Control de calidad del Hormigón

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Control de calidad del Hormigón"

Transcripción

1 Control de calidad del Hormigón

2 Calidad Hay muchos factores involucrados en la producción del hormigón, desde los materiales, la dosificación de la mezcla, el transporte, la colocación, el curado y los ensayos. Por eso, no debe sorprendernos de que se trata de un material variable.

3 Calidad Ello significa que si se realizan ensayos sobre muestras de hormigón idénticas, se verificarán variaciones en las propiedades mecánicas entre las diversas muestras. Esa variabilidad se debe tener en cuenta a la hora de redactar las especificaciones.

4 Calidad: factores Los que contribuyen a esa variabilidad son: Materiales Producción Ensayos

5 Verificación de la Calidad Se refiere colectivamente a todas los pasos dados para asegurar la confianza adecuada de que el hormigón se comportará satisfactoriamente en servicio.

6 Control de la Calidad Se aplica a cada acción empleada para medir las propiedades del hormigón y sus materiales componentes y controlarlas dentro de especificaciones establecidas.

7 Calidad tradicional Muchas especificaciones del hormigón, se basaban en recetas o prescripciones, que no tenían en cuenta las características del producto final.

8 Calidad tradicional Antes, se solía tomar en forma periódica, una muestra supuestamente representativa, se la ensayaba y se la comparaba con lo que establecía la especificación. Si ese material estaba dentro de las tolerancias fijas, se daba por aprobado y si no lo hacía, se lo rechazaba.

9 Ensayos Cuando se realiza un ensayo, existe la posibilidad de que el material tenga un 50 % de posibilidades de pasar el límite de la especificación y otro 50 % de no hacerlo. Si falla y se realiza un segundo ensayo, la probabilidad sigue siendo la misma (50 % + 50 % ) con lo cual se verifica que existe un 75 % de posibilidad de pasar y un 25 % de no hacerlo.

10 Ensayos

11 Calidad Una de las características a señalar es que se debe realizar un muestreo totalmente al azar, pues sino las técnicas estadísticas dan resultados no significativos.

12 Muestreo al azar Involucra una selección que le da igual probabilidad a todas las partes que conforman el lote, de poder ser elegidas.

13 Lote Es una cantidad prescripta y definida del material, que puede ser un volumen, un área, una cantidad de producción, unidades, etc, que se produce mediante el mismo proceso y con un mismo propósito.

14 Lote Al establecer su tamaño, se puede elegir la ubicación y la frecuencia del muestreo, para decidir qué cantidad de material es necesario tomar para cumplir con los límites especificados.

15 Lote Bajo este concepto, de muestreo y ensayo lote por lote, el proceso constructivo del hormigón se puede pensar como la producción de sucesivos lotes, que se deben ensayar para ser aceptados o rechazados.

16 Lote: ejemplo

17 Muestra La muestra resulta ser una porción del lote y se la usa para representarlo. Este término se emplea en un sentido estadístico.

18 Lote: ejemplo

19 Lote Se prefiere que en general haya cuatro o cinco porciones de la muestra (incrementos).

20 Variabilidad: medición Es necesario definir el concepto de variabilidad más precisamente. La distribución de las resistencias del hormigón se pueden aproximar a una distribución normal de frecuencias o de Gauss, que se define por dos parámetros

21 Parámetros estadísticos básicos La media, µ y la desviación estándar s.

22 Parámetros estadísticos básicos Se verifica que los resultados de los ensayos de los materiales de construcción tienden a agruparse alrededor de un valor central definido, denominado MEDIA o PROMEDIO. Los valores tienden a disponerse en forma simétrica alrededor del valor central, por lo que permite el empleo de la curva de distribución normal o de Gauss.

23 Curva de Gauss Tiene forma de campana. Esto permite establecer relaciones entre la media y la desviación estándar, para fijar límites realistas en las especificaciones de acuerdo con los tamaños de muestras seleccionados.

24 Desviación estándar

25 Histograma

26 Resultados de ensayos de resistencia de hormigón

27 Curvas de Gauss

28 Distribución gaussiana

29 Definiciones n = número de valores obtenidos en los ensayos. X= valores obtenidos individualmente. X = valor promedio o media. s = desviación estándar de la muestra. V = coeficiente de variación.

30 Coeficiente de variación s V = x 100 X

31 Distribución de Gauss Si se acepta que existe una distribución normal de las resistencias a la compresión, surgen varias implicancias: No se puede diseñar en base a la resistencia media, pues si se lo hace así, significaría que la mitad del hormigón colocado tendría resistencias que caerían por debajo del valor de diseño lo cual es inaceptable.

32 Distribución de Gauss Por otra parte, no se puede exigir que todas las resistencias estén por encima del valor de diseño, porque todos los valores están distribuidos normalmente. Por eso, se debe decidir arbitrariamente qué constituye un porcentaje aceptable de probetas que caen por debajo de un valor de diseño mínimo.

33 Distribución de Gauss Usando ese porcentaje y conociendo o suponiendo, la desviación estándar de la resistencia que se puede esperar, se puede determinar la resistencia media requerida para la cual diseñar la mezcla de hormigón.

34 Curva de Gauss Cuando se realizan los ensayos del hormigón, se trata de evaluar la distribución en la resistencia de todo el hormigón de la estructura, basado en un tamaño de muestra limitado. Se deben recolectar suficientes datos para que los ensayos sean representativos del hormigón en la estructura, pero solamente se puede hacer una estimación.

35 Resistencia a la compresión Las variaciones posibles se deben a: - Variaciones en los métodos de ensayo. - Propiedades de la mezcla de hormigón o de sus componentes.

36 Método de ensayo Se determina mediante el cálculo de la variación de un grupo de cilindros preparados de una misma muestra, de una dada mezcla de hormigón.

37 Variaciones de mezcla a mezcla Las diferencias en la resistencia a la compresión se pueden deber a: - Características y propiedades de los componentes. - Dosificación, mezclado y muestreo. - Se relaciona con la variación total como sigue: σ 2 = σ 2 + σ 1 2 2

38 Resistencia a la compresión Se debe recordar que las probetas de control durante la construcción proveen una buena base para la evaluación de la resistencia potencial del hormigón, colocado en la estructura pero no necesariamente del hormigón endurecido en dicha estructura, que puede ser de mejor o peor calidad.

39 Calidad del hormigón Puede ser mejor determinada mediante el ensayo de, como mínimo, 30 ensayos normalizados de una determinada mezcla, aunque existen métodos estadísticos para evaluar dicha calidad con un menor número de datos. Se ha demostrado por la gran cantidad de ensayos que se verifica una curva gaussiana alrededor de un valor medio.

40 Calidad del hormigón En principio los valores de los resultados de los ensayos se grafican para formar un histograma, o distribución de frecuencias, que se puede ajustar a una curva de distribución normal. Se calcula el promedio para verificar que la f c cae dentro ciertos límites especificados.

41 Calidad del hormigón O sea, además del promedio X se determina también la desviación estándar s. Generalmente el inspector no está interesado en graficar el histograma, más bien podrá determinar el promedio, la desviación estándar o el coeficiente de variación para un determinado conjunto de resultados, sin recurrir a una gráfica.

42 Calidad del hormigón El productor determina la resistencia promedio del hormigón, f c para que la mezcla sea la adecuada para la obra y cumpla con las especificaciones establecidas.

43 Análisis estadístico del hormigón en obra Como consecuencia del control, se han de obtener una serie de resultados de los ensayos, correspondiendo cada uno de ellos al promedio de dos o tres probetas compañeras, procedentes de la misma muestra, generalmente a 28 días. Para que estos resultados tengan algún significado, es necesario proceder al análisis estadístico.

44 Resistencia a la compresión promedio El primer parámetro a obtener es una medida de tendencia central, es decir, el promedio de los resultados, pero aunque suministra información valiosa sobre el hormigón analizado, no resulta suficiente. Se debe disponer de información, de cómo ha sido la homogeneidad del hormigón, si los valores están alrededor de la media o se extienden por arriba y debajo de ella.

45 Resistencia característica Cuando se establece una resistencia a la compresión mínima, no quiere decir esto que sea mínima absoluta, pues siempre hay valores que seguramente están por debajo de ese límite, por lo que surge la necesidad de fijar una tolerancia o fracción defectuosa máxima. Se denomina valor característico.

46 Resistencia característica Se adopta de acuerdo con la tensión de rotura final o por las tensiones admisibles del hormigón. El ACI acepta un 10 % de defectuosos mientras que el CEB solamente el 5 %. Para el segundo de los casos, es corriente aceptar un 20 %.

47 Resistencia característica f k = f m t.s o f k = f m (1- t.v)

48 Resistencia característica

49 Resistencia característica

50 Resistencia característica Según el criterio que se sigue: - f k = f m 0,84 s (20 %) - f k = f m 1,29 s (ACI, 10%) - f k = f m 1,64 s (CEB, 5%)

51 Resistencia característica Es muy valiosa pues además de referirse al valor medio de los resultados, incluye además una idea de la dispersión de ellos, al tener en cuenta el valor de la desviación estándar, s. O sea, dos hormigones con el mismo valor de resistencia media, pero valores diferentes de la dispersión, brindan hormigones de calidad distinta.

52 Ejemplo Característica H1 H2 f m (MPa) 34,0 34,0 s (MPa) 2,7 8,5 f aceptable (%) f k = 34,0 0,84 x 2,7 = 31,7 f k = 34,0 0,84 x 8,5 = 26,9 H1 es mejor que H2.

53 Calificación de una obra (f k >20 MPa) El ACI relaciona la desviación estándar s, con la calidad de una obra: s (kg/cm 2 ) Grado de control < 28 Excelente 28 a 35 Muy bueno 35 a 42 Bueno 42 a 49 Regular > 49 Pobre

54 Error del ensayo Se deben tener en cuenta siempre los errores que se cometen en el muestreo y en el ensayo de las probetas. En el caso del ensayo, surge de cuantificar la dispersión entre probetas compañeras pertenecientes a una misma muestra. Da una idea de la idoneidad del laboratorio de ensayos.

55 Error de ensayo Para determinarlo, se calculan los rangos individuales y el rango promedio: - Rango individual = es la diferencia entre los valores mayor y menor de probetas compañeras. - Rango promedio = es el promedio del conjunto de muestras, debiendo ser un número superior a 10.

56 Error de ensayo s 1 = R. d En este caso s 1 representa la desviación estándar entre probetas compañeras o desviación estándar de ensayo. d es una constante que depende del número de probetas compañeras, o sea, vale 0,887 para dos probetas, 0,591 para tres probetas y 0,486 para cuatro probetas.

57 Error de ensayo s 1 V 1 = x 100 f m Es el coeficiente de variación entre probetas compañeras o del ensayo.

58 Error de ensayo V 1 es el coeficiente de variación entre probetas compañeras o de ensayo, Para evaluar el error, se puede emplear la consideración que hace el ACI: Grado de control V 1 entre probetas compañeras, % Excelente Menor que 3,0 Muy bueno 3,0 a 4,0 Bueno 4,0 a 5,0 Regular 5,0 a 6,0 Deficiente Mayor que 6

59 Ejemplo Resistencias individuales de probetas: 1 = 32,5 33,3 MPa 7 = 35,0 34,2 MPa 2 = 34,0 32,1 MPa 8 = 35,0 36,2 MPa 3 = 36,5 37,5 MPa 9 = 33,2 34,6 MPa 4 = 38,0 37,0 MPa 10 = 38,1 36,9 MPa 5 = 38,5 36,5 Mpa 6 = 37,2 35,8 MPa f 10 = 35,5 MPa

60 Ejemplo Resistencia de la muestra: 1 = 32,9 MPa 7 = 34,6 MPa 2 = 33,0 MPa 8 = 35,6 MPa 3 = 37,0 MPa 9 = 33,9 MPa 4 = 37,5 MPa 10 = 37,5 MPa 5 = 37,5 MPa 6 = 35,5 MPa

61 Rango de la muestra 1 = 0,8 MPa 7 = 0,8 MPa 2 = 1,9 MPa 8 = 1,2 MPa 3 = 1,0 MPa 9 = 1,4 MPa 4 = 1,0 MPa 10 = 1,2 MPa 5 = 2,0 MPa 6 = 1,4 MPa R = 1,27 MPa

62 Cálculos s 1 = R. d Para dos probetas d = 0,887. s 1 = 1,27 x 0,887 = 1,13 MPa. s 1 1,13 V 1 = x 100 = x 100 = 3,2 % f 10 35,6 Según la tabla anterior es muy bueno el grado de control.

63 Evaluación de la Resistencia mediante las medias móviles Se lleva un registro cronológico de los resultados de los ensayos de resistencia de un lote de hormigón. Se van evaluando por grupos iguales a medida que se van obteniendo nuevos resultados, de manera que siempre el grupo lo conforma un mismo número de ellos, agregando el nuevo valor y eliminando en más antiguo.

64 Medias móviles Lo más común es que el grupo esté conformado por tres muestras y la serie de resultados serán: - fi = a,b,c,d,e. - La media móvil de tres muestras consecutivas se obtiene mediante la serie de los 3 promedios de las muestras consecutivas:

65 Medias móviles a + b + c b + c + d c + d + e f 3 = ; ; Se debe recordar que cada resultado, se obtiene como el promedio de 2 ó más probetas compañeras.

66 Curvas de distribución normal Se pone mucho énfasis en los resultados de los ensayos de los cilindros individuales. Si un resultado da bajo, esto no significa que el hormigón es de pobre calidad. Lo que importa es que los resultados de los ensayos de los cilindros no caigan por debajo del f c.

67 Medias móviles Tiene la ventaja respecto de la resistencia característica en que se hace en forma continua, lo que permite tomar acciones correctivas cuando se observan resultados ajustados o defectuosos. La limitación es que sólo puede aplicarse a lotes de hormigón que estén representados por más de 10 muestras.

68 Medias móviles Para verificar que cada parcialidad cumple con la resistencia especificada, se deben dar dos requisitos: - f 3 f c + k - O sea debe superar la resistencia especificada más una constante. - f i f c - j

69 Medias móviles f 3 = resistencia media de cualquier grupo de 3 probetas consecutivas, en MPa. f c = resistencia especificada o de proyecto, MPa. k, j = constantes de evaluación, que dependen de la fracción defectuosa aceptable y del tipo de hormigón, en MPa.

70 Valores de j y k

71 Medias móviles En caso contrario, se debe recurrir a la resistencia característica, que considera el total del lote, sin perjuicio de llevar paralelamente un control parcial por el criterio de las Medias Móviles a título informativo.

72 CUSUM Mide el comportamiento relativo a las intenciones de diseño. Compara los resultados con valores objetivos y determina si son consistentes con los niveles requeridos. Excelente para detectar cambios y consiste simplemente en un gráfico de la suma de la característica de un proceso con el tiempo.

73 Ventajas del CUSUM Es más sensible en detectar cambios en las magnitudes, que se experimentan durante la producción del hormigón. Se pueden tomar decisiones confiables con pocos resultados. La tendencia de los resultados se puede identificar a partir de la pendiente de un gráfico.

74 Ventajas del CUSUM Las pendientes de los gráficos se pueden utilizar para determinar las magnitudes de las propiedades, por ejemplo, resistencia media y desviación estándar. La posición de los cambios en las pendientes de los gráficos, indican aproximadamente cuándo ocurrieron los cambios.

75 CUSUM Las desviaciones de los resultados individuales de la media tienen una distribución normal. La desviación promedio de la media es aproximadamente cero para un proceso estable.

76 CUSUM Por eso, si ε i es la diferencia entre la resistencia a la compresión promedio y el i ésimo resultado de resistencia a la compresión, o ε i = X - X i Donde X es la resistencia a la compresión promedio (establecida durante un período adecuado) y X i es el i ésimo ensayo de resistencia a la compresión

77 CUSUM ε i = (X X i ) = 0 Siempre que no cambie la resistencia a la compresión promedio y el número de ensayos (N) es suficientemente grande. Si ocurre algún cambo en un material del hormigón, en la producción, la colocación, el ensayo, en variaciones estacionales, o cualquier otra causa asignable:

78 CUSUM Las desviaciones de las variaciones de los resultados de ensayos alrededor de la media no son más al azar y ε i no será más 0 en promedio. Si la causa asignable es constante, la suma de ε i cambiará en una forma lineal.

79 CUSUM Un cambio en la pendiente del gráfico CUSUM indica una diferencia en la resistencia promedio a partir del valor supuesto. Una vez que se detecta la tendencia, se deben efectuar análisis posteriores para el gráfico del CUSUM y de los ensayos del hormigón, así como su manipulación, los materiales, su producción y el ambiente, para determinar la probable causa del cambio.

80 Cálculos del CUSUM Los datos previos de una mezcla de hormigón, producido para proveer un f c de 30 MPa, indican una resistencia promedio de 35,8 MPa. Durante el proyecto, están disponibles los datos de resistencia a la compresión secuencial. La carta CUSUM se puede construir a partir de los datos.

81 Cálculos del CUSUM

82 Cálculos de CUSUM Usando estos 19 resultados de ensayos solamente, la resistencia a la compresión promedio es 34,8 MPa y la desviación estándar de la muestra es 2,41 MPa. Se calcula para las primeras 3 entradas. También se provee la media móvil de 3 ensayos (MA3) porque es comúnmente monitoreada la variable de control de calidad.

83 Conclusiones La desviación estándar baja indica un control excelente aparente. La resistencia promedio es mayor que f c > f cr pero 1,0 MPa menor que la resistencia promedio determinada a partir de los datos previos. No hay instancias donde un promedio móvil de tres resultados es menor que f c.

84 Cartas de control Los principios estadísticos solos no son suficientes para el control de calidad, pues se debe actuar rápidamente para determinar la calidad del hormigón y los cambios que se han producido en la calidad. Puede que haya variado la resistencia media o la desviación estándar. Esto da lugar a que se analice al hormigón de manera continua.

85 Conclusiones Todo esto indica un comportamiento contractualmente satisfactorio y un proceso aparentemente bajo control. Las cartas de control simples no indican problemas significativos ningunos, aunque la media móvil tiende ligeramente a ser más baja durante un período de tiempo.

86 Carta CUSUM

87 Carta CUSUM La figura indica claramente que ha ocurrido un desplazamiento. Una disminución en el nivel de la resistencia media se origina aparentemente no más allá del décimo ensayo de resistencia. Se puede hacer una simple estimación de la disminución en el nivel de resistencia que ha ocurrido a partir de la pendiente de la carta CUSUM.

88 Carta CUSUM La pendiente del ensayo Nº 10 al ensayo Nº 19 se puede estimar como 18,9 (la suma acumulativa de las diferencias entre el Ensayo Nº 19 dividido por 9 (19-10 ensayos) o aproximadamente 2,1 MPa.

89 Uso del sistema CUSUM Se emplea para monitorear las tendencias de la resistencia promedio, la desviación estándar y la relación entre las resistencia a 28 d y a edad temprana. Se detectan cambios en dichas propiedades e indica qué acción hay que tomar para incrementar la posibilidad de cumplir con la especificación, o reducir el costo de los materiales.

90 Ejemplo de CUSUM aplicado a la resistencia media Resistencia buscada: 38 MPa. Resultado Nº Resistencia a los 28d (MPa) Diferencias respecto de la resistencia objetivo (38 MPa) Cusum, M (MPa)

91 Ejemplo Una diferencia positiva indica que el resultado es más grande que la resistencia buscada y una negativa, indica lo contrario. Si la resistencia promedio es mayor que la buscada, entonces la pendiente del gráfico del CUSUM vs los resultados será positiva o hacia la derecha y arriba.

92 Ejemplo

93 CUSUM

94 Cartas de control Las suposiciones de normalidad e independencia permiten hacer predicciones acerca de los datos. Ya se vio que la distribución tiene forma de campana y que además, la media está en el centro.

95 Cartas de control Se hacen suposiciones sobre el estadístico graficado: Es independiente, por ejemplo un valor no está influenciado por su valor pasado y no afectará los valores futuros. Está normalmente distribuido, por ejemplo, el dato tiene una función de densidad de probabilidad normal.

96 Cartas de control Son las distribuciones normales con el agregado de la dimensión tiempo. Son cartas de corridas con distribuciones normales sobre impuestas. Proveen un medio gráfico para ensayar hipótesis acerca de los datos.

97 Cartas de control La distribución de frecuencias se aplica para poder establecer una resistencia a la compresión promedio del hormigón antes del proceso de hormigonado, mientras que las cartas de control son herramientas estadísticas empleadas para la evaluación de los resultados de los ensayos durante la colocación del hormigón.

98 Cartas de control Son cartas de líneas horizontales, donde existe una línea central en un promedio especificado, una línea superior en el límite de aceptación más alto y otra inferior en el más bajo. Puede que haya dos por arriba y dos por debajo de la línea central.

99 Cartas de control Las dos líneas más cercanas a la central, se denominan líneas de advertencia, mientras que las dos más lejanas se denominan líneas de acción. Se pueden establecer a una distancia 2σ y 3σ respectivamente, los que vendrán indicados en las especificaciones.

100 Cartas de control para datos continuos (variables) Carta de control de la media (Shewhart). Carta de control del rango (Shewhart). Carta de control de la media móvil. Carta de control de las sumas acumulativas (CUSUM).

101 Carta de control

102 Carta de control (Shewhart)

103 Carta de control

104 Rechazo de resultados anómalos

105 Cartas de control La probabilidad de una muestra de tener un valor particular está dado por su ubicación sobre la carta. Suponiendo que el estadístico graficado está distribuido normalmente, la probabilidad de un valor que quede más allá de:

106 Cartas de control Los límites de advertencia: son de aproximadamente 2,5 % (2σ). Los límites de control son de aproximadamente 0,1 % (3σ): esto es raro e indica que : La variación se debe a una causa asignable. El proceso está fuera de control estadístico.

107 Cartas de control Las reglas de la corrida se usan para indicar situaciones que están fuera del control estadístico. Para las cartas de Shewhart con límites de advertencia y de control son: Un punto que cae más allá de los límites de control. 2 puntos consecutivos que caen más allá de los límites advertencia

108 Cartas de control 7 ó más puntos consecutivos que caen en un lado de la media, e indican un desplazamiento del proceso. 5 ó 6 puntos consecutivos que van en la misma dirección, que indican una tendencia. Otras reglas similares que pueden utilizar los mismos criterios.

109 Cartas de control Se usan para un número de ensayos consecutivos, como por ejemplo:

110 Carta de control para resistencia del hormigón

111 Control de asentamiento del hormigón y otros

112 Carta de control para contenido de aire

113 Test de Q para detectar valores anómalos (Dixon) Es la herramienta estadística más común para ser usada para detectar valores aberrantes. Se basa esto en la brecha y el rango, a un número n dado. /O X / Q = R

114 Valores críticos de Q

115 Test de Q Si el Q calc < Q crit (tabla) al nivel de probabilidad elegido, se debe aceptar la medición sospechosa. Si Q calc > Q crit resulta descartable, se debe rechazar ese dato, con el nivel de probabilidad elegido. Se aconseja medir más veces para tener mayor confianza en el resultado.

116 Ejemplo Se obtuvieron los siguientes valores de NO 2- en una muestra de agua de río (ppm): 0,409 0,410 0,401 0,380 Hay algún dato sospechoso? El último. Se ordenan, por ejemplo, los datos en forma creciente: 0,380 0,401 0,403 0,410 Entre los valores extremos, se calcula el rango: 0,410 0,380 = 0,030 ppm

117 Ejemplo Cuál es la diferencia con el valor más cercano? / 0,380 0,401/ = 0,031 Q calc = (0,380 0,401)/0,030 = 0,70 Q tab = 0,78 Q calc < Q crit, debe aceptarse la medida discordante.

118 Test de Grubbs Es una manera alternativa para detectar resultados anómalos. Se basa en un valor de t aceptable a un n dado. Supone normalidad.

119 Test de Grubbs

120 Ejemplo Se tienen los siguientes valores en una determinación de NO 2- en agua de río: 0,403 ; 0,410 ; 0,401 ; 0,380 ; 0,400 ; 0,413 ; 0,411. x = 0,4026 s = 0,01121 G = / 0,380 0,4025/ / 0,01121 = 2,016 G crit (p= 0,05) = 1,938, se rechaza.

CONTROL DE LOS PROCESOS DE FABRICACIÓN. Introducción a las técnicas de control estadístico de los procesos

CONTROL DE LOS PROCESOS DE FABRICACIÓN. Introducción a las técnicas de control estadístico de los procesos CONTROL DE LOS PROCESOS DE FABRICACIÓN Introducción a las técnicas de control estadístico de los procesos Introducción Departamento de Ingeniería Mecánica de la UPV-EHU ElControlEstadísticodelosProcesos

Más detalles

Control de calidad del Hormigón

Control de calidad del Hormigón Control de calidad del Hormigón Calidad Hay muchos factores involucrados en la producción del hormigón, desde los materiales, la dosificación de la mezcla, el transporte, la colocación, el curado y los

Más detalles

D.2 ANÁLISIS ESTADÍSTICO DE LAS TEMPERATURAS DE VERANO

D.2 ANÁLISIS ESTADÍSTICO DE LAS TEMPERATURAS DE VERANO Anejo Análisis estadístico de temperaturas Análisis estadístico de temperaturas - 411 - D.1 INTRODUCCIÓN Y OBJETIVO El presente anejo tiene por objeto hacer un análisis estadístico de los registros térmicos

Más detalles

Estadística Inferencial 3.7. Prueba de hipótesis para la varianza. σ gl = n -1. Es decir: Ho: σ 2 15 Ha: σ 2 > 15 (prueba de una cola)

Estadística Inferencial 3.7. Prueba de hipótesis para la varianza. σ gl = n -1. Es decir: Ho: σ 2 15 Ha: σ 2 > 15 (prueba de una cola) UNIDAD III. PRUEBAS DE HIPÓTESIS 3.7 Prueba de hipótesis para la varianza La varianza como medida de dispersión es importante dado que nos ofrece una mejor visión de dispersión de datos. Por ejemplo: si

Más detalles

Teoría de la decisión Estadística

Teoría de la decisión Estadística Conceptos básicos Unidad 7. Estimación de parámetros. Criterios para la estimación. Mínimos cuadrados. Regresión lineal simple. Ley de correlación. Intervalos de confianza. Distribuciones: t-student y

Más detalles

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8)

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8) PROBABILIDAD Y ESTADÍSTICA Sesión 5 (En esta sesión abracamos hasta tema 5.8) 5 DISTRIBUCIONES DE PROBABILIDAD CONTINUAS Y MUESTRALES 5.1 Distribución de probabilidades de una variable aleatoria continua

Más detalles

Tema 5: Principales Distribuciones de Probabilidad

Tema 5: Principales Distribuciones de Probabilidad Tema 5: Principales Distribuciones de Probabilidad Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 5: Principales Distribuciones de Probabilidad

Más detalles

Estadística Avanzada y Análisis de Datos

Estadística Avanzada y Análisis de Datos 1-1 Estadística Avanzada y Análisis de Datos Javier Gorgas y Nicolás Cardiel Curso 2006-2007 2007 Máster Interuniversitario de Astrofísica 1-2 Introducción En ciencia tenemos que tomar decisiones ( son

Más detalles

Distribución Normal Curva Normal distribución gaussiana

Distribución Normal Curva Normal distribución gaussiana Distribución Normal La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. La distribución normal tiene grandes aplicaciones prácticas, en

Más detalles

RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO. M.Sc. Roberto Solé M.

RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO. M.Sc. Roberto Solé M. FACTORES DETERMINANTES DEL PRECIO DE LAS ACCIONES: Riesgo Se puede examinar ya sea por su relación con un: Activo individual Cartera Rendimiento RIESGO: En un concepto básico es la probabilidad de enfrentar

Más detalles

ÍNDICE CAPITULO UNO CAPITULO DOS. Pág.

ÍNDICE CAPITULO UNO CAPITULO DOS. Pág. ÍNDICE CAPITULO UNO Pág. Concepto de Estadística 1 Objetivo 1 Diferencia entre estadísticas y estadística 1 Uso de la estadística 1 Divisiones de la estadística 1 1. Estadística Descriptiva 1 2. Estadística

Más detalles

La Distribución Normal y su uso en la Inferencia Estadística

La Distribución Normal y su uso en la Inferencia Estadística La Distribución Normal y su uso en la Inferencia Estadística Los conceptos básicos de Probabilidad y de Distribuciones Muestrales sirven como introducción al método de Inferencia Estadística; esta se compone

Más detalles

SnapStat: Análisis de Una Muestra

SnapStat: Análisis de Una Muestra SnapStat: Análisis de Una Muestra Resumen La SnapStat Análisis de Una Muestra crea un resumen en una hoja de una sola columna de datos numéricos. Calcula estadísticas de resumen e intervalos de confianza,

Más detalles

INTERVALO DE CONFIANZA PARA LA PROPORCIÓN

INTERVALO DE CONFIANZA PARA LA PROPORCIÓN INTERVALO DE CONFIANZA PARA LA PROPORCIÓN Si deseamos estimar la proporción p con que una determinada característica se da en una población, a partir de la proporción p' observada en una muestra de tamaño

Más detalles

DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL

DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL 3.1 INTRODUCCIÓN Como ya sabes, una distribución de probabilidad es un modelo matemático que nos ayuda a explicar los

Más detalles

Unidad 7: Muestreo de aceptación

Unidad 7: Muestreo de aceptación Unidad 7: Muestreo de aceptación Cap 12. Gutiérrez Liliana Recchioni Unidad 7: 7.1. Tipos de planes de muestreo. 7.2. Variabilidad y curvas características (CO). 7.3. Diseño de un plan de muestreo simple

Más detalles

TRABAJO PRÁCTICO ESTADISTICA APLICADA (746)

TRABAJO PRÁCTICO ESTADISTICA APLICADA (746) UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADEMICO AREA DE MATEMATICA TRABAJO PRÁCTICO ESTADISTICA APLICADA (746) JOSE GREGORIO SANCHEZ CASANOVA C.I. V-9223081 CARRERA: 610 SECCION Nº 1 SAN CRISTOBAL,

Más detalles

Análisis de Capabilidad (Porcentaje Defectuoso)

Análisis de Capabilidad (Porcentaje Defectuoso) Análisis de Capabilidad (Porcentaje Defectuoso) STATGRAPHICS Rev. 9/4/2006 Este procedimiento esta diseñado para estimar el porcentaje de artículos defectuosos en una población basándose en muestra de

Más detalles

ANÁLISIS DE DATOS CONTROL DE CALIDAD. Ing. Carlos Brunatti

ANÁLISIS DE DATOS CONTROL DE CALIDAD. Ing. Carlos Brunatti ANÁLISIS DE DATOS CONTROL DE CALIDAD Ing. Carlos Brunatti Montevideo, ROU, junio 2015 Control de calidad No resulta sorprendente que el hormigón sea un material variable, pues hay muchos factores involucrados

Más detalles

Control de calidad del. Ciudad de La Rioja Mayo 2013

Control de calidad del. Ciudad de La Rioja Mayo 2013 Control de calidad del Hormigón Ciudad de La Rioja Mayo 2013 Control de calidad Desde que se comenzó con la producción de bienes, se han hecho intentos en controlar el proceso de manera de mejorar la calidad

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

3. VARIABLES ALEATORIAS

3. VARIABLES ALEATORIAS . VARIABLES ALEATORIAS L as variables aleatorias se clasiican en discretas y continuas, dependiendo del número de valores que pueden asumir. Una variable aleatoria es discreta si sólo puede tomar una cantidad

Más detalles

V. GRÁFICOS DE CONTROL POR VARIABLES (2)

V. GRÁFICOS DE CONTROL POR VARIABLES (2) V. Gráficos de Control por Variables () V. GRÁFICOS DE CONTROL POR VARIABLES () INTRODUCCIÓN Hasta ahora hemos estudiado los gráficos de control típicos tanto para variables como para atributos. Sin embargo,

Más detalles

Unidad Temática 5 Estimación de parámetros: medias, varianzas y proporciones

Unidad Temática 5 Estimación de parámetros: medias, varianzas y proporciones Unidad Temática 5 Estimación de parámetros: medias, varianzas y proporciones Responda verdadero o falso. Coloque una letra V a la izquierda del número del ítem si acepta la afirmación enunciada, o una

Más detalles

Técnicas de Inferencia Estadística II. Tema 3. Contrastes de bondad de ajuste

Técnicas de Inferencia Estadística II. Tema 3. Contrastes de bondad de ajuste Técnicas de Inferencia Estadística II Tema 3. Contrastes de bondad de ajuste M. Concepción Ausín Universidad Carlos III de Madrid Grado en Estadística y Empresa Curso 2014/15 Contenidos 1. Introducción

Más detalles

PRÁCTICA 1. Mediciones

PRÁCTICA 1. Mediciones PRÁCTICA 1 Mediciones Objetivo General El alumno determinará la incertidumbre de las mediciones. Objetivos particulares 1. El alumno determinará las incertidumbres a partir de los instrumentos de medición..

Más detalles

Tema 3. 3. Correlación. Correlación. Introducción

Tema 3. 3. Correlación. Correlación. Introducción 3-1 Introducción Tema 3 Correlación Coeficiente de correlación lineal de Pearson Coeficiente de correlación poblacional Contraste paramétrico clásico Transformación de Fisher Correlación bayesiana Test

Más detalles

2.5. Asimetría y apuntamiento

2.5. Asimetría y apuntamiento 2.5. ASIMETRÍA Y APUNTAMIENTO 59 variable Z = X x S (2.9) de media z = 0 y desviación típica S Z = 1, que denominamos variable tipificada. Esta nueva variable carece de unidades y permite hacer comparables

Más detalles

7. Distribución normal

7. Distribución normal 7. Distribución normal Sin duda, la distribución continua de probabilidad más importante, por la frecuencia con que se encuentra y por sus aplicaciones teóricas, es la distribución normal, gaussiana o

Más detalles

CAPÍTULO V DEFINICIÓN DE LOS SISTEMAS DE MEDICIÓN

CAPÍTULO V DEFINICIÓN DE LOS SISTEMAS DE MEDICIÓN CAPÍTULO V DEFINICIÓN DE LOS SISTEMAS DE MEDICIÓN [98] CAPÍTULO V DEFINICIÓN DE LOS SISTEMAS DE MEDICIÓN La evaluación y definición de los sistemas de medición consiste en determinar la capacidad y estabilidad

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva 1 Sesión No. 3 Nombre: Estadística descriptiva Contextualización Parte fundamental de la Estadística es la organización de los datos, una forma de realizar esta organización es

Más detalles

Control Estadístico de Calidad (Notas de Clases) De acuerdo a Juran y Gryna (1977), calidad es la totalidad de características de un

Control Estadístico de Calidad (Notas de Clases) De acuerdo a Juran y Gryna (1977), calidad es la totalidad de características de un 1 Tema 1: Conceptos básicos 1. Calidad y Mejoramiento de Calidad De acuerdo a Juran y Gryna (1977), calidad es la totalidad de características de un producto o servicio que conducen con su aptitud a satisfacer

Más detalles

Estadística Inferencial. Sesión 5. Prueba de hipótesis

Estadística Inferencial. Sesión 5. Prueba de hipótesis Estadística Inferencial. Sesión 5. Prueba de hipótesis Contextualización. En la práctica, es frecuente tener que tomar decisiones acerca de poblaciones con base en información de muestreo. Tales decisiones

Más detalles

Definiciones generales

Definiciones generales Deiniciones generales Objetivo Brindar al participante los conceptos teóricos básicos sobre Media Aritmética para datos no agrupados y agrupados En esta sesión Conceptos básicos de Media Aritmética para

Más detalles

REGRESIÓN LINEAL CON SPSS

REGRESIÓN LINEAL CON SPSS ESCUELA SUPERIOR DE INFORMÁTICA Prácticas de Estadística REGRESIÓN LINEAL CON SPSS 1.- INTRODUCCIÓN El análisis de regresión lineal es una técnica estadística utilizada para estudiar la relación entre

Más detalles

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA INDUSTRIAL CONTROL #3

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA INDUSTRIAL CONTROL #3 UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA INDUSTRIAL CURSO : IN47A GESTIÓN DE OPERACIONES PROFESOR : A. SAURÉ A. WEINTRAUB AUXILIARES : J. PASSI J. RODRÍGUEZ

Más detalles

Pruebas de Bondad de Ajuste

Pruebas de Bondad de Ajuste 1 Facultad de Ingeniería IMERL PROBABILIDAD Y ESTADÍSTICA Curso 2008 Pruebas de Bondad de Ajuste En esta sección estudiaremos el problema de ajuste a una distribución. Dada una muestra X 1, X 2,, X n de

Más detalles

PREGUNTAS FRECUENTES COSO 2013

PREGUNTAS FRECUENTES COSO 2013 1. Para el año 2016, se puede dar una opinión sobre la Efectividad de todo el Sistema de Control Interno (SCI)?, considerando que para ese año se puede evaluar solo tres componentes del SCI: Entorno de

Más detalles

DECISIONES DERIVADAS DEL

DECISIONES DERIVADAS DEL DECISIONES DERIVADAS DEL CONTROL DE CALIDAD ROSARIO MARTÍNEZ LEBRUSANT DRA. CIENCIAS QUÍMICAS INSTITUTO ESPAÑOL DEL CEMENTO Y SUS APLICACIONES (IECA) JUAN CARLOS LÓPEZ AGÜÍ DR. INGENIERO DE CAMINOS INSTITUTO

Más detalles

LA DISTRIBUCIÓN NORMAL

LA DISTRIBUCIÓN NORMAL LA DISTRIBUCIÓN NORMAL En estadística y probabilidad se llama distribución normal, distribución de Gauss o distribución gaussiana, a una de las distribuciones de probabilidad que con más frecuencia aparece

Más detalles

Distribuciones bidimensionales. Regresión.

Distribuciones bidimensionales. Regresión. Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 5: Distribuciones bidimensionales. Regresión. Resumen teórico Resumen teórico de los principales conceptos estadísticos

Más detalles

GUÍA DE APRENDIZAJE. Módulo VI Seis Sigma. Aprendizaje sin fronteras [email protected]

GUÍA DE APRENDIZAJE. Módulo VI Seis Sigma. Aprendizaje sin fronteras uvirtual@pep.pemex.com GUÍA DE APRENDIZAJE Módulo VI Seis Sigma ÍNDICE PLANES DE CONTROL 3 EL PROCESO DMAIC..4 IMPORTANCIA AL CLIENTE..5 ESTRATEGIA DEL PLAN DE CONTROL.6 TIPOS DE PLAN 7 COMPONENTES DE UN PLAN DE CONTROL.8 PASOS

Más detalles

PROTOCOLO DE ENSAYOS PARA MÓDULOS FOTOVOLTAICOS

PROTOCOLO DE ENSAYOS PARA MÓDULOS FOTOVOLTAICOS PROTOCOLO DE ENSAYOS PARA MÓDULOS FOTOVOLTAICOS PMFV Nº 01 : XX.XX.XXXX PRODUCTO : Módulos Fotovoltaicos. NORMAS : IEC 61215 2ED 2005-04; Cualificación de diseño y tipo para módulos Fotovoltaicos de Silicio

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 8 Distribución normal estándar y distribuciones relacionadas Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Explicar los conceptos de la distribución

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B 1. Queremos invertir una cantidad de dinero en dos tipos

Más detalles

3.10.1. MEDIDAS MÍNIMAS PARA TENER UN PROCESO DE BUENA CALIDAD RECOMENDACIONES PROCESO DE FABRICACIÓN

3.10.1. MEDIDAS MÍNIMAS PARA TENER UN PROCESO DE BUENA CALIDAD RECOMENDACIONES PROCESO DE FABRICACIÓN 3.10. Control de calidad del hormigón Grupo Debido a que el hormigón en obra es un material esencialmente variable, se debe verificar que éste mantenga las características previstas, para lo cual se realizan

Más detalles

La evaluación de la exposición a contaminantes químicos: Sílice

La evaluación de la exposición a contaminantes químicos: Sílice La evaluación de la exposición a contaminantes químicos: Sílice 1 R.D. 374/2001 ITC 2.0.02 Criterios para la prevención de la exposición al polvo de sílice. 2 CRITERIO R.D. 374/2001, sobre protección de

Más detalles

Pruebas de bondad de ajuste

Pruebas de bondad de ajuste Pruebas de bondad de ajuste Existen pruebas cuantitativas formales para determinar si el ajuste de una distribución paramétrica a un conjunto de datos es buena en algún sentido probabilístico. Objetivo:

Más detalles

4. Medidas de tendencia central

4. Medidas de tendencia central 4. Medidas de tendencia central A veces es conveniente reducir la información obtenida a un solo valor o a un número pequeño de valores, las denominadas medidas de tendencia central. Sea X una variable

Más detalles

DISTRIBUCIONES DE PROBABILIDAD (RESUMEN)

DISTRIBUCIONES DE PROBABILIDAD (RESUMEN) DISTRIBUCIONES DE PROBABILIDAD (RESUMEN) VARIABLE ALEATORIA: un experimento produce observaciones numéricas que varían de muestra a muestra. Una VARIABLE ALEATORIA se define como una función con valores

Más detalles

Comparación de Líneas de Regresión

Comparación de Líneas de Regresión Comparación de Líneas de Regresión Resumen El procedimiento de Comparación de Líneas de Regresión esta diseñado para comparar líneas de regresión relacionas con Y y X en dos o mas niveles de un factor

Más detalles

7. ADMINISTRACIÓN DE LAS ACTIVIDADES DE ANÁLISIS Y DISEÑO. Análisis.- Es la descomposición de un todo en sus partes, para su estudio.

7. ADMINISTRACIÓN DE LAS ACTIVIDADES DE ANÁLISIS Y DISEÑO. Análisis.- Es la descomposición de un todo en sus partes, para su estudio. 7. ADMINISTRACIÓN DE LAS ACTIVIDADES DE ANÁLISIS Y DISEÑO. Análisis.- Es la descomposición de un todo en sus partes, para su estudio. PASOS PARA LA REALIZACIÓN DEL ANÁLISIS.. OBTENCIÓN DE DATOS E INFORMACIÓN.

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto

Más detalles

Fundamentos de negocio Producción > Elementos clave para competir (Calidad y productividad) > Control de la calidad

Fundamentos de negocio Producción > Elementos clave para competir (Calidad y productividad) > Control de la calidad Concepto de control de la calidad Si bien es necesario determinar las características y los estándares de nuestro producto para lograr una buena aceptación en el mercado, es igualmente importante que controlemos

Más detalles

Técnicas de validación estadística Bondad de ajuste

Técnicas de validación estadística Bondad de ajuste Técnicas de validación estadística Bondad de ajuste Georgina Flesia FaMAF 28 de mayo, 2013 Pruebas de bondad de ajuste Dado un conjunto de observaciones, de qué distribución provienen o cuál es la distribución

Más detalles

ASIGNATURA: MATERIALES DE CONSTRUCCIÓN II APUNTES TEMA 2: CONTROL DE FABRICACIÓN Y CONTROL DE RECEPCIÓN

ASIGNATURA: MATERIALES DE CONSTRUCCIÓN II APUNTES TEMA 2: CONTROL DE FABRICACIÓN Y CONTROL DE RECEPCIÓN ARQUITECTURA TÉCNICA ASIGNATURA: MATERIALES DE CONSTRUCCIÓN II CURSO: 2009-2010 APUNTES TEMA 2: CONTROL DE FABRICACIÓN Y CONTROL DE RECEPCIÓN. ESTADÍSTICA APLICADA AL CONTROL:. GENERALIDADES. MUESTREO

Más detalles

Procedimiento. Herramientas Estadísticas Básicas

Procedimiento. Herramientas Estadísticas Básicas /AGOSTO/011 1/8 1. Objetivo Dar a conocer los lineamientos referentes a la aplicación de las herramientas estadísticas básicas para el análisis y solución de problemas y mejora continua.. Alcance Cuando

Más detalles

Capítulo 3: Metrología y Calidad. TEMA 6: Metrología. Sistemas y técnicas de medida para el control de calidad

Capítulo 3: Metrología y Calidad. TEMA 6: Metrología. Sistemas y técnicas de medida para el control de calidad Capítulo 3: Metrología y Calidad TEMA 6: Metrología. Sistemas y técnicas de medida para el control de calidad Índice 1. Metrología Dimensional 3.1 Introducción 3.2 Fuentes de incertidumbre en metrología

Más detalles

CONCRETOS DE BAJA RETRACCIÓN: EL PRESENTE EN PISOS INDUSTRIALES Y EL FUTURO EN PAVIMENTOS VIALES

CONCRETOS DE BAJA RETRACCIÓN: EL PRESENTE EN PISOS INDUSTRIALES Y EL FUTURO EN PAVIMENTOS VIALES CONCRETOS DE BAJA RETRACCIÓN: EL PRESENTE EN PISOS INDUSTRIALES Y EL FUTURO EN PAVIMENTOS VIALES Ing. Fredy A. Rodríguez V. Especialista en Ingeniería de Pavimentos Departamento de Soporte Técnico Cartagena

Más detalles

SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS

SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS I. CONTENIDOS: 1. Relación entre valores numéricos.. Cálculo de media, mediana y moda en datos agrupados y no agrupados. 3. La media, mediana y moda en variable

Más detalles

ESTADÍSTICA INFERENCIAL

ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 9 Nombre: Pruebas de hipótesis referentes al valor de la media de la población Contextualización Los métodos estadísticos y las técnicas de

Más detalles

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO FACULTAD DE INGENIERÍA MECÁNICA ÁREA: CIENCIAS DE LA INGENIERÍA

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO FACULTAD DE INGENIERÍA MECÁNICA ÁREA: CIENCIAS DE LA INGENIERÍA UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO FACULTAD DE INGENIERÍA MECÁNICA ÁREA: CIENCIAS DE LA INGENIERÍA Programa de la asignatura de: CONTROL ESTADÍSTICO DE LA CALIDAD CARRERA: INGENIERÍA MECÁNICA

Más detalles

Distribución muestral de proporciones. Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua

Distribución muestral de proporciones. Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Distribución muestral de proporciones Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Distribución muestral de Proporciones Existen ocasiones

Más detalles

Distribuciones muestrales. Distribución muestral de Medias

Distribuciones muestrales. Distribución muestral de Medias Distribuciones muestrales. Distribución muestral de Medias Algunas secciones han sido modificadas de: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua TEORIA DEL MUESTREO

Más detalles

Departamento Administrativo Nacional de Estadística. Dirección de Censos y Demografía

Departamento Administrativo Nacional de Estadística. Dirección de Censos y Demografía Departamento Administrativo Nacional de Estadística Dirección de Censos y Demografía ESTIMACIÓN E INTERPRETACIÓN DEL COEFICIENTE DE VARIACIÓN DE LA ENCUESTA COCENSAL CENSO GENERAL 2005 - CGRAL Junio de

Más detalles

Instituto Costarricense del Cemento y del Concreto Colegio Federado de Ingenieros y de Arquitectos

Instituto Costarricense del Cemento y del Concreto Colegio Federado de Ingenieros y de Arquitectos Instituto Costarricense del Cemento y del Concreto Colegio Federado de Ingenieros y de Arquitectos 1. Introducción El Instituto Costarricense del Cemento y el Concreto (ICCYC) y el Colegio Federado de

Más detalles

Test de Kolmogorov-Smirnov

Test de Kolmogorov-Smirnov Test de Kolmogorov-Smirnov Georgina Flesia FaMAF 2 de junio, 2011 Test de Kolmogorov-Smirnov El test chi-cuadrado en el caso continuo H 0 : Las v.a. Y 1, Y 2,..., Y n tienen distribución continua F. Particionar

Más detalles

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico.

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico. Introducción a la Melilla Definición de La trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico

Más detalles

Estadística Empresarial. Cuaderno de Ejercicios. Temas 2. Análisis estadístico de una variable: medidas de posición y medidas de dispersión

Estadística Empresarial. Cuaderno de Ejercicios. Temas 2. Análisis estadístico de una variable: medidas de posición y medidas de dispersión Estadística Empresarial Cuaderno de Ejercicios Temas 2 Análisis estadístico de una variable: medidas de posición y medidas de dispersión EJERCICIO 1. La siguiente tabla recoge el número de Paradores Nacionales,

Más detalles

Medidas de Dispersión

Medidas de Dispersión Medidas de Dispersión Revisamos la tarea de la clase pasada Distribución de Frecuencias de las distancias alcanzadas por las pelotas de golf nuevas: Dato Frecuencia 3.7 1 4.4 1 6.9 1 3.3 1 3.7 1 33.5 1

Más detalles

BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE. ESTUDIO DE LA GRÁFICA DE UNA FUNCIÓN

BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE. ESTUDIO DE LA GRÁFICA DE UNA FUNCIÓN BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE. ESTUDIO DE LA GRÁFICA DE UNA FUNCIÓN Crecimiento y decrecimiento. Extremos absolutos y relativos. Concavidad y convexidad. Asíntotas.

Más detalles

EJERCICIOS RESUELTOS TEMA 7

EJERCICIOS RESUELTOS TEMA 7 EJERCICIOS RESUELTOS TEMA 7 7.1. Seleccione la opción correcta: A) Hay toda una familia de distribuciones normales, cada una con su media y su desviación típica ; B) La media y la desviaciones típica de

Más detalles

LABORATORIO DE MECANICA Análisis Gráfico.

LABORATORIO DE MECANICA Análisis Gráfico. No 0.1 LABORATORIO DE MECANICA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Objetivo General: Estudiar el uso de gráficas para la obtención de las relaciones

Más detalles

SECCIÓN 7: HERRAMIENTAS DE ANÁLISIS DE DATOS

SECCIÓN 7: HERRAMIENTAS DE ANÁLISIS DE DATOS SECCIÓN 7: HERRAMIENTAS DE ANÁLISIS DE DATOS TÍTULO PÁGINA(S) Herramientas de Análisis de Datos - Introducción 119 Gráfico de Pareto 120 Histograma 121-124 Diagrama de Dispersión 125-126 Gráfico de Evolución

Más detalles

3. Análisis univariable y bivariable

3. Análisis univariable y bivariable FUOC P01/71039/00748 36 Investigación descriptiva: análisis de información 3. Análisis univariable y bivariable 3.1. Análisis univariable Como se ha visto, los métodos de análisis univariable se utilizan

Más detalles

EL MERCADO Y LOS PRONÓSTICOS. MSc. Freddy E. Aliendre España

EL MERCADO Y LOS PRONÓSTICOS. MSc. Freddy E. Aliendre España EL MERCADO Y LOS PRONÓSTICOS MSc. Freddy E. Aliendre España 2011 MERCADO (A.M.A.) define el mercado como la suma de las fuerzas o condiciones dentro de las cuales los compradores y vendedores toman decisiones

Más detalles

CALIDAD 1 JOSÉ MANUEL DOMENECH ROLDÁN PROFESOR DE ENSEÑANZA SECUNDARIA

CALIDAD 1 JOSÉ MANUEL DOMENECH ROLDÁN PROFESOR DE ENSEÑANZA SECUNDARIA CALIDAD 1 DIAGRAMA DE CORRELACIÓN-DISPERSIÓN QUÉ ES EL DIAGRAMA DE CORRELACIÓN-DISPERSIÓN? Es una herramienta gráfica que permite demostrar la relación existente entre dos clases de datos y cuantificar

Más detalles

MÁXIMA CAPACIDAD ADMISIBLE: INFLUENCIA DE LA DIMENSIÓN Y LA PROFUNDIDAD DE FUNDACIÓN EN ZAPATAS AISLADAS Y COMBINADAS

MÁXIMA CAPACIDAD ADMISIBLE: INFLUENCIA DE LA DIMENSIÓN Y LA PROFUNDIDAD DE FUNDACIÓN EN ZAPATAS AISLADAS Y COMBINADAS MÁXIMA CAPACIDAD ADMISIBLE: INFLUENCIA DE LA DIMENSIÓN Y LA PROFUNDIDAD DE FUNDACIÓN EN ZAPATAS AISLADAS Y COMBINADAS Marcelo Pardo 1 Resumen La influencia de las dimensiones de las fundaciones y de la

Más detalles

Validación de los métodos microbiológicos HERRAMIENTAS ESTADISTICAS. Bqca. QM Alicia I. Cuesta, Consultora Internacional de la FAO

Validación de los métodos microbiológicos HERRAMIENTAS ESTADISTICAS. Bqca. QM Alicia I. Cuesta, Consultora Internacional de la FAO Validación de los métodos microbiológicos HERRAMIENTAS ESTADISTICAS Bqca. QM Alicia I. Cuesta, Consultora Internacional de la FAO Objetivos de la clase Objetivos de la estadística. Concepto y parámetros

Más detalles

Tema 11: Intervalos de confianza.

Tema 11: Intervalos de confianza. Tema 11: Intervalos de confianza. Presentación y Objetivos. En este tema se trata la estimación de parámetros por intervalos de confianza. Consiste en aproximar el valor de un parámetro desconocido por

Más detalles

Distribución de Probabilidad Normal

Distribución de Probabilidad Normal Distribución de Probabilidad Normal Departamento de Estadística-FACES-ULA 22 de Diciembre de 2013 Introducción La distribución normal es quizás la distribución de probabilidad para variables aleatorias

Más detalles

La distribución t de student. O lo que es lo mismo: La relación entre la cerveza y los estudios de estadística

La distribución t de student. O lo que es lo mismo: La relación entre la cerveza y los estudios de estadística La distribución t de student O lo que es lo mismo: La relación entre la cerveza y los estudios de estadística La distribución t de student fue descubierta por William S. Gosset en 1908. Gosset era un estadístico

Más detalles

Técnicas de validación estadística Bondad de ajuste

Técnicas de validación estadística Bondad de ajuste Técnicas de validación estadística Bondad de ajuste Georgina Flesia FaMAF 31 de mayo, 2011 Pruebas de bondad de ajuste Dado un conjunto de observaciones, de qué distribución provienen o cuál es la distribución

Más detalles

Entre las múltiples formas de baremar un test, destacamos las siguientes: - Baremos cronológicos: Edad Mental y Cociente Intelectual.

Entre las múltiples formas de baremar un test, destacamos las siguientes: - Baremos cronológicos: Edad Mental y Cociente Intelectual. 104 TEMA V: BAREMACIÓN DE UN TEST 1.- INTRODUCCIÓN La puntuación directa de una persona en un test no es directamente interpretable si no la referimos a los contenidos incluidos en el test o al rendimiento

Más detalles

Cómo establecer periodos de Calibración. Ing. Francisco Javier Cedillo López

Cómo establecer periodos de Calibración. Ing. Francisco Javier Cedillo López Cómo establecer periodos de Calibración Ing. Francisco Javier Cedillo López OBJETIVO Es compartir con los asistentes, las herramientas y ejemplos de cómo establecer los periodos de calibración de los equipos

Más detalles

ESTADÍSTICA BÁSICA Dirección Redes en Salud Pública 2015 09 16

ESTADÍSTICA BÁSICA Dirección Redes en Salud Pública 2015 09 16 ESTADÍSTICA BÁSICA Dirección Redes en Salud Pública 2015 09 16 Es el conjunto sistemático de procedimientos para la observación, registro, organización, síntesis y análisis e interpretación de los fenómenos

Más detalles

GUÍAS. Módulo de Razonamiento cuantitativo SABER PRO 2014-1

GUÍAS. Módulo de Razonamiento cuantitativo SABER PRO 2014-1 GUÍAS Módulo de Razonamiento cuantitativo SABER PRO 2014-1 GUÍAS Módulo Razonamiento cuantitativo Este módulo evalúa competencias relacionadas con las habilidades matemáticas que todo ciudadano debe tener,

Más detalles

GUÍAS. Módulo de Razonamiento cuantitativo SABER PRO 2013-1

GUÍAS. Módulo de Razonamiento cuantitativo SABER PRO 2013-1 Módulo de Razonamiento cuantitativo Este módulo evalúa competencias relacionadas con las habilidades en la comprensión de conceptos básicos de las matemáticas para analizar, modelar y resolver problemas

Más detalles

Cómo describir e interpretar los resultados de un estudio de investigación quirúrgica? Variables cuantitativas

Cómo describir e interpretar los resultados de un estudio de investigación quirúrgica? Variables cuantitativas Cómo describir e interpretar los resultados de un estudio de investigación quirúrgica? Variables cuantitativas Sesión de Residentes 13 de febrero, 2012 ÍNDICE Diferencia entre población y muestra. Diferencia

Más detalles

Muestreo y Distribuciones muestrales. 51 SOLUCIONES

Muestreo y Distribuciones muestrales. 51 SOLUCIONES Muestreo y Distribuciones muestrales. 51 Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Métodos estadísticos de la ingeniería Soluciones de la hoja de problemas 5. Muestreo

Más detalles

Análisis de Datos CAPITULO 3: MEDIDAS DE VARIABILIDAD Y ASIMETRÍA

Análisis de Datos CAPITULO 3: MEDIDAS DE VARIABILIDAD Y ASIMETRÍA 1. INTRODUCCIÓN En el tema 1 veíamos que la distribución de frecuencias tiene tres propiedades: tendencia central, variabilidad y asimetría. Las medidas de tendencia central las hemos visto en el tema

Más detalles

Tablas de valores límite de calidad del aire

Tablas de valores límite de calidad del aire Tablas de valores límite de calidad del aire DIÓXIDO DE AZUFRE (SO 2 ) horario para la 350 µg/m 3, valor que no podrá superarse en más de 24 ocasiones por año civil diario para la 24 horas 125 µg/m 3,

Más detalles

Ejemplos de clase Administración de Inventarios. Guatemala, abril de 2013

Ejemplos de clase Administración de Inventarios. Guatemala, abril de 2013 Ejemplos de clase Administración de Inventarios Guatemala, abril de 2013 ADMINISTRACIÓN DE INVENTARIOS A. MODELOS DE INVENTARIO PARA DEMANDA INDEPENDIENTE B. MODELOS PROBABILISTICOS E INVENTARIOS DE SEGURIDAD

Más detalles

El método utilizado en esta investigación será el método probabilístico ya que el universo en estudio es finito.

El método utilizado en esta investigación será el método probabilístico ya que el universo en estudio es finito. CAPITULO III: MARCO METODOLOGICO. 3.1 TIPO DE INVESTIGACION: El tipo de estudio que se desarrollara en la investigación es, descriptiva, porque está dirigido a determinar cómo es, cómo está la situación

Más detalles

EL PUNTO DE EQUILIBRIO

EL PUNTO DE EQUILIBRIO EL PUNTO DE EQUILIBRIO El punto de equilibrio sirve para determinar el volumen mínimo de ventas que la empresa debe realizar para no perder, ni ganar. En el punto de equilibrio de un negocio las ventas

Más detalles