que el criterio de comparación es la relación de orden inherente al conjunto de los números reales. Hay que
3. x+y x + y. 4. x k k x k,k 0. 5. x k x k x k,k 0. x 1 3
Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 4 Inecuaciones con Valor Absoluto J. Labrin - G.Riquelme Propiedades de Valor Absoluto: 1. x y = x y 2. x y = x
Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2
SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de
Ecuaciones de primer y segundo grado
Igualdad Ecuaciones de primer y segundo grado Una igualdad se compone de dos expresiones unidas por el signo igual. 2x + 3 = 5x 2 Una igualdad puede ser: Falsa: 2x + 1 = 2 (x + 1) 2x + 1 = 2x + 2 1 2.
Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x
Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 3 Ecuaciones y sistemas. Inecuaciones Elaborado por la Profesora Doctora
APLICACIONES DE LA MATEMATICA INTRODUCCION AL CALCULO AXIOMATICA DE LOS NUMEROS REALES
APLICACIONES DE LA MATEMATICA INTRODUCCION AL CALCULO AXIOMATICA DE LOS NUMEROS REALES PROFESOR: CHRISTIAN CORTES D. I) LOS NUMEROS REALES. Designaremos por R, al conjunto de los números reales. En R existen
La suma se realiza miembro a miembro. La suma de polinomios goza de las mismas propiedades que la suma de números. Ejemplo:
Tema 4. Polinomios 1. Definición Un polinomio es una expresión hecha con constantes, variables y exponentes, que están combinados. Los exponentes sólo pueden ser 0, 1, 2, 3,... etc. No puede tener un número
UNIDAD I NÚMEROS REALES
UNIDAD I NÚMEROS REALES Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números racionales y números
. Definición: Dos o más términos son semejantes cuando tienen las mismas letras y afectadas por el mismo exponente.
Ejercicios Resueltos del Algebra de Baldor. Consultado en la siguiente dirección electrónica http://www.quizma.cl/matematicas/recursos/algebradebaldor/index.htm. Definición: Dos o más términos son semejantes
DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO.
DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO. En ocasiones, en matemáticas, necesitamos operar con números desconocidos. Para ello, se toman letras para representar esas cantidades desconocidas o
REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS
REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS Si en una división de polinomios el divisor es de la forma (x - a) se puede aplicar la regla de Ruffini para obtener el cociente y el resto de la división.
EXPRESIONES ALGEBRAICAS. POLINOMIOS
EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,
EXPRESIONES ALGEBRAICAS
EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman V A R I A B L ES, I N C Ó G N I T A S o
Los números racionales
Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones
SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA
SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA DEPARTAMENTO DE PREPARATORIA ABIERTA MATEMÁTICAS II GUIA DE ESTUDIO
Lección 9: Polinomios
LECCIÓN 9 c) (8 + ) j) [ 9.56 ( 9.56)] 8 q) (a x b) d) ( 5) 4 k) (6z) r) [k 0 (k 5 k )] e) (. 0.) l) (y z) s) (v u ) 4 f) ( 5) + ( 4) m) (c d) 7 t) (p + q) g) (0 x 0.) n) (g 7 g ) Lección 9: Polinomios
Iniciación a las Matemáticas para la ingenieria
Iniciación a las Matemáticas para la ingenieria Los números naturales 8 Qué es un número natural? 11 Cuáles son las operaciones básicas entre números naturales? 11 Qué son y para qué sirven los paréntesis?
Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo
Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales
TEMA 4 FRACCIONES MATEMÁTICAS 1º ESO
TEMA 4 FRACCIONES Criterios De Evaluación de la Unidad 1 Utilizar de forma adecuada las fracciones para recibir y producir información en actividades relacionadas con la vida cotidiana. 2 Leer, escribir,
A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales:
ADICIÓN Y RESTA DE NUMEROS REALES ADICIÓN L a adición o suma de números reales se representa mediante el símbolo más (+) y es considerada una operación binaria porque se aplica a una pareja de números,
OBJETIVOS CONTENIDOS PROCEDIMIENTOS
82652 _ 0275-0286.qxd 27/4/07 1:20 Página 275 Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender
Capítulo VI DESIGUALDADES E INECUACIONES
Capítulo VI DESIGUALDADES E INECUACIONES 6.1 DEFINICIONES: a. Desigualdad: Se denomina desigualdad a toda expresión que describe la relación entre al menos elementos escritos en términos matemáticos, y
DESIGUALDADES E INTERVALOS
DESIGUALDADES E INTERVALOS 1. INTERVALOS: Son regiones comprendidas entre dos números reales. En general, si los etremos pertenecen al intervalo, se dice que cerrado, si por el contrario no pertenecen
La Lección de Hoy es Distancia entre dos puntos. El cuál es la expectativa para el aprendizaje del estudiante CGT.5.G.1
La Lección de Hoy es Distancia entre dos puntos El cuál es la expectativa para el aprendizaje del estudiante CGT.5.G.1 La formula de la distancia dada a dos pares es: d= (x 2 -x 1 ) 2 + (y 2 -y 1 ) 2 De
LÍMITES DE FUNCIONES Y DE SUCESIONES
LÍMITES DE FUNCIONES Y DE SUCESIONES Índice: 1.Funciones reales de variable real-------------------------------------------------------------- 1 2. Límite finito de una función en un punto.---------------------------------------------------
UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS
UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS Unidad 6: Polinomios con coeficientes enteros. Al final deberás haber aprendido... Expresar algebraicamente enunciados sencillos. Extraer enunciados razonables
LÍMITES Y CONTINUIDAD DE FUNCIONES
Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos
EJERCICIOS SOBRE : ECUACIONES DE PRIMER GRADO
1.- Igualdades. Las expresiones en donde aparecen el signo =, se llaman igualdades. Ejemplo: 5 = 7-2 ; x + 2 = 9 Toda igualdad consta de dos miembros, el primer miembro ( lo escrito antes del signo igual
Operaciones con polinomios
Operaciones con polinomios Los polinomios son una generalización de nuestro sistema de numeración. Cuando escribimos un número, por ejemplo, 2 354, queremos decir: 2 354 = 2 000 + 300 + 50 + 4 = 2)1 000)
La derivada de una función también se puede obtener como el límite del cociente de incrementos, conocido como la regla de los cuatro pasos.
Regla de los cuatro pasos La derivada de una función también se puede obtener como el límite del cociente de incrementos, conocido como la regla de los cuatro pasos. f ( ) lím 0 f ( ) f ( ) El procedimiento
Tema 3. Polinomios y fracciones algebraicas
Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.
5 Expresiones algebraicas
8948 _ 04-008.qxd /9/07 :0 Página 9 Expresiones algebraicas INTRODUCCIÓN RESUMEN DE LA UNIDAD El lenguaje algebraico sirve para expresar situaciones relacionadas con la vida cotidiana, utilizando letras
EJERCICIOS SOBRE : NÚMEROS ENTEROS
1.- Magnitudes Absolutas y Relativas: Se denomina magnitud a todo lo que se puede medir cuantitativamente. Ejemplo: peso de un cuerpo, longitud de una cuerda, capacidad de un recipiente, el tiempo que
Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES
Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos
MATEMÁTICA 6º AÑO NÚMEROS COMPLEJOS
MATEMÁTICA 6º AÑO PROFESORA: RUHL, CLAUDIA CURSOS: 6º1º--6º6º Actividad Nº1: Resuelve las siguientes operaciones NÚMEROS COMPLEJOS a) 4 = b) 36 = c) 4 16= d) 3 27 = e) 3-125= f) 3-8= g) -1 = h) -4= i)
INSTITUTO VALLADOLID PREPARATORIA página 9
INSTITUTO VALLADOLID PREPARATORIA página 9 página 10 FACTORIZACIÓN CONCEPTO Para entender el concepto teórico de este tema, es necesario recordar lo que se mencionó en la página referente al nombre que
Propiedades de los límites
SECCIÓN 3 Cálculo analítico de ites 59 3 Cálculo analítico de ites Evaluar un ite mediante el uso de las propiedades de los ites Desarrollar usar una estrategia para el cálculo de ites Evaluar un ite mediante
Unidad 1 números enteros 2º ESO
Unidad 1 números enteros 2º ESO 1 2 Conceptos 1. Concepto de número entero: diferenciación entre número entero, natural y fraccionario. 2. Representación gráfica y ordenación. 3. Valor absoluto de un número
POLINOMIOS. División. Regla de Ruffini.
POLINOMIOS. División. Regla de Ruffini. Recuerda: Un monomio en x es una expresión algebraica de la forma a x tal que a es un número real y n es un número natural. El real a se llama coeficiente y n se
SUMA Y RESTA DE FRACCIONES
SUMA Y RESTA DE FRACCIONES CONCEPTOS IMPORTANTES FRACCIÓN: Es la simbología que se utiliza para indicar que un todo será dividido en varias partes (se fraccionará). Toda fracción tiene dos partes básicas:
Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Polinomios
Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Polinomios Definición: P es un polinomio en el conjunto de los números reales si y sólo si P es una función de
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales Índice general 1. Sistemas de ecuaciones lineales 2 2. Método de sustitución 5 3. Método de igualación 9 4. Método de eliminación 13 5. Conclusión 16 1 Sistemas de ecuaciones
DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. [email protected]. Página. Titulo:
Titulo: DOMINIO Y RANGO I N D I C E Página DE UNA FUNCIÓN Año escolar: 4to. Año de Bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela
2 Potencias y radicales
89 _ 09-008.qxd //08 09: Página Potencias y radicales INTRODUCCIÓN Los alumnos ya han trabajado con potencias de exponente positivo y han efectuado multiplicaciones y divisiones de potencias y potencias
INSTITUTO VALLADOLID PREPARATORIA página 57
INSTITUTO VALLADOLID PREPARATORIA página 57 página 58 RESTA DE FRACCIONES RESTA La resta de fracciones está basada, por ser el inverso de la operación suma, en las mismas reglas y leyes de la suma, es
INSTITUTO VALLADOLID PREPARATORIA página 37
INSTITUTO VALLADOLID PREPARATORIA página 37 página 38 SUMA DE FRACCIONES CONCEPTO Las cuatro operaciones fundamentales, suma, resta, multiplicación y división, con fracciones algebraicas se realizan bajo
Multiplicación. Adición. Sustracción
bernardsanz TERMINOLOGÍA ALGEBRAICA Algebra: generalización de la aritmética, la cual representa cantidades por medio de símbolos en lugar de números concretos, estos símbolos representan números cualesquiera.
Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales
Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento
Material N 15 GUÍA TEÓRICO PRÁCTICA Nº 12
C u r s o : Matemática Material N 5 GUÍA TEÓRICO PRÁCTICA Nº UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS EVALUACIÓN DE EXPRESIONES ALGEBRAICAS Evaluar una epresión algebraica consiste en sustituir
M a t e m á t i c a s I I 1
Matemáticas II Matemáticas II ANDALUCÍA CNVCATRIA JUNI 009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz pción A Ejercicio En este límite nos encontramos ante la indeterminación. Agrupemos la
Observaciones del profesor:
Calificación total máxima: 10 puntos. Tiempo: 60 minutos. OPCIÓN A Ejercicio 1. (Puntuación máxima: 4 puntos) Se considera la matriz: A=( ) a) Determina la matriz B= A 2-2A 1,5 PUNTOS b) Determina los
1. Definición 2. Operaciones con funciones
1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de
