Una función constante. Figura 7.1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Una función constante. Figura 7.1"

Transcripción

1 Caítulo 7 Ecuación de la recta Vamos a ver que, si a y b son dos números reales, el gráfico de la función f() =a+b es una recta. Si a =0entonces f() =bes la función constante: su gráfico, (figura 7.1) es una recta aralela al eje. b 0 Una función constante Figura 7.1 Suongamos a 6= 0y b=0, entonces el gráfico de f() =a es una recta que asa or (0; 0), como en la figura 7., ues basta observar que: Si 6= 0; (; y) recta () y = tan = a y Una recta or el origen Figura 7. El número a = tan se llama la endiente de la recta. Si a 6= 0y b6=0entonces el gráfico de f() =a + b es una recta aralela a la anterior que asa or el unto (0; b), como en la figura 7.3. Diremos que la ecuación y = a + b es la ecuación de una recta, o que la recta es el lugar geométrico de los untos del lano que satisfacen la ecuación. Esto significa que un unto P de coordenadas (0; y0), está en la recta, si y sólo si sus coordenadas satisfacen la igualdad: y0 = a0 + b. En la ecuación y = a+b aarece la y «desejada». En general, una ecuación lineal A+By+C =0, donde A y B no son nulas simultaneamente, reresenta una recta, orque si B 6= 0, desejando y obtenemos y = A B C B, que es la recta de endiente C A B.SiB =0y A6=0la ecuación A + C =0 reresenta la recta aralela al eje y or el unto. A En una recta vertical, es decir donde el ángulo ángulo es diremos que tiene «endiente infinita». Esta recta vertical no es el gráfico de ninguna función, (figura 7.4). Por esta razón es referible

2 94 Ecuación de la recta y b y=a+b y=a b a Recta con endiente a, que corta el eje de las ordenadas (eje y) en el unto (0; b) Figura 7.3 tan = a -C/A Figura 7.4 Recta vertical ensar en términos de «ecuación de la recta» o de «lugar geométrico» como un conjunto de untos cuyas coordenadas satisfacen una ecuación, en vez de ensar en términos de gráficos (de funciones). Obtenemos así todas las rectas del lano, incluso las verticales. 7.1 Geometría Analítica: método de las coordenadas El introducir coordenadas en el lano, y caracterizar conjuntos de untos como curvas o regiones mediante ecuaciones, nos ermite estudiar las roiedades geométricas de esos conjuntos, usando ara ello las roiedades de las ecuaciones que las reresentan. Este método se llama Geometría Analítica, y fue rouesto indeendientemente or Pierre Fermat ( ) y or René Descartes ( ). No es realmente una nueva geometría sino un método ara estudiar geometría. Vamos a comenzar estudiando las rectas y circunferencias en el lano. El rimer roblema es encontrar la ecuación de una recta que tiene ciertas roiedades o restricciones. 7. Ecuación de una recta que asa or un unto P Si el unto P tiene coordenadas (0; y0) y la recta y = a + b tiene que asar or P, entonces las coordenadas (0; y0)deben satisfacer la ecuación, es decir y0 = a0 + b. Eliminando b de las ecuaciones, esto es, restando miembro a miembro y = a + b y0 = a0 + b obtenemos y y0 = a( 0), que es la ecuación general de la recta que asa or P, (figura 7.). Observe que si la recta no es vertical, es decir 0 6= 0 entonces odemos dividir or 0 y obtenemos que a = y y0 es la endiente de la recta. 0

3 7.3 Recta que asa or dos untos 9 y y 0 P 0 Recta or un unto P (0; y0) Figura 7. Por suuesto que hay infinitas rectas que asan or P. Cada valor arbitrario que demos a la endiente a, determina una recta or P. Observación Interesante: El número de rectas que asa or un unto P es infinito. La endiente, el número a, da una biyección entre R y todas las rectas no verticales or P. Hay entonces un «continuo» de rectas or P, ero las roiedades «geométricas» de este continuo difieren de las de R, uesto que eiste una recta vertical. Si trazamos una circunferencia de centro P, cada recta or P está determinada or dos untos ouestos q y q 0 en la circunferencia, (figura 7.6) y la recta vertical determinada or el diámetro vertical. La geometría de las rectas or P se arece más a la de la circunferencia que a la de P Q' Q Todas las rectas or un unto Figura 7.6 R. 7.3 Recta que asa or dos untos Si tenemos dos untos distintos, P1 de coordenadas (1; y1) y P de coordenadas (; y), entonces eiste una única recta que asa or ambos. Para encontrar la ecuación de esta recta, escribimos la ecuación de una recta genérica que ase or P1: y y1 = a( 1), (figura 7.7) y onemos la condición de que esta recta ase or P: y y1 = a( 1) entonces, si la recta no es vertical, es decir si 1 6= 0, odemos calcular a = y y1 y y1 = ( 1) 1 y y1 1 y obtenemos entonces finalmente la ecuación Si la recta es vertical, es decir si = 1, la ecuación es: = 1 (= ) 7.4 Rectas Paralelas Dos rectas no verticales, son aralelas si y sólo si tienen la misma endiente. Las ecuaciones serán y = a + b y y = a + b 0. Por ejemlo: halle la ecuación de la recta aralela a una dada y que asa or el unto P de coordenadas (0; y0). Dada la recta y = k + b, escribimos la ecuación general de las rectas que asan or P, (figura 7.8) y y0 = a( 0) y fijamos el valor a = k. la ecuación y y0 = k( 0) esta totalmente determinada or el valor k R. Hemos encontrado una eresión

4 96 Ecuación de la recta y-y 1 P 1 P La recta or dos untos Figura P y=k+b Recta aralela or un unto P Figura 7.8 analítica del ostulado de Euclides: or un unto eterior a una recta, se uede trazar una única recta aralela a ella. Si la recta hubiera sido vertical, de ecuación = c, entonces la aralela or P hubiera tenido ecuación = Rectas Perendiculares Veamos que dos rectas (no verticales) con endientes a y a 0, son erendiculares si y sólo si las endientes satisfacen la relación a = 1 a 0 (o aa0 = 1) (figura 7.9). En efecto, si la recta y = a 0 + b 0 es erendicular a la recta y = a + b entonces 0 a = tan( + ) = 1 = 1 tan a π/ γ=π/+ Pendientes de rectas erendiculares Figura 7.9

5 7. Rectas Perendiculares 97 Ejemlo: Hallar la ecuación de la recta que asa or P (0; y0)y es erendicular a la recta y = a + b. Sabemos que la ecuación general de la recta que asa or el unto P es y y0 = m( 0). Luego, como esta recta debe ser erendicular a la anterior, entonces m = 1 a y, or lo tanto, la ecuación es y y0 = 1 a ( 0). 1. Determinar cuáles de los untos (3; 1), (; 3), (6; 3), ( 3; 3), (3; 1), ( ; 1) están situados en la recta 3y 3=0y cuáles no lo están.. Los untos A; B; C; D; E están situados en la recta 3 y 6=0sus abcisas son 4, 0,, -, -6 resectivamente. Determinar las ordenadas de esos untos. 3. Determinar los untos de intersección de la recta 3y 1=0con los ejes coordenados y dibujar la recta en el lano. 4. Hallar los untos de intersección de las rectas 3 4y = 9 +y = 19. Los lados de un triángulo están sobre las rectas 4 +3y =; 3y+10=0; = Determinar las coordenadas de sus vértices. 6. Un aralelogramo tiene dos de sus lados sobre las rectas 8 +3y+1=0;+ y=1y una de sus diagonales sobre la recta 3 +y+3=0determinar las coordenadas de sus vértices. 7. Dada la recta +3y+4=0, hallar la ecuación de la recta que asa or el unto (,1) y es (a) aralela a la recta dada. (b) erendicular a la reta dada 8. Hallar las ecuaciones de las rectas que asan or los vértices del triángulo A(; 4), B( 1; 3), C( 3; ) y son aralelas al lado ouesto. 9. Dados los untos medios de los lados de un triángulo M1(; 1), M(; 3), M3(3; 4) hallar las ecuaciones de sus lados. 10. La altura es la recta que asa or un vértice del triángulo y es erendicular al lado ouesto. Dados los vértices del triángulo A(; 1), B( 1; 1), C(3; ) hallar las ecuaciones de sus alturas. 11. La mediana es la recta que une un vértice de un triángulo con el unto medio de su lado ouesto. Dados los vértices del triángulo A(1; 1), B( ; 1), C(3; ) hallar la ecuación de la erendicular bajada desde el vértice A a la mediana trazada desde el vértice B. 1. Hallar las ecuaciones de los lados y de las medianas del triángulo que tiene como vértices A(3; ), B(; ), C(1; 0). 13. Dados los vértices consecutivos de un cuadrilátero conveo A( 3; 1), B(3; 9), C(7; 6), D( ; 6) determinar el unto de intersección de sus diagonales. 14. Hallar en la recta y =0un unto P de manera que la suma de sus distancias a los untos ( 7; 1), ( ; ) sea mínima. 1. Hallar la endiente y la ordenada en el origen, b, de la recta 3 +y= Pruebe que la ecuación de la recta que corta al eje X en (a; 0) yalejey en (0; b)es + y =1. a b ( Hay restricciones?). 17. Hallar la ecuación de la recta que asa or P ( 1; ) y es aralela a la recta que asa or A( ; 1) y B( 3; ). 18. Halle la ecuación de la recta que asa or A( ; ) y que es erendicular a la recta + y = 4. Encontrar el unto de corte de ambas rectas. 19. Dibuje las rectas 4 + y =1y 8 + y =1. Son estas rectas erendiculaes o aralelas? 10

6 98 Ecuación de la recta 0. Encuentre una fórmula ara el ángulo entre dos rectas que se cortan y = a + b y y = c + d, en términos de a y c (las endientes de las rectas dadas). 1. Halle el ángulo de corte de las dos rectas 3 y 1=0y 4 y=1. Determinar el ángulo formado or las rectas: (a) y +7=0; 3 +y =0 (b) 3 y +7=0; +3y 3=0 (c) y 47 = 0; 4y +3=0 (d) 3 y 1=0; y+3=0 3. El unto ( 4; ) es un vértice del cuadrado cuya diagonal está en la recta 7 y =0. Hallar las ecuaciones de los lados y de la otra diagonal. 4. Desde el unto ( ; 3) se dirige hacia el eje un rayo de luz con una inclinación de un ángulo. Se sabe que tan =3. Hallar las ecuaciones de las rectas en las que están los rayos incidente y reflejado.. Demostrar que la ecuación de la recta que asa or el unto M y es aralela a la recta A + By + C =0, uede escribirse A( 1) +B(y y1)=0 6. La mediatriz es la recta que trazada or el unto medio de un lado de un triángulo es erendicular a dicho lado. Hallar las mediatrices del triángulo que tiene como vértices A(3; ), B(; ), C(1; 0). 7. Si ; son enteros ositivos, demostrar que las coordenadas del unto P (; y) el cual divide al segmento de recta P1P en la razón, es decir, jp1pj jp1pj =, vienen dadas or las fórmulas +( = )1 y +( )y1 ; y= siendo (1; )las coordenadas del unto P1 y (; y)las del unto P. 8. Escribir las ecuaciones de las mediatrices de los lados del triángulo de vértices A(; 3), B( ; 1), C(3; ) y determinar las coordenadas del circuncentro (se llama así al unto en que se cortan las mediatrices y es el centro de la circunferencia circunscrita al triángulo dado). 9. Hallar las ecuaciones de las dos rectas que forman ángulo de 4 con la recta y + =0y que asan or el origen de coordenadas. 30. Hallar la ecuación de la bisectriz del ángulo agudo formado or las rectas r1 y r definidas de la siguiente forma: r1 asa or el unto A(1; ) y forma un ángulo de 4 con la dirección ositiva del eje, r asa or el unto B(; 6) y corta el eje en un unto c tal que el área del triángulo ABC es igual a Dada la recta r1 de ecuación y 3 =4y el unto P (1; 3) (a) Hallar la ecuación de la recta que ara or P y es erendicular a r1. (b) Hallar una fórmula ara la distancia desde un unto Q =(0;y0)a una recta r = fa + by + c =0g, donde a; b; c; 0; y0 R. 3. Hallar las ecuaciones de las medianas del triángulo de vértices A(3; ), B(3; 4), C( 1; 1) y comrobar que las tres medianas se intersectan en un unto. 33. Demostrar que los segmentos de recta que unen los untos medios consecutivos de los lados de un cuadrilátero cualquiera forman un aralelogramo. 34. Por un unto P cualquiera del lano asan infinitas rectas. El conjunto de estas infinitas rectas se llama haz de rectas de vértice P. Sea r1 una recta de ecuación A1 + B1y + C1 = 0yrotra recta de ecuación A + By + C =0(no aralela a la anterior) y sea un número real cualquiera. Demostrar que la ecuación: A1 + B1y + C1 + (A + By + C) =0 reresenta un haz de rectas cuyo vértice es el unto de intersección de r1 y r.

7 7. Rectas Perendiculares Utilizando lo arendido en el ejercicio anterior y sin hallar las coordenadas del unto de intersección de r1 y r contestar las siguientes reguntas, siendo las ecuaciones de r1 : +3y =0 yder : 3 +y 8=0 (a) Hallar la recta del haz que asa or (1; 3). (b) Hallar la recta del haz aralela al eje. (c) Idem aralela el eje y. (d) Idem erendicular a la recta + y 7=0. (e) Hallar la recta del haz que forma un triángulo isósceles con los ejes de coordenadas. ejercicio 36 Figura Determinar un triángulo ABC conociendo un unto A, la longitud del lado BC, la endiente de la recta sobre la que se encuentra el lado BC y sabiendo que ^B = ^C y que el unto P está sobre la recta BC. Datos: A(; 3); P(0; 1); mbc = 1 ;jbcj = Solución: la recta r está comletamente determinada ues conocemos un unto y la endiente. El roblema se reduce a trazar desde A dos rectas AB y AC que forman ángulos iguales con r y tales que determinen un segmento sobre r de longitud dada igual a. Una forma simle de resolverlo, vea la figura 7.10, teniendo en cuenta que la altura AL asa or el unto medio de BC, es determinar las coordenadas del unto L y llevar a cada lado de L segmentos de longitud jbcj y hallando los untos B y C. Ecuación de la recta AL que asa or A y es erendicular a r: mal = 1 mbc = AL : y 3= ( ) ) y = +7 Ecuación recta BC : y 1= 1 ( 0) ) y = +1 Coordenadas del unto L, intersección de AL y BC: y = +7 y= =) +1 8 < : 0= 1 +6)= ; y = 11 L( 1 ; 11 ) jblj = jlcj = 1 jbcj = 1 = Como se conoce la endiente de BC, mediante una simle regla de tres, que resulta de alicar el teorema de Thales, se determinan los incrementos que debemos dar a la abcisa y ordenada de L ara obtener las coordenadas de C y B

8 100 Ecuación de la recta ejercicio 36 Figura 7.11 = ) = 1 = ) y = y XC = L + B =L YC =yl+y yb =yl y C = 1 + B = 1 yc = 11 + yc = 11 Queda determinado el triángulo ABC or las coordenadas de los tres vértices: 1 A (; 3); B 11 1 ; ; C + 11 ; + :

LA RECTA. Ax By C 0. y y m x x. y mx b. Geometría Analítica 2 ECUACIÓN GENERAL. Teorema: ECUACIÓN PUNTO - PENDIENTE .

LA RECTA. Ax By C 0. y y m x x. y mx b. Geometría Analítica 2 ECUACIÓN GENERAL. Teorema: ECUACIÓN PUNTO - PENDIENTE . LA RECTA En geometría definimos a la recta como la sucesión infinita de puntos uno a continuación de otro en la misma dirección. En el plano cartesiano, la recta es el lugar geométrico de todos los puntos

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS EJERCICIOS PROPUESTOS ) Dadas las coordenadas del punto A(, ). Hallar la ecuación de la recta (r) paralela al eje por dicho punto. Hallar la ecuación de la recta (p) paralela al eje por dicho punto. )

Más detalles

PROBLEMAS METRICOS. r 3

PROBLEMAS METRICOS. r 3 PROBLEMAS METRICOS 1. Hallar el área del triángulo de vértices A(1,1), B(2,3) y C(5,2). 2. Halla las ecuaciones de las bisectrices determinadas por las rectas y=3x e y=1/3 x. Comprueba que ambas bisectrices

Más detalles

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA AÑO 014 CURSO PREPARATORIO DE INGENIERÍA CPI-014 TRASLACIÓN Y/O

Más detalles

Geometría Analítica Enero 2016

Geometría Analítica Enero 2016 Laboratorio #1 Distancia entre dos puntos I.- Halle el perímetro del triángulo cuyos vértices son los puntos dados 1) ( 3, 3), ( -1, -3), ( 4, 0) 2) (-2, 5), (4, 3), (7, -2) II.- Demuestre que los puntos

Más detalles

APUNTES DE MATEMÁTICAS 1º BACHILLERATO TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS

APUNTES DE MATEMÁTICAS 1º BACHILLERATO TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS APUNTES DE MATEMÁTICAS TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS º BACHILLERATO ÍNDICE. ECUACIONES DE LA RECTA EN EL PLANO.... 4.. SISTEMAS DE REFERENCIA... 4.. COORDENADAS DE UN PUNTO... 4.3. COORDENADAS

Más detalles

TEMA 8 GEOMETRÍA ANALÍTICA

TEMA 8 GEOMETRÍA ANALÍTICA Tema 8 Geometría Analítica Matemáticas 4º ESO TEMA 8 GEOMETRÍA ANALÍTICA RELACIÓN ENTRE PUNTOS DEL PLANO EJERCICIO : Halla el punto medio del segmento de extremos P, y Q4,. Las coordenadas del punto medio,

Más detalles

MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares.

MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares. ESTUDIO ANALÍTICO DE LA LÍNEA RECTA Y APLICACIONES SEMESTRE II VERSIÓN 03 FECHA: Septiembre 29 de 2011 MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA LOGROS: 1. Hallar la dirección, la

Más detalles

EJERCICIOS Nº 10: GEOMETRIA ANALITICA. se extiende hacia cada extremo en una longitud igual a su longitud original. Halle las coordenadas de

EJERCICIOS Nº 10: GEOMETRIA ANALITICA. se extiende hacia cada extremo en una longitud igual a su longitud original. Halle las coordenadas de EJERCICIOS Nº 1: GEOMETRIA ANALITICA 1) Determine x si el punto A (x,3) equidista de B ( 3, ) y de C (7,4) Respuesta ) Determine los puntos de trisección del segmento de recta AB donde A( 6, 9), B(6,9)

Más detalles

8.- GEOMETRÍA ANÁLITICA

8.- GEOMETRÍA ANÁLITICA 8.- GEOMETRÍA ANÁLITICA 1.- PROBLEMAS EN EL PLANO 1. Dados los puntos A = (1, 2), B = (-1, 3), C = (3, 4) y D = (1, 0) halla las coordenadas de los vectores AB, BC, CD, DA y AC. Solución: AB = (-2, 1),

Más detalles

1.- Escribe las ecuaciones paramétricas de las siguientes rectas: a) Pasa por el punto A(-3,1) y su vector de dirección es v = (2,0)

1.- Escribe las ecuaciones paramétricas de las siguientes rectas: a) Pasa por el punto A(-3,1) y su vector de dirección es v = (2,0) 1.- Escribe las ecuaciones paramétricas de las siguientes rectas: a) Pasa por el punto A(-,1) y su vector de dirección es v = (,0) b) Pasa por el punto P(5,-) y es paralela a : x = 1 t y = t c) Pasa por

Más detalles

PROBLEMAS RESUELTOS GEOMETRÍA

PROBLEMAS RESUELTOS GEOMETRÍA PROBLEMAS RESUELTOS GEOMETRÍA ) Uno de los vértices de un paralelogramo ABCD es el punto A(, ) y dos de los lados están sobre las rectas r : 3x -y- =, s : 6x -7y- =. Calcula los demás vértices. Como el

Más detalles

Boletín de Geometría Analítica

Boletín de Geometría Analítica Boletín de Geometría Analítica 1) Si las coordenadas de los vectores a y b son (3,5) y (-2,1) respectivamente, obtén las coordenadas de: a) -2 a + 1/2 b b) 1/2 ( a +b ) - 2/3 ( a -b ) 2) Halla el vector

Más detalles

1. Polígonos. 1.1 Definición

1. Polígonos. 1.1 Definición 1.1 Definición 1. Polígonos Es toda figura plana, cerrada, limitada por un número finito de lados rectos. De acuerdo al número de lados, los más utilizados se clasifican en: Triángulos 3 lados Cuadriláteros

Más detalles

ECUACIONES PARAMÉTRICAS

ECUACIONES PARAMÉTRICAS ECUACIONES PARAMÉTRICAS CONTENIDO. De la elise. De la circunferencia 3. De la arábola 4. De la hiérbola 5. Ejercicios 6. Trazado de una curva dadas sus ecuaciones aramétricas Hemos visto, que si un lugar

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS EJERCICIOS PROPUESTOS 1) En cada ejercicio hallar la ecuación de la circunferencia que cumple: 1) El radio es igual a 6 y las coordenadas de su centro son ( 1, 2). 2) Su centro es el origen de coordenadas

Más detalles

UPR Departamento de Ciencias Matemáticas RUM MATE 3171 Primer Examen Parcial 21 de octubre de 2010

UPR Departamento de Ciencias Matemáticas RUM MATE 3171 Primer Examen Parcial 21 de octubre de 2010 UPR Deartamento de Ciencias Matemáticas RUM MATE 37 Primer Eamen Parcial de octubre de 00 Nombre: # Estudiante: Profesor: Sección: Instrucciones: Lea cada regunta minuciosamente. No se ermite el uso de

Más detalles

Circunferencia que pasa por tres puntos

Circunferencia que pasa por tres puntos Circunferencia que pasa por tres puntos En la sección Ecuaciones de las rectas notables del triángulo calculamos el punto donde se intersectan las tres mediatrices de los lados de un triángulo. Este punto,

Más detalles

Colegio LOPE DE VEGA Luis de Medina, 12 28805 Alcalá de Henares DIBUJO TÉCNICO II EJERCICIOS DE APOYO

Colegio LOPE DE VEGA Luis de Medina, 12 28805 Alcalá de Henares DIBUJO TÉCNICO II EJERCICIOS DE APOYO Colegio LOPE DE VEGA Luis de Medina, 12 28805 Alcalá de Henares DIBUJO TÉCNICO II EJERCICIOS DE APOYO 1º.- Deducir razonadamente el valor del ángulo α marcado en la figura sabiendo que esta representa

Más detalles

O -2-1 1 2 X -1- -2- de coordenadas, y representamos los números sobre cada eje, eligiendo en ambos ejes la misma unidad, como muestra la figura.

O -2-1 1 2 X -1- -2- de coordenadas, y representamos los números sobre cada eje, eligiendo en ambos ejes la misma unidad, como muestra la figura. MATEMÁTICA I Capítulo 1 GEOMETRÍA Plano coordenado Para identificar cada punto del plano con un par ordenado de números, trazamos dos rectas perpendiculares que llamaremos eje y eje y, que se cortan en

Más detalles

16. Dados los puntos A(-1,3), B(2,0) y C(-2,1). Halla las coordenadas de otro punto D para que los vectores y sean equivalentes.

16. Dados los puntos A(-1,3), B(2,0) y C(-2,1). Halla las coordenadas de otro punto D para que los vectores y sean equivalentes. TEMA 5. VECTORES 5.1. Vectores en el plano. - Definición. - Componentes de un vector. - Módulo. - Vectores equivalentes. 5.2. Operaciones con vectores. - Suma y resta. - Multiplicación por un número real.

Más detalles

GEOMETRÍA ANALÍTICA EN EL PLANO

GEOMETRÍA ANALÍTICA EN EL PLANO GEOMETRÍA ANALÍTICA EN EL PLANO Coordenadas cartesianas Sistema de ejes Cartesianos: Dicho nombre se debe a Descartes, el cual tuvo la idea de expresar un objeto geométrico como un punto o una recta, mediante

Más detalles

EJERCICIOS BLOQUE III: GEOMETRÍA

EJERCICIOS BLOQUE III: GEOMETRÍA EJERCICIOS BLOQUE III: GEOMETRÍA (00-M-A-4) (5 puntos) Determina el centro y el radio de la circunferencia que pasa por el origen de coordenadas, tiene su centro en el semieje positivo de abscisas y es

Más detalles

GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE

GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE Ejercicios resueltos de la Recta 1. Hallar la ecuación de la recta que pasa por el punto (4. - 1) y tiene un ángulo de inclinación de 135º. SOLUCION: Graficamos La ecuación de la recta se busca por medio

Más detalles

Conjugados Armónicos

Conjugados Armónicos Conjugados Armónicos Sofía Taylor Febrero 2011 1 Puntos Conjugados Armónicos Sean A y B dos puntos en el plano. Sea C un punto en el segmento AB y D uno sobre la prolongación de AB tal que: donde k es

Más detalles

GEOMETRÍA Y TRIGONOMETRÍA

GEOMETRÍA Y TRIGONOMETRÍA GEOMETRÍA Y TRIGONOMETRÍA 1 Conceptos básicos 1. Una figura geométrica es un conjunto de puntos. 2. Puntos colineales son cualesquiera puntos que están exactamente en una recta. 3. La distancia entre un

Más detalles

EJERCICIOS BLOQUE III: GEOMETRÍA

EJERCICIOS BLOQUE III: GEOMETRÍA EJERCICIOS BLOQUE III: GEOMETRÍA (00-M-A-4) (5 puntos) Determina el centro y el radio de la circunferencia que pasa por el origen de coordenadas, tiene su centro en el semieje positivo de abscisas y es

Más detalles

1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto).

1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto). 1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto). 6.- Espacio: Conjunto de puntos con tres dimensiones: largo, ancho y alto. Es infinito, sin límites. 2.- Recta:

Más detalles

3. 2. Pendiente de una recta. Definición 3. 3.

3. 2. Pendiente de una recta. Definición 3. 3. 3.. Pendiente de una recta. Definición 3. 3. Se llama Angulo de Inclinación α de una recta L, al que se forma entre el eje en su dirección positiva y la recta L, cuando esta se considera dirigida hacia

Más detalles

sen sen sen a 2 a cos cos 2 a

sen sen sen a 2 a cos cos 2 a BLOQUE I: TRIGONOMETRÍA Y TRIÁNGULOS.- Sabiendo que tg g y cot, calcular tg y cos( ).- Demostrar razonadamente las fórmulas del seno, coseno y tangente del ángulo mitad.- Demostrar las siguientes igualdades:

Más detalles

Ángulos. Semejanza. ABE ˆ, ACE ˆ o ADE ˆ son ángulos inscritos en la. n 2 180º. En la circunferencia:

Ángulos. Semejanza. ABE ˆ, ACE ˆ o ADE ˆ son ángulos inscritos en la. n 2 180º. En la circunferencia: GEOMETRÍA Ángulos En la circunferencia: ABE ˆ, ACE ˆ o ADE ˆ son ángulos inscritos en la circunferencia y son todos iguales. AOE ˆ es el ángulo central correspondiente y su medida es dos veces la medida

Más detalles

Conceptos básicos de Geometría

Conceptos básicos de Geometría Conceptos básicos de geometría La geometría trata de la medición y de las propiedades de puntos, líneas, ángulos, planos y sólidos, así como de las relaciones que guardan entre sí. A continuación veremos

Más detalles

ALGUNAS PROPIEDADES DEL TRIÁNGULO

ALGUNAS PROPIEDADES DEL TRIÁNGULO CAPÍTULO III 13 ALGUNAS PROPIEDADES DEL TRIÁNGULO Conocimientos previos: - Suponemos conocido lo siguiente: a) El lugar geométrico de los puntos del plano que equidistan de dos puntos dados A y B, es una

Más detalles

Hoja de problemas nº 7. Introducción a la Geometría

Hoja de problemas nº 7. Introducción a la Geometría Hoja de problemas nº 7 Introducción a la Geometría 1. Un rectángulo tiene de área 135 u 2 a. Si sus lados miden números enteros, averigua cuáles pueden ser sus dimensiones. b. Cortamos los vértices como

Más detalles

13. PROBLEMAS DE CUADRILÁTEROS

13. PROBLEMAS DE CUADRILÁTEROS 13. PROBLEMAS DE CUADRILÁTEROS 13.1. Propiedades. Para la resolución de problemas de cuadriláteros es necesario conocer algunas de sus propiedades: - Las diagonales de un paralelogramo se cortan en sus

Más detalles

MATEMÁTICAS II PROBLEMAS DE GEOMETRÍA PAU ANDALUCÍA

MATEMÁTICAS II PROBLEMAS DE GEOMETRÍA PAU ANDALUCÍA 1 MATEMÁTICAS II PROBLEMAS DE GEOMETRÍA PAU ANDALUCÍA Ejercicio 1. (Junio 2006-A) Considera el plano π de ecuación 2x + y z + 2 = 0 y la recta r de ecuación x 5 z 6 = y =. 2 m (a) [1 punto] Halla la posición

Más detalles

TEMA N 2 RECTAS EN EL PLANO

TEMA N 2 RECTAS EN EL PLANO 2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración

Más detalles

Dibujo Técnico Polígonos regulares

Dibujo Técnico Polígonos regulares 19. POLÍGONOS REGULARES 19.1. Características generales Los polígonos regulares son los que tienen los lados y los ángulos iguales, es decir, son equiláteros y equiángulos. Son inscriptibles y circunscriptibles.

Más detalles

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado:

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: CAPÍTULO. GEOMETRÍA AFÍN.. Problemas. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: a) A(,, ), v = (,, ) ; b) A(0,

Más detalles

GEOMETRÍA. 1. Líneas y ángulos. Partimos de la existencia de infinitos puntos cuyo conjunto llamamos ESPACIO.

GEOMETRÍA. 1. Líneas y ángulos. Partimos de la existencia de infinitos puntos cuyo conjunto llamamos ESPACIO. 1. Líneas y ángulos Partimos de la existencia de infinitos puntos cuyo conjunto llamamos ESPACIO. Los puntos del espacio se consideran agrupados en conjuntos parciales de infinitos puntos llamados PLANOS.

Más detalles

Tema 5: Polígonos. Mediatriz de un segmento : Es la recta perpendicular trazada en su punto medio.

Tema 5: Polígonos. Mediatriz de un segmento : Es la recta perpendicular trazada en su punto medio. Tema 5: Polígonos 5.1 Elementos Fundamentales de Geometría Mediatriz de un segmento : Es la recta perpendicular trazada en su punto medio. A P * B Cualquier punto P de la mediatriz equidista de los extremos

Más detalles

17. POLÍGONOS REGULARES

17. POLÍGONOS REGULARES 17. POLÍGONOS REGULARES 17.1. Características generales Los polígonos regulares son los que tienen los lados y los ángulos iguales, es decir, son equiláteros y equiángulos. Son inscriptibles y circunscriptibles.

Más detalles

Cálculo vectorial en el plano.

Cálculo vectorial en el plano. Cálculo vectorial en el plano. Cuaderno de ejercicios MATEMÁTICAS JRM SOLUCIONES Índice de contenidos. 1. Puntos y vectores. Coordenadas y componentes. Puntos en el plano cartesiano. Coordenadas. Vectores

Más detalles

20. Rectas y puntos notables

20. Rectas y puntos notables Matemáticas II, 2012-II Lugares geométricos En geometría es útil conocer varios lugares geométricos. Un lugar geométrico es un conjunto de puntos que satisfacen una cierta propiedad. Ejemplo 1. El lugar

Más detalles

8. POLÍGONOS REGULARES 8.1. CARACTERÍSTICAS GENERALES

8. POLÍGONOS REGULARES 8.1. CARACTERÍSTICAS GENERALES 8. POLÍGONOS REGULARES 8.1. CARACTERÍSTICAS GENERALES Los polígonos regulares son los que tienen los lados y los ángulos iguales, es decir, son equiláteros y equiángulos. Son inscriptibles y circunscriptibles.

Más detalles

GEOMETRÍA ANALÍTICA LA PARÁBOLA

GEOMETRÍA ANALÍTICA LA PARÁBOLA LA PARÁBOLA CONTENIDO. Ecuación de la arábola horizontal con vértice en el origen. Análisis de la ecuación. Ejercicios. Ecuación de la arábola vertical con vértice en el origen. Ejercicios 3. Ecuación

Más detalles

Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2.

Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2. Wilson Herrera 1 Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2. 2. Hallar la ecuación de la recta que pasa por

Más detalles

Clasificación de triángulos: Un triángulo es un polígono de tres lados. Un triángulo está determinado por:

Clasificación de triángulos: Un triángulo es un polígono de tres lados. Un triángulo está determinado por: Un triángulo es un polígono de tres lados. Un triángulo está determinado por: 1. Tres segmentos de recta que se denominan lados. 2. Tres puntos no alineados que se llaman vértices. Los vértices se escriben

Más detalles

Resuelve. Unidad 8. Geometría analítica. BACHILLERATO Matemáticas I. m = (7, 3) El embarcadero. \ Solución: P = (8, 6) Página 187

Resuelve. Unidad 8. Geometría analítica. BACHILLERATO Matemáticas I. m = (7, 3) El embarcadero. \ Solución: P = (8, 6) Página 187 Resuelve Página 87 El embarcadero A Tenemos dos pueblos, A y B, cada uno a un lado de un canal. Se desea construir un embarcadero situado exactamente a la misma distancia de los dos pueblos. Dónde habrá

Más detalles

TRIÁNGULOS. TEOREMA DE PITÁGORAS.

TRIÁNGULOS. TEOREMA DE PITÁGORAS. TRIÁNGULOS. TEOREMA DE PITÁGORAS. Un triángulo ABC es la figura geométrica del plano formada por 3 segmentos llamados lados cuyos extremos se cortan a en 3 puntos llamados vértices. Los vértices se escriben

Más detalles

Producto cartesiano. X Y = {(x, y) : x X, y Y }. Ejemplo En el tablero de ajedrez, X = números del 1-8, Y = letras de A-H.

Producto cartesiano. X Y = {(x, y) : x X, y Y }. Ejemplo En el tablero de ajedrez, X = números del 1-8, Y = letras de A-H. Producto cartesiano Motivación: Has oido hablar sobre gente que juega ajedrez sin tener que mirar nunca el tablero?. Esto es posible, y se debe a una herramienta llamada coordenadas de un punto. En un

Más detalles

TEMA 5. GEOMETRÍA ANALÍTICA

TEMA 5. GEOMETRÍA ANALÍTICA TEMA 5. GEOMETRÍA ANALÍTICA 6.1. Ecuaciones de la recta. - Vector director. - Ecuación vectorial. - Ecuaciones paramétricas. - Ecuación contínua. - Ecuación general. - Ecuación punto-pendiente. - Ecuación

Más detalles

Dicho punto fijo se llama centro, a la distancia de cualquier punto de la circunferencia al centro se acostumbra a llamar radio.

Dicho punto fijo se llama centro, a la distancia de cualquier punto de la circunferencia al centro se acostumbra a llamar radio. GEOMETRIA ANALITICA Capítulo 9 La Circunferencia 9.1. Definición Se llama circunferencia al lugar geométrico de los puntos de un plano que equidistan de un punto fijo del mismo plano. Dicho punto fijo

Más detalles

Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas II.- Factorización y Operaciones con las Fracciones III.- Funciones y Relaciones

Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas II.- Factorización y Operaciones con las Fracciones III.- Funciones y Relaciones Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas 1.- Adición y sustracción 2.- Multiplicación 3.- División 4.- Productos especiales 5.- Triángulo de Pascal II.- Factorización y Operaciones

Más detalles

Bloque 33 Guía: Ecuación de la recta en el plano cartesiano SGUICEG055EM33-A17V1

Bloque 33 Guía: Ecuación de la recta en el plano cartesiano SGUICEG055EM33-A17V1 SGUICEG055EM-A7V Bloque Guía: Ecuación de la recta en el lano cartesiano TABLA DE CORRECCIÓN ECUACIÓN DE LA RECTA EN EL PLANO CARTESIANO N Clave Dificultad estimada B Alicación Media A Alicación Media

Más detalles

Propiedades y clasificación de triángulos

Propiedades y clasificación de triángulos MT-22 Clase Propiedades y clasificación de triángulos Síntesis de la clase Ángulos Polígonos convexos Clasificación de ángulos Relaciones angulares Regulares Irregulares 0º < Agudo < 90 Recto = 90 90º

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

MATHEMATICA. Geometría - Recta. Ricardo Villafaña Figueroa. Material realizado con Mathematica. Ricardo Villafaña Figueroa

MATHEMATICA. Geometría - Recta. Ricardo Villafaña Figueroa. Material realizado con Mathematica. Ricardo Villafaña Figueroa MATHEMATICA Geometría - Recta Material realizado con Mathematica 2 Contenido Sistema de Coordenadas... 3 Distancia entre dos puntos... 3 Punto Medio... 5 La Recta... 8 Definición de recta... 8 Pendiente

Más detalles

RELACION DE PROBLEMAS DE GEOMETRIA. Problemas propuestos para la prueba de acceso del curso 1996/97.

RELACION DE PROBLEMAS DE GEOMETRIA. Problemas propuestos para la prueba de acceso del curso 1996/97. RELACION DE PROBLEMAS DE GEOMETRIA Problemas propuestos para la prueba de acceso del curso 996/97. º. - Explica cómo se puede hallar el área de un triángulo, a partir de sus coordenadas, en el espacio

Más detalles

Una parábola. Figura 9.1

Una parábola. Figura 9.1 Caítulo 9 Secciones Cónicas 9.1 La Parábola Definición: Una arábola es el conjunto de todos los untos P del lano que equidistan de una recta fija L, llamada directriz, de un unto F (que no está en L),

Más detalles

Cálculo Diferencial e Integral - Volumen de un sólido. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Volumen de un sólido. Prof. Farith J. Briceño N. Cálculo Diferencial e Integral - Volumen de un sólido. Prof. Farith J. Briceño N. Objetivos a cubrir Volumen de un sólido : Secciones transversales. Volumen de un sólido de revolución : Método del disco.

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

UNIDAD I. ÁNGULOS, TRIÁNGILOS, POLÍGONOS Y CIRCUNFERENCIA. Tema. Triángulos

UNIDAD I. ÁNGULOS, TRIÁNGILOS, POLÍGONOS Y CIRCUNFERENCIA. Tema. Triángulos UNIDAD I. ÁNGULOS, TRIÁNGILOS, POLÍGONOS Y CIRCUNFERENCIA Tema. Triángulos TRIÁNGULOS Así como nuestro alrededor está lleno de objetos que nos ejemplifican claramente el concepto de ángulo, también existen

Más detalles

1. La circunferencia.

1. La circunferencia. http://www.telefonica.net/web/jlgarciarodrigo/. La circunferencia... Elementos de una circunferencia. Definición. Se llama circunferencia al lugar geométrico formado por los puntos que equidistan de otro

Más detalles

UNIDAD 8 Geometría analítica. Problemas afines y métricos

UNIDAD 8 Geometría analítica. Problemas afines y métricos UNIDAD Geometría analítica. Problemas afines y métricos Pág. 1 de 5 1 Se consideran los puntos A (, ) y B (4, 6). a) Calcula las coordenadas de un punto P que divida al segmento AB en dos partes 1 tales

Más detalles

Los Ángulos. 2. Cómo pueden ser los ángulos? Definir cada uno. Nulos: Si su medida es Cero. Ej.

Los Ángulos. 2. Cómo pueden ser los ángulos? Definir cada uno. Nulos: Si su medida es Cero. Ej. Los Ángulos 1. Qué es un ángulo y su notación? Son dos rayos cualesquiera que determinan dos regiones del plano. Su notación: Para nombrar los ángulos, utilizaremos los símbolos

Más detalles

GEOMETRÍA ANALÍTICA. PROBLEMAS AFINES Y MÉTRICOS

GEOMETRÍA ANALÍTICA. PROBLEMAS AFINES Y MÉTRICOS 8 GEOMETRÍA ANALÍTICA. PROBLEMAS AFINES Y MÉTRICOS Página 88 PARA EMPEZAR, REFLEXIONA Y RESUELVE Punto medio de un segmento ;;;;;; Toma los puntos P (, ), Q (0, ) y represéntalos en el plano: ;;;;;; P

Más detalles

Las Figuras Planas. Vértice. Ángulo. Diagonal. Lado. Los polígonos. El Polígono. CEPA Carmen Conde Abellán Matemáticas II

Las Figuras Planas. Vértice. Ángulo. Diagonal. Lado. Los polígonos. El Polígono. CEPA Carmen Conde Abellán Matemáticas II Las Figuras Planas Melilla Los polígonos Te has fijado alguna vez en el metro que usan los carpinteros? Está formado por segmentos de madera que se pliegan con facilidad. Este instrumento tiene forma de

Más detalles

Ejercicios Resueltos

Ejercicios Resueltos Ejercicios Resueltos ANGULOS 1. Si el complemento de ángulo x es x, Cuál es el valor de x en grados? x + x = 90 3x = 90 x = 90 /3 x = 30. Si el suplemento del ángulo x es 5x, Cuál es el valor de x? 5x+x=

Más detalles

B7 Cuadriláteros. Geometría plana

B7 Cuadriláteros. Geometría plana Geometría plana B7 Cuadriláteros Cuadrilátero es un polígono de cuatro lados. Lados opuestos son los que no tienen punto común. Ejemplo AB y CD, AD y BC. Lados contiguos son los que tienen un extremo común.

Más detalles

ACADEMIA DE FÍSICO-MATEMÁTICAS CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A

ACADEMIA DE FÍSICO-MATEMÁTICAS CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A GEOMETRÍA ANALÍTICA CENTRO DE ESTUDIOS DE BACHILLERATO LIC. JESÚS REYES HEROLES ACADEMIA DE FÍSICO-MATEMÁTICAS CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A G U Í A E X A M E N

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

Matemáticas II - Geometría

Matemáticas II - Geometría PAU Matemáticas II - Geometría 2008.SEPTIEMBRE.1.- Dados los dos planos π 1 : x + y + z = 3 y π 2 : x + y αz = 0, se pide que calculeis razonadamente: a) El valor de α para el cual los planos π 1 y π 2

Más detalles

RESUMEN GEOMETRÍA SAINT MARY SCHOOL. PROF. JUAN K. BOLAÑOS M. Geometría Elemental

RESUMEN GEOMETRÍA SAINT MARY SCHOOL. PROF. JUAN K. BOLAÑOS M. Geometría Elemental Geometría Elemental Punto Sólo tiene posición. No posee longitud, anchura ni espesor. Se representa por un. Se designa por medio de una letra mayúscula colocada cerca del punto gráfico. Línea recta Es

Más detalles

Preparación olímpica III: geometría

Preparación olímpica III: geometría Preparación olímpica III: geometría Teoría Adrián Rodrigo Escudero 20 de noviembre de 2015 Los problemas de geometría, como el resto de problemas de olimpiada, están pensados para que no sean necesarios

Más detalles

EJERCICIOS SOBRE CIRCUNFERENCIA

EJERCICIOS SOBRE CIRCUNFERENCIA EJERCICIOS SOBRE CIRCUNFERENCIA 1. En una C(O; r) se trazan un diámetro AB y un radio OC perpendicular a AB ; se prolonga AB a cada lado y en el exterior de la circunferencia en longitudes iguales AE=BD;

Más detalles

Proyecciones. Producto escalar de vectores. Aplicaciones

Proyecciones. Producto escalar de vectores. Aplicaciones Proyecciones La proyección de un punto A sobre una recta r es el punto B donde la recta perpendicular a r que pasa por A corta a la recta r. Con un dibujo se entiende muy bien. La proyección de un segmento

Más detalles

Las ecuaciones de estas rectas pueden venir dadas de las formas siguientes:

Las ecuaciones de estas rectas pueden venir dadas de las formas siguientes: Geometría Analítica 8-9 RECTAS EN EL ESPACIO En la figura se muestran varias rectas en el espacio, cuas posiciones son las siguientes: a) r r3 se cortan en un punto P cuas coordenadas se obtienen resolviendo

Más detalles

Bloque 2. Geometría. 2. Vectores. 1. El plano como conjunto de puntos. Ejes de coordenadas

Bloque 2. Geometría. 2. Vectores. 1. El plano como conjunto de puntos. Ejes de coordenadas Bloque 2. Geometría 2. Vectores 1. El plano como conjunto de puntos. Ejes de coordenadas Para representar puntos en un plano (superficie de dos dimensiones) utilizamos dos rectas graduadas y perpendiculares,

Más detalles

GEOMETRÍA ANALÍTICA: CÓNICAS

GEOMETRÍA ANALÍTICA: CÓNICAS GEOMETRÍA ANALÍTICA: CÓNICAS 1.- GENERALIDADES Se define lugar geométrico como el conjunto de puntos que verifican una propiedad conocida. Las cónicas que estudiaremos a continuación se definen como lugares

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de innovación didáctica Departamento de Matemáticas Universidad de Extremadura Índice Puntos y vectores en En R 3, conviene distinguir

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO Página 133 REFLEXIONA Y RESUELVE Relaciones trigonométricas en el triángulo Halla el área de este paralelogramo en función del ángulo a: cm a cm Área = sen a = 40 sen a cm Halla

Más detalles

TRANSFORMACIONES DEL PLANO

TRANSFORMACIONES DEL PLANO PROBLEMAS DE GEOMETRÍA. TRANSFORMACIONES DEL PLANO 1. Un producto de dos simetrías axiales de ejes perpendiculares A qué transformación corresponde? En qué se transforma un segmento vertical? ( ) 2. Cuál

Más detalles

Figuras Planas. 100 Ejercicios para practicar con soluciones. 1 Comprueba si los siguientes ángulos son complementarios: a) 72 + 35.

Figuras Planas. 100 Ejercicios para practicar con soluciones. 1 Comprueba si los siguientes ángulos son complementarios: a) 72 + 35. Figuras Planas. 100 Ejercicios para practicar con soluciones 1 Comprueba si los siguientes ángulos son complementarios: a) 7º y 35 b) 6º y 64º a) 7 + 35 = 107 90 No son complementarios. b) 6 + 64 = 90

Más detalles

MATEMATICA CPU Práctica 5 FUNCIONES POLINÓMICAS Y EXPRESIONES RACIONALES. r iv. ( p )( ) v. ( )( )

MATEMATICA CPU Práctica 5 FUNCIONES POLINÓMICAS Y EXPRESIONES RACIONALES. r iv. ( p )( ) v. ( )( ) MATEMATICA CPU FUNCIONES POLINÓMICAS Y EXPRESIONES RACIONALES Sean los olinomios ( 5, q (, r ( y s ( a) Hallar los olinomios: i ( q( ii r( q( s( iii r ( s( iv r ( ( q( b) Calcular: i () ii q ( ) iii (

Más detalles

LA RECTA Y SUS ECUACIONES

LA RECTA Y SUS ECUACIONES UNIDAD LA RECTA Y SUS ECUACIONES Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivos específicos:. Recordarás

Más detalles

A = 180-90 - 62 = 28. 8 GEOMETRíA DEL PLA 8 = 720-145 - 125-105 - 130-160 = 55. b) 720 = 90: ~ B- 110 + 8+ 150 + 90 = 440 + 28 ==> B = 140 C

A = 180-90 - 62 = 28. 8 GEOMETRíA DEL PLA 8 = 720-145 - 125-105 - 130-160 = 55. b) 720 = 90: ~ B- 110 + 8+ 150 + 90 = 440 + 28 ==> B = 140 C 8 GEOMETRíA DEL PLA EJERCCOS PROPUESTOS Calcula la medida del ángulo que falta en cada figura. a) b) a) En un triángulo, la suma de las medidas de sus ángulos es 180, A = 180-90 - 6 = 8 El ángulo mide

Más detalles

4. PROPORCIONALIDAD IGUALDAD Y SEMEJANZA.

4. PROPORCIONALIDAD IGUALDAD Y SEMEJANZA. 4. PROPORCIONALIDAD IGUALDAD Y SEMEJANZA. 4.1. Características generales Consideramos que una variable x puede adquirir los valores a,b,c,d, y otra variable los valores a, b, c, d, x e y son directamente

Más detalles

ECUACIONES DE PRIMER GRADO CON DOS VARIABLES

ECUACIONES DE PRIMER GRADO CON DOS VARIABLES Capítulo 2 ECUACIONES DE PRIMER GRADO CON DOS VARIABLES 2.1. PENDIENTE DE UNA RECTA A continuación desarrollaremos conceptos que permiten expresar, mediante un número, la inclinación de una recta cualquiera

Más detalles

ÁLGEBRA LINEAL II Práctica 3.1-3.2

ÁLGEBRA LINEAL II Práctica 3.1-3.2 ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2014 2015) 1. En el espacio afín IR 3 se considera la referencia canónica R y la referencia R = (1, 0, 1); (1, 1, 0), (1, 1, 1), (1, 0, 0)}. Denotamos

Más detalles

a) A la mitad del número le sumo 3 y el resultado es 8 ( ) 9 b) En la ecuación 3x = 54 Qué valor puede tomar x? ( ) Rombo

a) A la mitad del número le sumo 3 y el resultado es 8 ( ) 9 b) En la ecuación 3x = 54 Qué valor puede tomar x? ( ) Rombo Guía Matemáticas 3 ELIGE LA RESPUESTA CORRECTA.. Anota en el paréntesis de la derecha la letra que corresponda. a) A la mitad del número le sumo 3 y el resultado es 8 9 b) En la ecuación 3 = 54 Qué valor

Más detalles

GUÍA DE GEOMETRÍA N 2. Triángulos

GUÍA DE GEOMETRÍA N 2. Triángulos Liceo Benjamín Vicuña Mackenna Departamento de matemática Triángulo: Es un polígono de tres lados; está determinado por tres segmentos de recta que se denominan lados, o tres puntos no alineados que se

Más detalles

Created with novapdf Printer (www.novapdf.com)

Created with novapdf Printer (www.novapdf.com) GEOMETRÍA LONGITUDES Longitud de la circunferencia Es una línea curva cerrada que equidistan todos sus puntos del centro. Radio Centro: punto situado a igual distancia de todos los puntos de la circunferencia.

Más detalles

Sistemas de Representación y Dibujo Técnico Año 2015. Geometría Básica

Sistemas de Representación y Dibujo Técnico Año 2015. Geometría Básica EL PUNTO Geometría Básica El punto es la entidad geométrica más pequeña y finita. Se puede definir por intersección de 2 rectas. En un plano, se puede definir por medio de 2 coordenadas. En el espacio,

Más detalles

1. Ángulos en la circunferencia

1. Ángulos en la circunferencia 1. Ángulos en la circunferencia Ángulo central. Es el que tiene el vértice en el centro de la circunferencia. Se identifica con el arco, de modo que escribiremos α = Figura 1: Ángulo central, inscrito

Más detalles

x = 0, la recta tangente a la gráfica de f (x)

x = 0, la recta tangente a la gráfica de f (x) CÁLCULO DIFERENCIAL JUNIO 004 1. Sea la función e y = estúdiese su monotonía, etremos relativos y asíntotas. (Solución: Es derivable en todos los puntos ecepto en =0. Creciente si < 0. No tiene asíntotas

Más detalles

LOS POLÍGONOS, PROPIEDADES Y CONSTRUCCIONES. 1. DEFINICIÓN Y TIPOS DE POLÍGONOS. DEFINICIÓN. ELEMENTOS GENERALES DE UN POLÍGONO.

LOS POLÍGONOS, PROPIEDADES Y CONSTRUCCIONES. 1. DEFINICIÓN Y TIPOS DE POLÍGONOS. DEFINICIÓN. ELEMENTOS GENERALES DE UN POLÍGONO. LOS POLÍGONOS, PROPIEDADES Y CONSTRUCCIONES. 1. DEFINICIÓN Y TIPOS DE POLÍGONOS. DEFINICIÓN. Polígono es la superficie plana limitada por una línea poligonal cerrada. Línea poligonal es la figura formada

Más detalles

1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a la recta x + 7y + 1 = 0

1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a la recta x + 7y + 1 = 0 Universidad Técnica Federico Santa María Departamento de Matemática Campus Santiago Geometría Analítica 1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a

Más detalles

8Soluciones a las actividades de cada epígrafe PÁGINA 168

8Soluciones a las actividades de cada epígrafe PÁGINA 168 8Soluciones a las actividades de cada epígrafe PÁGINA 68 Pág. Para manejarse por el centro de Roma Eva y Clara han construido sobre el plano un sistema de referencia cartesiano tomando como centro de coordenadas

Más detalles

GEOMETRÍA ANALÍTICA. PROBLEMAS AFINES Y MÉTRICOS

GEOMETRÍA ANALÍTICA. PROBLEMAS AFINES Y MÉTRICOS GEOMETRÍA ANALÍTICA. PROBLEMAS AFINES Y MÉTRICOS Página 7 REFLEXIONA Y RESUELVE Punto medio de un segmento Toma los puntos P(, ), Q(0, ) y represéntalos en el plano: P (, ) Q (0, ) Localiza gráficamente

Más detalles