3. VARIABLES ALEATORIAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "3. VARIABLES ALEATORIAS"

Transcripción

1 . VARIABLES ALEATORIAS L as variables aleatorias se clasiican en discretas y continuas, dependiendo del número de valores que pueden asumir. Una variable aleatoria es discreta si sólo puede tomar una cantidad inita o ininita numerable de valores. Si por el contrario, la variable aleatoria puede tomar cualquier valor de un conjunto ininito no numerable, entonces la variable es continua. Desde luego, el análisis de una variable aleatoria discreta diiere del de una variable aleatoria continua. Esto se epresa a continuación.. VARIABLES ALEATORIAS DISCRETAS. FUNCIÓN DE PROBABILIDAD. El comportamiento aleatorio de una variable aleatoria discreta se analiza a través de una unción de probabilidad. Deinición: Sea una variable aleatoria discreta, cuyo rango (conjunto de valores posibles) es el conjunto que denotamos por R. Se deine la unción de probabilidad de como: : R [,] tal que ( ) P( ) para todo valor R. Esto es, la unción de probabilidad de es una unción que asigna a cada valor de del rango de, la probabilidad de que la variable aleatoria lo asuma en la siguiente realización del eperimento. Ejemplo.. Supongamos que la variable aleatoria representa el número de automóviles que pasan por una caseta de peaje en un período de un día. El rango de la variable aleatoria es R {,,,...}; es decir, todos los enteros no negativos. Como el rango es un conjunto ininito numerable, la variable aleatoria es discreta. La unción de probabilidad de es la unción que determina para cada valor, la probabilidad de que ese valor sea el observado; es decir, ( ) P( ) es la probabilidad de que en un día no pase ningún carro por la caseta mencionada M.en I, Isabel Patricia Aguilar Juárez UNAM-Facultad de Ingeniería

2 ( ) P( ) es la probabilidad de que en un día pase eactamente un automóvil por la caseta de peaje, etcétera... PROPIEDADES La unción de probabilidad de una variable aleatoria discreta tiene las siguientes propiedades: ) Sus valores están entre y ( ) R ) La suma de los valores de () cuando se consideran todos los valores del rango, es igual a uno. R ( ) ) La probabilidad de que la variable aleatoria presente alguno de los valores que pertenecen a un conjunto, es la suma de las probabilidades de los valores particulares. P ( ) ( ) Ejemplo... Considere el eperimento que consiste en lanzar un dado y observar el número de puntos que tiene en su cara superior. La variable aleatoria será el número de puntos en la cara superior del dado, después del lanzamiento. El rango de la variable aleatoria es R {,,,,5,6}. La unción de probabilidad de se muestra en la siguiente tabla: 5 6 () /6 /6 /6 /6 /6 /6 M.en I, Isabel Patricia Aguilar Juárez UNAM-Facultad de Ingeniería

3 Es decir, ()P() P(el resultado del lanzamiento es ) /6 ()P() P(el resultado del lanzamiento es ) /6. La probabilidad de que el resultado esté entre y 5 es: P( 5) P() P() P() P(5) () () () (5) /6 /6 /6 /6 /6 P ( 5) 6. VARIABLES ALEATORIAS CONTINUAS. FUNCIÓN DE DENSIDAD DE PROBABILIDAD. Por la naturaleza de las variables aleatorias continuas, no es posible hacer su análisis a través de una unción de probabilidad como en el caso discreto, pero en su lugar se utiliza otra unción conocida como unción de probabilidad o simplemente de densidad. Deinición: Si es una variable aleatoria continua cuyos valores posibles son todos los números que pertenecen al conjunto R, se deine la unción de densidad de como la unción: : R R que cumple con las siguientes condiciones: ) La unción () no toma valores negativos. ( ) ) El área bajo la unción es uno. R R ( ) d ) La probabilidad de que la variable aleatoria presente un valor cualquiera dentro de un intervalo, es el área bajo la unción y sobre el intervalo. P ( ) ( ) d M.en I, Isabel Patricia Aguilar Juárez UNAM-Facultad de Ingeniería

4 Ejemplo.. Si la variable aleatoria tiene unción de densidad ; ( ) ; en otro caso se puede observar que, gráicamente, () tiene la orma: El área bajo la curva es A d A Y la probabilidad de que esté entre y.5 es:.5 P(.5) d 6 P(.5) M.en I, Isabel Patricia Aguilar Juárez UNAM-Facultad de Ingeniería

5 Es muy común que en un eperimento nos interesemos por la probabilidad de que la variable aleatoria asuma, más que un valor particular, un valor cualquiera en un rango, o bien, por identiicar aquellos puntos o intervalos en los que se acumula mayor probabilidad. Es por ésta razón que se deine una unción, la unción de distribución (acumulativa) de una variable aleatoria. La unción de distribución de una variable aleatoria releja la orma en que se acumula la probabilidad a lo largo del rango de la variable aleatoria.. FUNCIÓN DE DISTRIBUCIÓN Deinición: Si es una variable aleatoria se deine a la unción de distribución de como la unción que se denota por F () y que asigna a cada valor R, la probabilidad de que la variable aleatoria tome un valor menor o igual a dicha. Esto es, F ( ) P ( ) El cálculo de F ( ) se realiza de la siguiente manera: Si es discreta, F ( ) () Si es continua F ( ) a () d pequeño que podría asumir la variable aleatoria... PROPIEDADES Esta unción de distribución tiene las siguientes propiedades:, en donde a es el valor más M.en I, Isabel Patricia Aguilar Juárez UNAM-Facultad de Ingeniería 5

6 . Dado que es una probabilidad, solamente puede tomar valores entre cero y uno, es decir, F ( ) R. Para el mayor valor del rango de, la unción de distribución toma el valor de uno, F ( ). Para el menor valor del rango de, la unción de distribución toma el valor de cero, F ( - ). La unción F ( ) es una unción no decreciente, escalonada si la variable es discreta o creciente si es continua. 5. Permite calcular ácilmente la probabilidad de que esté en el intervalo semi abierto (a, b] como P (a < b ) F ( b ) - F ( a ) Ejemplo... Sea una variable aleatoria con unción de probabilidad la que se muestra en la tabla. Construya la unción de distribución de, y utilícela para calcular la probabilidad de que sea mayor que y menor o igual que.5 Resolución: () F ( -5 ) P ( -5) P( -5). F ( - ) P ( -) P( -5) P( -)... F ( ) P ( ) P( -5) P( -) P( )....5 F (.5 )P(.5)P( -5)P( -)P( )P(.5) F ( ) P(.5)P( -5)P( -)P( )P(.5)P() M.en I, Isabel Patricia Aguilar Juárez UNAM-Facultad de Ingeniería 6

7 Para mayor acilidad se puede mostrar la unción de distribución en una tabla, junto con la unción de probabilidad, () F ()...5. Por lo tanto, P(- <.5 ) F (.5) - F (-)...59 Hagamos un ejemplo más. Ejemplo... La comisión por ventas que una empresa orece a sus agentes crece dependiendo de los rangos de ventas individuales, la tasa de crecimiento es una variable aleatoria que tiene unción de densidad () c ; c ; < ; en otro caso. en donde c es una constante. Calcule la probabilidad de que para un agente en particular el crecimiento en sus comisiones esté entre.5 y.. M.en I, Isabel Patricia Aguilar Juárez UNAM-Facultad de Ingeniería 7

8 Resolución Lo primero que debemos hacer es determinar el valor de la constante c de manera que la unción () planteada sea realmente una unción de densidad. La primera condición que debe cumplir la unción es ser positiva para todo valor de. Para ello, en esta unción, basta con que c>. La segunda condición que debe cumplir es integrar uno. Veamos: c c c d c d c por lo tanto, la unción de densidad de la variable aleatoria es () ; ; ; < en otro caso. La gráica de la unción de densidad es la siguiente, c Construyamos ahora la unción de distribución de : Si < Si < < M.en I, Isabel Patricia Aguilar Juárez UNAM-Facultad de Ingeniería

9 M.en I, Isabel Patricia Aguilar Juárez UNAM-Facultad de Ingeniería 9 Si <, F () dy y Si < <, F () y y dy y dy y Por lo tanto, > < <. ; ; ; ; () P(.5 < <.) F (.) - F (.5) ( ) ( ) PARÁMETROS DE LAS DISTRIBUCIONES DE VARIABLES ALEATORIAS. Con el in de lograr una mejor descripción de una variable aleatoria es necesario utilizar características numéricas, las características numéricas de una variable aleatoria se pueden clasiicar en: - Medidas de tendencia central - Medidas de dispersión - Parámetros de orma

10 .. MEDIDAS DE TENDENCIA CENTRAL Las medidas de tendencia central son importantes ya que serán utilizadas como valores representativos de dicha variable. Dependiendo de la naturaleza del eperimento será más recomendable alguna de ellas. Las tres medidas de tendencia central más importantes son: ) MODA: Es aquel valor en el rango de la variable aleatoria para el cual la unción de probabilidad o de densidad, según sea el caso, alcanza su máimo. ) MEDIANA: La mediana es el valor ~ de la variable aleatoria para el cual la unción de distribución vale.5. Desde luego, es el valor en la rango de la variable aleatoria que divide el rango en dos conjuntos con igual probabilidad; esto es, ~ es tal que: F ( ~ ).5 ) VALOR ESPERADO (MEDIA): El valor esperado de una variable aleatoria, también conocido como media o esperanza matemática, se puede interpretar como el valor que en promedio tomaría una variable aleatoria en un número grande de repeticiones del eperimento, aunque también se puede interpretar como el valor que cabe esperar que tome la variable aleatoria en la siguiente realización del eperimento. El valor esperado de una variable aleatoria se deine como sigue: a. Si es discreta E ( ) µ ( ) b. Si es continua: E( ) µ ( ) d Ejemplo... Calcule el valor esperado de la variable aleatoria con unción de densidad: M.en I, Isabel Patricia Aguilar Juárez UNAM-Facultad de Ingeniería

11 Resolución: ; 9 ( ) ; 9 ; en otro caso E( ) ( ) d d E ( ) µ 5 Veamos qué pasa en el caso discreto. d (9) 5(9) 5 Ejemplo... Si la variable aleatoria tiene la distribución que se muestra en la tabla. Calcule la media, mediana y moda de. Resolución: -5 () Construyamos primero la unción de distribución de La media µ es: E( ) µ () F () E( ) µ 5(.5) (.) (.) (.7) (.) (.) La mediana ~ es el valor para el cual F ( ~ ).5 Como F ().7 <.5 M.en I, Isabel Patricia Aguilar Juárez UNAM-Facultad de Ingeniería

12 y F (). >.5 Entonces ~ Para obtener la moda, observemos que el máimo valor de () es. y se alcanza cuando, entonces: moda m... VALOR ESPERADO Deinición: Si g() es una unción de la variable aleatoria, se deine el valor esperado de g() como: E[ g( )] g( ) g( ) ( ) ( ) d si si es discreta es continua Vale la pena mencionar que el valor esperado es un operador lineal; es decir, tiene las siguientes propiedades: ) Si c es una constante, E(c)c ) Si c es una constante, E(c)cE() ) Si g() es una unción de y h() es otra unción de la misma variable aleatoria, entonces: E[g()h()]E[g()]E[h()].. MEDIDAS DE DISPERSIÓN Las medidas de dispersión se pueden utilizar como herramientas para medir la validez de la media µ como representativa de la variable aleatoria, ya que muestran qué tanto cercanos están, en promedio, los valores de, de µ. Las principales medidas de dispersión se tratan a continuación. M.en I, Isabel Patricia Aguilar Juárez UNAM-Facultad de Ingeniería

13 ) VARIANZA Deinición Si es una variable aleatoria, se deine su varianza como: Por tanto, si es discreta: Var() σ E[(-µ) ] Si es continua: Var ( ) ( ) σ µ ( ) Var( ) σ ( µ ) ( ) d Pues bien, si se desarrolla el cuadrado de la deinición de σ, se obtiene una orma muchas veces más sencilla de calcular a la varianza. Var ( ) σ E[( µ ) ] E( ) µ en donde: E[ y µ es el cuadrado de E(). ] ( ) ( ) d si si es discreta es continua La varianza de una variable aleatoria tiene las siguientes propiedades: ) Si c es una constante, Var(c) ) Si c es una constante Var(c)c Var() Sin embargo, aunque la varianza es una medida de dispersión, es diícil interpretarla ya que sus unidades son cuadráticas, por ser el promedio de valores elevado al cuadrado. Ésta diicultad se puede sortear tomando la raíz cuadrada de la varianza. ) DESVIACIÓN ESTÁNDAR Deinición Si es una variable aleatoria se deine su desviación estándar como la raíz cuadrada de la varianza; es decir: M.en I, Isabel Patricia Aguilar Juárez UNAM-Facultad de Ingeniería

14 σ Var() ) COEFICIENTE DE VARIACIÓN Deinición Sea una variable aleatoria. Se deine su coeiciente de variación como: σ C. V.( ) µ Mide la variación promedio de la variable aleatoria alrededor de la media µ, como una proporción de la misma µ. Por lo tanto, es una medida adimensional. Ejemplo... Cuál es la variabilidad que tiene el número de hijos varones en una amilia de hijos?. Resolución: Sea V la variable aleatoria que representa el número de hijos varones en una amilia de hijos. La unción de probabilidad de es: E()µ Entonces; R {,,.,} () / / / / ( ) M.en I, Isabel Patricia Aguilar Juárez UNAM-Facultad de Ingeniería

15 Var ( ) E ( ) µ () () σ ( ) () () Por lo tanto, la desviación estándar es σ σ Var( ) ; es decir, la dispersión alrededor de la media es, en promedio, / hijos. Esto es: / C. V.( ) / Qué otras características tiene la distribución de la variable aleatoria? Es simétrica? Veamos algunos parámetros de orma... PARÁMETROS DE FORMA ) COEFICIENTE DE SESGO El coeiciente de sesgo es una medida del grado de asimetría de la distribución de la variable aleatoria. Deinición. Sea es una variable aleatoria. Se deine su coeiciente de sesgo como: a ( ) E[( µ ) ] σ El coeiciente de sesgo se compara contra el cero para decidir acerca de la asimetría de la distribución. M.en I, Isabel Patricia Aguilar Juárez UNAM-Facultad de Ingeniería 5

16 a( ) > < La distribución es simétrica La distribución tiene sesgo positivo La distribución tiene sesgo negativo Distribución simétrica Distribución con sesgo positivo Distribución con sesgo negativo ) COEFICIENTE DE CURTOSIS El coeiciente de curtosis de una variable aleatoria es una medida del grado de apuntamiento de la distribución. Deinición. Si es una variable aleatoria, se deine su coeiciente de curtosis como: E[( µ ) ] k ( ) σ El coeiciente de curtosis se compara contra el número que es el coeiciente de curtosis de una distribución normal estándar. Si k() es mayor que signiica que la distribución es más alta que la normal estándar. Esto es: M.en I, Isabel Patricia Aguilar Juárez UNAM-Facultad de Ingeniería 6

17 k( ) > < La distribución es mesocúrtica La distribución es leptocúrtica La distribución es platicúrtica Distribución mesocúrtica Distribución leptocúrtica Distribución platicúrtica M.en I, Isabel Patricia Aguilar Juárez UNAM-Facultad de Ingeniería 7

Unidad III Variables Aleatorias Unidimensionales

Unidad III Variables Aleatorias Unidimensionales Unidad III Variables Aleatorias Unidimensionales En el capítulo anterior se examinaron los conceptos básicos de probabilidad con respecto a eventos que se encuentran en un espacio muestral. Los experimentos

Más detalles

4. Medidas de tendencia central

4. Medidas de tendencia central 4. Medidas de tendencia central A veces es conveniente reducir la información obtenida a un solo valor o a un número pequeño de valores, las denominadas medidas de tendencia central. Sea X una variable

Más detalles

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8)

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8) PROBABILIDAD Y ESTADÍSTICA Sesión 5 (En esta sesión abracamos hasta tema 5.8) 5 DISTRIBUCIONES DE PROBABILIDAD CONTINUAS Y MUESTRALES 5.1 Distribución de probabilidades de una variable aleatoria continua

Más detalles

MEDIDAS DE ASIMETRÍA Y CURTOSIS EMPLEANDO EXCEL

MEDIDAS DE ASIMETRÍA Y CURTOSIS EMPLEANDO EXCEL 1) ASIMETRÍA MEDIDAS DE ASIMETRÍA Y CURTOSIS EMPLEANDO EXCEL Es una medida de forma de una distribución que permite identificar y describir la manera como los datos tiende a reunirse de acuerdo con la

Más detalles

2.5. Asimetría y apuntamiento

2.5. Asimetría y apuntamiento 2.5. ASIMETRÍA Y APUNTAMIENTO 59 variable Z = X x S (2.9) de media z = 0 y desviación típica S Z = 1, que denominamos variable tipificada. Esta nueva variable carece de unidades y permite hacer comparables

Más detalles

Teorema de Bayes. mientras que B tiene una tasa de defectos del 4%.

Teorema de Bayes. mientras que B tiene una tasa de defectos del 4%. Teorema de Bayes Ejemplo: En una empresa manufacturera, una máquina A produce el 60% de la producción total, mientras que una máquina B el restante 40%. 71 El 2% de las unidades producidas por A son defectuosas,

Más detalles

Tema 5: Principales Distribuciones de Probabilidad

Tema 5: Principales Distribuciones de Probabilidad Tema 5: Principales Distribuciones de Probabilidad Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 5: Principales Distribuciones de Probabilidad

Más detalles

Estadística Avanzada y Análisis de Datos

Estadística Avanzada y Análisis de Datos 1-1 Estadística Avanzada y Análisis de Datos Javier Gorgas y Nicolás Cardiel Curso 2006-2007 2007 Máster Interuniversitario de Astrofísica 1-2 Introducción En ciencia tenemos que tomar decisiones ( son

Más detalles

ÍNDICE CAPITULO UNO CAPITULO DOS. Pág.

ÍNDICE CAPITULO UNO CAPITULO DOS. Pág. ÍNDICE CAPITULO UNO Pág. Concepto de Estadística 1 Objetivo 1 Diferencia entre estadísticas y estadística 1 Uso de la estadística 1 Divisiones de la estadística 1 1. Estadística Descriptiva 1 2. Estadística

Más detalles

Medidas de Dispersión

Medidas de Dispersión Medidas de Dispersión Revisamos la tarea de la clase pasada Distribución de Frecuencias de las distancias alcanzadas por las pelotas de golf nuevas: Dato Frecuencia 3.7 1 4.4 1 6.9 1 3.3 1 3.7 1 33.5 1

Más detalles

7. Distribución normal

7. Distribución normal 7. Distribución normal Sin duda, la distribución continua de probabilidad más importante, por la frecuencia con que se encuentra y por sus aplicaciones teóricas, es la distribución normal, gaussiana o

Más detalles

Distribución de Probabilidad Normal

Distribución de Probabilidad Normal Distribución de Probabilidad Normal Departamento de Estadística-FACES-ULA 22 de Diciembre de 2013 Introducción La distribución normal es quizás la distribución de probabilidad para variables aleatorias

Más detalles

Estadística. Estadística

Estadística. Estadística Definición de La trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta de las siguientes

Más detalles

Tema 2: Estadísticos

Tema 2: Estadísticos Bioestadística Tema 2: Estadísticos Tema 2: Estadísticos 1 Parámetros y estadísticos Parámetro: Es una cantidad numérica calculada sobre una población La altura media de los individuos de un país La idea

Más detalles

Teoría de la decisión Estadística

Teoría de la decisión Estadística Conceptos básicos Unidad 7. Estimación de parámetros. Criterios para la estimación. Mínimos cuadrados. Regresión lineal simple. Ley de correlación. Intervalos de confianza. Distribuciones: t-student y

Más detalles

D.2 ANÁLISIS ESTADÍSTICO DE LAS TEMPERATURAS DE VERANO

D.2 ANÁLISIS ESTADÍSTICO DE LAS TEMPERATURAS DE VERANO Anejo Análisis estadístico de temperaturas Análisis estadístico de temperaturas - 411 - D.1 INTRODUCCIÓN Y OBJETIVO El presente anejo tiene por objeto hacer un análisis estadístico de los registros térmicos

Más detalles

DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL

DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL 3.1 INTRODUCCIÓN Como ya sabes, una distribución de probabilidad es un modelo matemático que nos ayuda a explicar los

Más detalles

MODELO DE RESPUESTAS Objetivos del 1 al 9

MODELO DE RESPUESTAS Objetivos del 1 al 9 PRUEBA INTEGRAL LAPSO 05-764 - /9 Universidad Nacional Abierta Probabilidad y Estadística I (Cód. 764) Vicerrectorado Académico Cód. Carrera: 6 Fecha: 0-04-06 MODELO DE RESPUESTAS Objetivos del al 9 OBJ

Más detalles

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico.

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico. Introducción a la Melilla Definición de La trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico

Más detalles

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x)

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x) Matemáticas aplicadas a las CCSS - Derivadas Tabla de Derivadas Función Derivada Función Derivada y k y 0 y y y y y f ) y f ) f ) y n y n n y f ) n y n f ) n f ) y y n y y f ) y n n+ y f ) n y f ) f )

Más detalles

La distribución Normal

La distribución Normal La distribución Normal Apellidos, nombre Martínez Gómez, Mónica ([email protected]) Marí Benlloch, Manuel ([email protected]) Departamento Centro Estadística, Investigación Operativa Aplicadas y Calidad

Más detalles

Distribuciones de Probabilidad Para Variables Aleatorias Continuas

Distribuciones de Probabilidad Para Variables Aleatorias Continuas Distribuciones de Probabilidad Para Variables Aleatorias Continuas Departamento de Estadística-FACES-ULA 20 de Diciembre de 2013 Introducción Recordemos la definición de Variable Aleatoria Continua. Variable

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL PROGRAMA: ESTADISTICA I CÓDIGO ASIGNATURA: 1215-311 PRE-REQUISITO: 1215209 SEMESTRE: 3 UNIDADES DE CRÉDITO:

Más detalles

Herramienta de Alineación Curricular - Resumen a través de las unidades Departamento de Educación de Puerto Rico Matemáticas 8vo Grado

Herramienta de Alineación Curricular - Resumen a través de las unidades Departamento de Educación de Puerto Rico Matemáticas 8vo Grado Unidad 8.3 (Relaciones Eponenciales 8.N.1.1 8.N.1.2 8.N.1.3 1.0 Numeración y Operación Describe los números reales como el conjunto de todos los números decimales y utiliza la notación científica, la estimación

Más detalles

Aplicaciones de la derivada.

Aplicaciones de la derivada. Aplicaciones de la derivada. (Máimos y mínimos) MAXIMOS Y MINIMOS RELATIVOS Entre los valores q puede tener una unción ( ), puede haber uno que sea el más grande y otro que sea el más pequeño. A estos

Más detalles

Distribución Normal Curva Normal distribución gaussiana

Distribución Normal Curva Normal distribución gaussiana Distribución Normal La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. La distribución normal tiene grandes aplicaciones prácticas, en

Más detalles

DISTRIBUCIONES DE PROBABILIDAD (RESUMEN)

DISTRIBUCIONES DE PROBABILIDAD (RESUMEN) DISTRIBUCIONES DE PROBABILIDAD (RESUMEN) VARIABLE ALEATORIA: un experimento produce observaciones numéricas que varían de muestra a muestra. Una VARIABLE ALEATORIA se define como una función con valores

Más detalles

C. Distribución Binomial

C. Distribución Binomial Objetivos de aprendizaje 1. Definir los resultados binomiales 2. Calcular la probabilidad de obtener X éxitos en N pruebas 3. Calcular probabilidades binomiales acumulativas 4. Encontrar la media y la

Más detalles

y con la semiamplitud δ =1. 2.

y con la semiamplitud δ =1. 2. LÍMITE DE UNA FUNCIÓN UNIDAD II II. ENTORNOS Se denomina entorno de un punto a en, al intervalo abierto ( δ a δ ) semiamplitud del intervalo. a, donde δ es la El entorno de a, en notación de conjuntos

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales Tema 5. Muestreo y distribuciones muestrales Contenidos Muestreo y muestras aleatorias simples La distribución de la media en el muestreo La distribución de la varianza muestral Lecturas recomendadas:

Más detalles

El promedio como punto típico de los datos es el valor al rededor del cual se agrupan los demás valores de la variable.

El promedio como punto típico de los datos es el valor al rededor del cual se agrupan los demás valores de la variable. 3. MEDIDAS DE TENDENCIA CENTRAL Con estas medidas se persigue reducir en pocas cifras significativas el conjunto de observaciones de una variable y describir con ellas ciertas características de los conjuntos,

Más detalles

x R F (x) := P (X 1 (, x]) = P ({e Ω : X(e) x}) = P (X x) salvo que en este caso esta función es siempre una función continua.

x R F (x) := P (X 1 (, x]) = P ({e Ω : X(e) x}) = P (X x) salvo que en este caso esta función es siempre una función continua. PROBABILIDAD Tema 2.3: Variables aleatorias continuas Objetivos Distinguir entre variables aleatorias discretas y continuas. Dominar el uso de las funciones asociadas a una variable aleatoria continua.

Más detalles

5. VARIABLES ALEATORIAS Y SUS MOMENTOS

5. VARIABLES ALEATORIAS Y SUS MOMENTOS 5. VARIABLES ALEATORIAS Y SUS MOMENTOS Una variable aleatoria Objetivos Introducir la idea de una variable aleatoria y su distribución y sus características como la media, la varianza, los cuartíles etc.

Más detalles

Análisis de Datos CAPITULO 3: MEDIDAS DE VARIABILIDAD Y ASIMETRÍA

Análisis de Datos CAPITULO 3: MEDIDAS DE VARIABILIDAD Y ASIMETRÍA 1. INTRODUCCIÓN En el tema 1 veíamos que la distribución de frecuencias tiene tres propiedades: tendencia central, variabilidad y asimetría. Las medidas de tendencia central las hemos visto en el tema

Más detalles

Variable Aleatoria. Relación de problemas 6

Variable Aleatoria. Relación de problemas 6 Relación de problemas 6 Variable Aleatoria. Consideremos el experimento aleatorio consistente en lanzar dos dados equilibrados y observar el número máximo de los dos números obtenidos en ellos. Si X es

Más detalles

P (X 5) = P (x = 5) + P (X = 6) + P (X = 7) + P (X = 8) = 0.005416467 + 0.051456432 + 0.79334918 + 0.663420431 = 0.999628249

P (X 5) = P (x = 5) + P (X = 6) + P (X = 7) + P (X = 8) = 0.005416467 + 0.051456432 + 0.79334918 + 0.663420431 = 0.999628249 Hoja 3: robabilidad y variables aleatorias 1. La probabilidad de que un enfermo se recupere tomando un nuevo fármaco es 0.95. Si se les administra a 8 enfermos, hallar: a La probabilidad de que se recuperen

Más detalles

ESTADÍSTICA BÁSICA Dirección Redes en Salud Pública 2015 09 16

ESTADÍSTICA BÁSICA Dirección Redes en Salud Pública 2015 09 16 ESTADÍSTICA BÁSICA Dirección Redes en Salud Pública 2015 09 16 Es el conjunto sistemático de procedimientos para la observación, registro, organización, síntesis y análisis e interpretación de los fenómenos

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 8 Distribución normal estándar y distribuciones relacionadas Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Explicar los conceptos de la distribución

Más detalles

ANÁLISIS ESTADÍSTICO. Estadística descriptivos: Tablas, gráficos, estadísticos descriptivos. Jorge Fallas jfallas56@gmail,com

ANÁLISIS ESTADÍSTICO. Estadística descriptivos: Tablas, gráficos, estadísticos descriptivos. Jorge Fallas jfallas56@gmail,com ANÁLISIS ESTADÍSTICO Estadística descriptivos: Tablas, gráficos, estadísticos descriptivos Jorge Fallas jfallas56@gmail,com 2010 1 Describiendo el set de datos Conocer contexto de los datos Variable, nivel

Más detalles

Selectividad Junio 2007 JUNIO 2007

Selectividad Junio 2007 JUNIO 2007 Bloque A JUNIO 2007 1.- Julia, Clara y Miguel reparten hojas de propaganda. Clara reparte siempre el 20 % del total, Miguel reparte 100 hojas más que Julia. Entre Clara y Julia reparten 850 hojas. Plantea

Más detalles

Tema 11: Intervalos de confianza.

Tema 11: Intervalos de confianza. Tema 11: Intervalos de confianza. Presentación y Objetivos. En este tema se trata la estimación de parámetros por intervalos de confianza. Consiste en aproximar el valor de un parámetro desconocido por

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva 1 Sesión No. 3 Nombre: Estadística descriptiva Contextualización Parte fundamental de la Estadística es la organización de los datos, una forma de realizar esta organización es

Más detalles

Tema 5. Variables aleatorias continuas

Tema 5. Variables aleatorias continuas Tema 5. Variables aleatorias continuas Cuestiones de Verdadero/Falso 1. Muchas medidas numéricas de diversos fenómenos, como por ejemplo errores de medida o medidas antropométricas, pueden modelarse mediante

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Función Derivada Función compuesta Derivada y f x y f x y f g x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Función Derivada Función compuesta Derivada y f x y f x y f g x Tabla de derivadas Función Derivada Función compuesta Derivada k ' 0 ' ' n ' ' ' e ' n n n n ' n ' e a ' ln ln log a a a ' ' e a ln ln a Reglas de derivación log a ' ' ' ' ' ' ' ' ' ln ' ' ' ' e a a '

Más detalles

Ejercicios de Variables Aleatorias

Ejercicios de Variables Aleatorias Ejercicios de Variables Aleatorias Elisa M. Molanes-López, Depto. Estadística, UCM Función de distribución y función de densidad Ejercicio. Sea X una variable aleatoria con función de distribución dada

Más detalles

Cómo describir e interpretar los resultados de un estudio de investigación quirúrgica? Variables cuantitativas

Cómo describir e interpretar los resultados de un estudio de investigación quirúrgica? Variables cuantitativas Cómo describir e interpretar los resultados de un estudio de investigación quirúrgica? Variables cuantitativas Sesión de Residentes 13 de febrero, 2012 ÍNDICE Diferencia entre población y muestra. Diferencia

Más detalles

3. Análisis univariable y bivariable

3. Análisis univariable y bivariable FUOC P01/71039/00748 36 Investigación descriptiva: análisis de información 3. Análisis univariable y bivariable 3.1. Análisis univariable Como se ha visto, los métodos de análisis univariable se utilizan

Más detalles

4.1. Qué ES UNA DISTRIBUCIÓN DE LA PROBABILIDAD?

4.1. Qué ES UNA DISTRIBUCIÓN DE LA PROBABILIDAD? 4.1. Qué ES UNA DISTRIBUCIÓN DE LA PROBABILIDAD? INTRODUCCIÓN. Una distribución de probabilidad indica toda la gama de valores que pueden representarse como resultado de un experimento. Una distribución

Más detalles

Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA

Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Fuente: PreUniversitario Pedro de Valdivia Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación susceptible de llevar a la forma a + b + c = 0,

Más detalles

LA DISTRIBUCIÓN NORMAL

LA DISTRIBUCIÓN NORMAL LA DISTRIBUCIÓN NORMAL En estadística y probabilidad se llama distribución normal, distribución de Gauss o distribución gaussiana, a una de las distribuciones de probabilidad que con más frecuencia aparece

Más detalles

CONCEPTOS BÁSICOS DE ESTADÍSTICA

CONCEPTOS BÁSICOS DE ESTADÍSTICA Organización de la información Presentación de datos Realizado el experimento o finalizada la investigación, el investigador ha recopilado un conjunto de datos u observaciones los cuales requieren ser

Más detalles

Estadística Descriptiva. SESIÓN 12 Medidas de dispersión

Estadística Descriptiva. SESIÓN 12 Medidas de dispersión Estadística Descriptiva SESIÓN 12 Medidas de dispersión Contextualización de la sesión 12 En la sesión anterior se explicaron los temas relacionados con la desviación estándar, la cual es una medida para

Más detalles

El supermercado XYZ desea conocer el comportamiento del mismo en una sola hora de un día típico de trabajo.

El supermercado XYZ desea conocer el comportamiento del mismo en una sola hora de un día típico de trabajo. El supermercado XYZ desea conocer el comportamiento del mismo en una sola hora de un día típico de trabajo. El supermercado cuenta con 3 departamentos: Abarrotes, Embutidos y. Solamente el Departamento

Más detalles

4.2. Continuidad de una función en un punto. (A) Una función f es continua en un punto x=a, cuando se cumplen las siguientes condiciones:

4.2. Continuidad de una función en un punto. (A) Una función f es continua en un punto x=a, cuando se cumplen las siguientes condiciones: 4. CONTINUIDAD DE UNA FUNCIÓN. 4.. Noción intuitiva de continuidad de una unción en un punto. La mayor parte de las unciones que manejamos a nivel elemental, presentan en sus gráicas una propiedad característica

Más detalles

Distribuciones de Probabilidad, Binomial& Otros (Cap. 5) Math. 298 Prof. Gaspar Torres Rivera

Distribuciones de Probabilidad, Binomial& Otros (Cap. 5) Math. 298 Prof. Gaspar Torres Rivera Distribuciones de robabilidad, inomial& Otros (Cap. 5) Math. 9 rof. aspar Torres Rivera Distribución de robabilidad Def. Es la distribución de las probabilidades asociadas con cada uno de los valores de

Más detalles

EJERCICIOS RESUELTOS TEMA 7

EJERCICIOS RESUELTOS TEMA 7 EJERCICIOS RESUELTOS TEMA 7 7.1. Seleccione la opción correcta: A) Hay toda una familia de distribuciones normales, cada una con su media y su desviación típica ; B) La media y la desviaciones típica de

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Estadística descriptiva. Representación de datos descriptivos

Estadística descriptiva. Representación de datos descriptivos 6 Estadística descriptiva. Representación de datos descriptivos Alberto Rodríguez Benot Rodolfo Crespo Montero 6.1. Introducción Tal como vimos en la introducción, la estadística descriptiva comprende

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD Se llama variable aleatoria a toda función que asocia a cada elemento del espacio muestral E un número real. Una variable aleatoria discreta es aquella que sólo puede tomar

Más detalles

RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO. M.Sc. Roberto Solé M.

RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO. M.Sc. Roberto Solé M. FACTORES DETERMINANTES DEL PRECIO DE LAS ACCIONES: Riesgo Se puede examinar ya sea por su relación con un: Activo individual Cartera Rendimiento RIESGO: En un concepto básico es la probabilidad de enfrentar

Más detalles

TEMA 5 FUNCIONES ELEMENTALES II

TEMA 5 FUNCIONES ELEMENTALES II Tema Funciones elementales Ejercicios resueltos Matemáticas B º ESO TEMA FUNCIONES ELEMENTALES II Rectas EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas

Más detalles

PRÁCTICA 1. Mediciones

PRÁCTICA 1. Mediciones PRÁCTICA 1 Mediciones Objetivo General El alumno determinará la incertidumbre de las mediciones. Objetivos particulares 1. El alumno determinará las incertidumbres a partir de los instrumentos de medición..

Más detalles

Distribución Normal. Universidad Diego Portales Facultad de Economía y Empresa. Estadística I Profesor: Carlos R. Pitta

Distribución Normal. Universidad Diego Portales Facultad de Economía y Empresa. Estadística I Profesor: Carlos R. Pitta Distribución Normal La distribución normal (O Gaussiana) se define como sigue: En donde y >0 son constantes arbitrarias. Esta función es en realidad uno de las más importantes distribuciones de probabilidad

Más detalles

Test de Kolmogorov-Smirnov

Test de Kolmogorov-Smirnov Test de Kolmogorov-Smirnov Georgina Flesia FaMAF 2 de junio, 2011 Test de Kolmogorov-Smirnov El test chi-cuadrado en el caso continuo H 0 : Las v.a. Y 1, Y 2,..., Y n tienen distribución continua F. Particionar

Más detalles

Unidad Temática 5 Estimación de parámetros: medias, varianzas y proporciones

Unidad Temática 5 Estimación de parámetros: medias, varianzas y proporciones Unidad Temática 5 Estimación de parámetros: medias, varianzas y proporciones Responda verdadero o falso. Coloque una letra V a la izquierda del número del ítem si acepta la afirmación enunciada, o una

Más detalles

Soluciones Examen de Estadística

Soluciones Examen de Estadística Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación 15 de Febrero, 5 Cuestiones horas C1. Un programa se ejecuta desde uno cualquiera de cuatro periféricos A, B, C y D con arreglo

Más detalles

b) Haz otra distribución en 12 intervalos de la amplitud que creas conveniente.

b) Haz otra distribución en 12 intervalos de la amplitud que creas conveniente. Página EJERCICIOS Y PROBLEMAS PROPUESTOS PARA PRACTICAR Deseamos hacer una tabla con datos agrupados a partir de datos, cuyos valores extremos son 9 y. a) Si queremos que sean 0 intervalos de amplitud,

Más detalles

Ejercicios de Vectores Aleatorios

Ejercicios de Vectores Aleatorios Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO MAGISTRAL GRADO EN INGENIERÍA DE SISTEMAS AUDIOVISUALES Otros M2 Calcular la función de densidad conjunta y las marginales

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B 1. Queremos invertir una cantidad de dinero en dos tipos

Más detalles

Pruebas de bondad de ajuste

Pruebas de bondad de ajuste Pruebas de bondad de ajuste Existen pruebas cuantitativas formales para determinar si el ajuste de una distribución paramétrica a un conjunto de datos es buena en algún sentido probabilístico. Objetivo:

Más detalles

FUNCIONES Y GRÁFICAS

FUNCIONES Y GRÁFICAS FUNCIONES Y GRÁFICAS 1. DEPENDENCIA ENTRE MAGNITUDES Relaciones dadas por tablas En una clase de laboratorio un alumno ha medido la temperatura de un líquido según se calentaba. Los resultados del eperimento

Más detalles

Funciones y notación de funciones DEFINICIÓN DE FUNCIÓN REAL DE UNA VARIABLE REAL

Funciones y notación de funciones DEFINICIÓN DE FUNCIÓN REAL DE UNA VARIABLE REAL SECCIÓN P. Funciones sus gráicas 9 P. Funciones sus gráicas Usar la notación de unción para representar evaluar unciones. Encontrar el dominio recorrido o rango de una unción. Trazar la gráica de una unción.

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD VARIABLE ALEATORIA Una variable x valuada numéricamente varía o cambia, dependiendo del resultado particular del experimento que se mida. Por ejemplo, suponga que se tira

Más detalles

Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias

Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias Estadística Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Noviembre 2010 Contenidos...............................................................

Más detalles

El promedio como punto típico de los datos es el valor al rededor del cual se agrupan los demás valores de la variable.

El promedio como punto típico de los datos es el valor al rededor del cual se agrupan los demás valores de la variable. TEMA 3: ESTADÍSTICA DESCRIPTIVA 3.1 Conceptos fundamentales Es el conjunto de procedimientos y técnicas empleadas para recolectar, organizar y analizar datos, los cuales sirven de base para tomar decisiones

Más detalles

ESTADÍSTICA INFERENCIAL

ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 9 Nombre: Pruebas de hipótesis referentes al valor de la media de la población Contextualización Los métodos estadísticos y las técnicas de

Más detalles

{( ) ( ) ( ) ( )} 4. FUNCIONES. B y f es una función de A en B definida por y = x 2 1, = x + 3, encuentra 5 pares que pertenezcan a la

{( ) ( ) ( ) ( )} 4. FUNCIONES. B y f es una función de A en B definida por y = x 2 1, = x + 3, encuentra 5 pares que pertenezcan a la 4 FUNCIONES 4 Conceptos básicos Sean A y B dos conjuntos dados, una unción de A en B es una regla de correspondencia que asigna a cada elemento de A uno y solamente uno de B En una unción: A es el dominio

Más detalles

Distribuciones Dis de Probabilidad Pr Contínuas Jhon Jairo Jair Pa P dilla a Aguilar, Aguilar PhD. PhD

Distribuciones Dis de Probabilidad Pr Contínuas Jhon Jairo Jair Pa P dilla a Aguilar, Aguilar PhD. PhD Distribuciones de Probabilidad Contínuas Jhon Jairo Padilla Aguilar, PhD. Introducción En esta sección se estudiarán algunas distribuciones de probabilidad contínuas que son bastante utilizadas en ingeniería

Más detalles

ANÁLISIS CUANTITATIVO DE DATOS EN CIENCIAS SOCIALES CON EL SPSS (I) Tablas de contingencia y pruebas de asociación

ANÁLISIS CUANTITATIVO DE DATOS EN CIENCIAS SOCIALES CON EL SPSS (I) Tablas de contingencia y pruebas de asociación ANÁLISIS CUANTITATIVO DE DATOS EN CIENCIAS SOCIALES CON EL SPSS (I) Tablas de contingencia y pruebas de asociación Francisca José Serrano Pastor Pedro A. Sánchez Rodríguez - Implica siempre a variables

Más detalles

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria 2. Probabilidad y variable aleatoria Curso 2011-2012 Estadística 2. 1 Probabilidad 2 Experimento Aleatorio EL término experimento aleatorio se utiliza en la teoría de la probabilidad para referirse a un

Más detalles

PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS

PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS 1 1. DATOS INFORMATIVOS PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS MATERIA: ESTADISTICA CODIGO: 11715 CARRERA: INGENIERIA DE SISTEMAS NIVEL: TERCERO

Más detalles

Modelo EOQ con Demanda Incierta. Teoría de Inventarios Modelo Probabilísticos. Demanda durante el Lead Time 18/04/2009

Modelo EOQ con Demanda Incierta. Teoría de Inventarios Modelo Probabilísticos. Demanda durante el Lead Time 18/04/2009 Universidad Técnica Federico Santa María Teoría de Inventarios Modelo Probabilísticos Daniel Basterrica Modelo EOQ con Demanda Incierta Lead Time no nulo Demanda aleatoria durante

Más detalles

TEMA 1: Funciones elementales

TEMA 1: Funciones elementales MATEMATICAS TEMA 1 CURSO 014/15 TEMA 1: Funciones elementales 8.1 CONCEPTO DE FUNCIÓN: Una función es una ley que asigna a cada elemento de un conjunto un único elemento de otro. Con esto una función hace

Más detalles

TEMAS SELECTOS DE MATEMÁTICAS II

TEMAS SELECTOS DE MATEMÁTICAS II MATERIAL PARA PREPARAR EL EXAMEN DE TEMAS SELECTOS DE MATEMÁTICAS II Profesor: Rubén Oscar Costiglia Garino PREFECO David Alfaro Siqueiros MEDIAS 1. Dados los números 13 y 23 calcula: a. La media aritmética

Más detalles

Asignatura: Horas: Total (horas): Obligatoria X Teóricas 4.5 Semana 4.5 Optativa Prácticas 0.0 16 Semanas 72.0

Asignatura: Horas: Total (horas): Obligatoria X Teóricas 4.5 Semana 4.5 Optativa Prácticas 0.0 16 Semanas 72.0 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO Aprobado por el Consejo Técnico de la Facultad de Ingeniería en su sesión ordinaria del 19 de noviembre de 2008 PROBABILIDAD

Más detalles

1. Distribución Normal estándar

1. Distribución Normal estándar Distribución Normal estándar y cuadrados mínimos Universidad de Puerto Rico ESTA 3041 Prof. Héctor D. Torres Aponte 1. Distribución Normal estándar En efecto, todas las distribuciones Normales son lo mismo

Más detalles

Variables aleatorias

Variables aleatorias Ejemplo: Suponga que un restaurant ofrecerá una comida gratis al primer cliente que llegue que cumpla años ese día. Cuánto tiene que esperar el restaurant para que la primera persona cumpliendo años aparezca?

Más detalles

Distribuciones bidimensionales. Regresión.

Distribuciones bidimensionales. Regresión. Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 5: Distribuciones bidimensionales. Regresión. Resumen teórico Resumen teórico de los principales conceptos estadísticos

Más detalles

Contenidos mínimos 4B ESO. 1. Contenidos. Bloque I: Aritmética y álgebra.

Contenidos mínimos 4B ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. Contenidos mínimos 4B ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Clasificar distintos tipos de números: naturales, enteros, racionales y reales. 2. Operar con números reales y aplicar las propiedades

Más detalles

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano.

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano. Plano cartesiano El plano cartesiano se forma con dos rectas perpendiculares, cuyo punto de intersección se denomina origen. La recta horizontal recibe el nombre de eje X o eje de las abscisas y la recta

Más detalles

FUNCIONES CUADRÁTICAS. PARÁBOLAS

FUNCIONES CUADRÁTICAS. PARÁBOLAS FUNCIONES CUADRÁTICAS. PARÁBOLAS 1. FUNCIONES CUADRÁTICAS Representemos, en función de la longitud de la base (x), el área (y) de todos los rectángulos de perímetro 1 metros. De ellos, cuáles son las medidas

Más detalles

Trabajo Práctico N 1: Números enteros y racionales

Trabajo Práctico N 1: Números enteros y racionales Matemática año Trabajo Práctico N 1: Números enteros y racionales Problemas de repaso: 1. Realiza las siguientes sumas y restas: a. 1 (-) = b. 7 + (-77) = c. 1 (-6) = d. 1 + (-) = e. 0 (-0) + 1 = f. 0

Más detalles

Probabilidad. Distribuciones binomial y normal

Probabilidad. Distribuciones binomial y normal Tema 7 Probabilidad. Distribuciones binomial y normal 7.1. Introducción En este tema trataremos algunas cuestiones básicas sobre Probabilidad. Tanto la Probabilidad como la Estadística son dos campos de

Más detalles

ANÁLISIS DE DATOS MULTIDIMENSIONALES

ANÁLISIS DE DATOS MULTIDIMENSIONALES ANÁLISIS DE DATOS MULTIDIMENSIONALES INTRODUCCIÓN DISTRIBUCIÓN DE FRECUENCIAS MULTIDIMENSIONAL DISTRIBUCIONES MARGINALES DISTRIBUCIONES CONDICIONADAS INDEPENDENCIA ESTADÍSTICA ESTUDIO ANALÍTICO DE DISTRIBUCIONES

Más detalles

APLICACIONES DE LA DERIVADA I. Ejercicios a resolver en la práctica. = x + 2. Determina y clasifica los puntos o valores

APLICACIONES DE LA DERIVADA I. Ejercicios a resolver en la práctica. = x + 2. Determina y clasifica los puntos o valores UNIVERSIDAD SIMÓN BOLÍVAR Enero-Marzo 010 DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS MATEMÁTICA I (MA-1111) Fecha de publicación: 0-0-010 Contenido Tercer Parcial APLICACIONES DE LA DERIVADA I Contenidos

Más detalles

UNIDAD II FUNCIONES. Ing. Ronny Altuve Esp.

UNIDAD II FUNCIONES. Ing. Ronny Altuve Esp. República Bolivariana de Venezuela Universidad Alonso de Ojeda Administración Mención Gerencia y Mercadeo UNIDAD II FUNCIONES Ing. Ronny Altuve Esp. Ciudad Ojeda, Septiembre de 2015 Función Universidad

Más detalles

Capítulo II Límites y Continuidad

Capítulo II Límites y Continuidad (Apuntes en revisión para orientar el aprendizaje) INTRODUCCIÓN Capítulo II Límites y Continuidad El concepto de límite, después del de función, es el fundamento matemático más importante que ha cimentado

Más detalles