EJERCICIOS PROPUESTOS VECTORES
|
|
|
- Juan Luis Rico Martin
- hace 9 años
- Vistas:
Transcripción
1 Edited b Foit PDF Editor Coprigt (c) b Foit Software Compan, For Evaluation Onl. EJERCICIOS PROPUESTOS VECTORES Ejercicio.1.- Un vector situado en el plano Y tiene una magnitud de 5 unidades forma un ángulo de 37º con la abscisa. Determine sus componentes rectangulares. a=(,-1,7); c=(9,4,); e=(0,0,0); b=(9,4,) d=(,-1,7) f=(,,1) A = 0 A = 15 Ejercicio..- La componente de un vector que está en el plano Y es de 1 unidades, la componente es de 16 unidades. Cuál es la magnitud dirección del vector?. A = 0 = 53,1º Ejercicio.3.- Encuentre las componentes rectangulares, las magnitudes los ángulos directores de los vectores A,B C que van desde el punto a asta el punto b, desde el punto c asta el punto d desde el punto e asta el punto f, respectivamente, en el espacio coordenado cartesiano: A = 7; A = 5; A = 5; A = 9,9 A = 45,0º; A = 59,7º; A = 10,3º; B = 7; B = 5; B = 5; B = 9,9 B = 135,0º; B = 10,3º; B = 59,7º, C = ; C = ; C = 1; C == 3 C = 48,º; C = 48,º; C = 70,5º Ejercicio.4.- Un vector A tiene una magnitud de 9 [cm] está dirigido acia +. Otro vector B tiene una magnitud de 6 [cm] forma un ángulo de 45º respecto de la abscisa positiva. El vector C tiene una magnitud de 15 [cm] forma un ángulo de 75º respecto del eje +. Determine el vector resultante. R = 17,1i ˆ+ 18,7ˆj 1
2 Edited b Foit PDF Editor Coprigt (c) b Foit Software Compan, For Evaluation Onl. Ejercicio.5.- Dado el vector A = i ˆ+ 4j-4k ˆ ˆ, determine sus ángulos directores. = 70,5º; = 48,º; = 131,8º Ejercicio.7.- Hallar la resultante de los siguientes desplaamientos: 3 [m] acia el este; 1 [m] acia el este 40º acia el norte 7 [m] acia el oeste acia el sur. R = 8,7i ˆ+ 1,6j ˆ Ejercicio.6.- Dados los vectores: A = 10i ˆ+ 5j ˆ+ 3 ; B = 3i ˆ-4j ˆ+ ; C = i ˆ+ 6j-4k ˆ ˆ Ejercicio.8.- Sumar dos vectores de magnitudes 8 5 que forman un ángulo de entre sí. Encontrar: a) A + B b) A -B c) C A - 3B + d) A 3CB R = 9i ˆ+ 6,9j ˆ Y B A e) Los ángulos directores de BC a) A + B = 13i ˆ+ ˆj+ 5 b) A -B = 7i ˆ+ 9j ˆ+ C c) A - 3B + = 1i ˆ+ 5j ˆ d) A 3CB = -594 e) = 8,5º; = 58,7º; = 3,4º Ejercicio.9.- Un barco se desplaa sobre una superficie de agua tranquila a raón de 10 km entra en dirección O S en una corriente cua dirección es E que se mueve con una velocidad de km 1. Cuál será su velocidad resultante? ( ˆ ˆ R 7i 8,7j) km =
3 Edited b Foit PDF Editor Coprigt (c) b Foit Software Compan, For Evaluation Onl. Ejercicio.10.- Un barco avana acia el norte 60 [km]; luego cambia de curso navega en alguna dirección acia el sureste (no necesariamente S 45º E) asta llegar a una posición a 50 [km] de distancia del punto de partida, en una dirección E 0,6º N respecto de dico punto. Determine la longitud el rumbo de la segunda parte de la travesía. Ejercicio.13.- Dados los vectores A= 3i-j ˆ ˆ B= ˆi-j ˆ, encontrar su producto vectorial comprobar que ese vector es perpendicular a A a B. A AB = 0 luego son perpendiculares B AB = 0 luego son perpendiculares d = 46,8i -4,4j km ( ˆ ˆ)[ ] O, lo que es igual, navega 63, [km] en dirección E 4,º S Ejercicio.11.- Demuestre que los vectores A = ˆi-3j ˆ+ B = -4i ˆ+ 1j-8k ˆ ˆ son paralelos. Ejercicio.14.- Dados los vectores A = -3i ˆ+ j-k ˆ ˆ ; B en el plano Y de módulo 10 dirección 10º respecto de +; C = -4j ˆ. Determinar: a) La magnitud de A + B-C b) El ángulo que forma AB con el eje Z AB = 0 ; es cierto Ejercicio.1.- Encontrar un vector B que esté en el plano Y, que sea perpendicular al vector A = ˆi + 3j ˆ c) Proección de B - C a) A + B-C = 16,8 b) = 147,9º en dirección de A c) 10,8 B + 3B = 0 el que se satisface para B =3a B =-a, con a=cualquier número real. 3
4 Edited b Foit PDF Editor Coprigt (c) b Foit Software Compan, For Evaluation Onl. Ejercicio.15.- A partir de los vectores que se muestran en la figura, en que los módulos de A, B C son 10, 0 30 respectivamente, determine: a) Proección de A en dirección de C - B b) Un vector D tal que D + B A = 0 Ejercicio.17.- Hallar el área del triángulo formado por los vectores A = 3i ˆ+ j ˆ+ ; B = -i ˆ+ 5j-4k ˆ ˆ su diferencia. Area = 1,03 C Y 30º A B Ejercicio.18.- Dados los vectores: A = -i ˆ+ 3j ˆ+ ; B = i ˆ+ 6j-k ˆ ˆ C = i ˆ-4j ˆ+ 3. a) Si A es paralelo a B encontrar los valores de las incógnitas,. a) AE = 9. b) D = 10j ˆ b) Encontrar un vector unitario paralelo a C. c) Hallar un vector en el plano Y Ejercicio.16.- Dados los vectores perpendicular a C de módulo 5. A = 4i ˆ+ 6j ˆ B = -6i ˆ-ˆj. Encontrar: a) El ángulo formado por los vectores. b) Un vector unitario en la dirección del vector A -B. a) 1 = - ; = - b) ĉ = 0,37i ˆ-0,74j ˆ+ 0,56 c) A = 4,48i ˆ+,4j ˆ o bien A = -4,48i ˆ-,4j ˆ a) = 133,º b) û = 0,89i ˆ+ 0,45j ˆ Ejercicio.19.- Dados los vectores: A = P-Q B = P + Q. Determinar P Q si B=6 A=4. P Q= 5 4
5 Edited b Foit PDF Editor Coprigt (c) b Foit Software Compan, For Evaluation Onl. Ejercicio.0.- Encontrar el área los ángulos interiores de un triángulo cuos vértices son las coordenadas: (3,-1,), (1,-1,-3) (4,-3,1). Area = 6,4 α== 6,84º; β= 76,851º; γ= 76,851º Ejercicio.4.- Tres vectores situados en un plano tienen 6, 5 4 unidades de magnitud. El primero el segundo forman un ángulo de 50º mientras que el segundo el tercero forman un ángulo de 75º. Encontrar la magnitud del vector resultante su dirección respecto del maor. Ejercicio.1.- Hallar el valor de r tal que los vectores A = i ˆ+ rj ˆ+ E = 4i ˆ-j-k ˆ ˆ sean perpendiculares. R = 9,9; = 45,8º r = 3 Ejercicio..- Hallar el área del paralelogramo cuas diagonales son: E = 3i ˆ+ ˆj- T = ˆi -3j ˆ+ 4 Area = 8,7 Ejercicio.3.- Los vectores A B forman entre sí un ángulo de 45º el módulo de A vale 3. Encontrar el valor de la magnitud de B para que la diferencia A -B sea perpendicular a A. B = 4, 5
LA RECTA. Ax By C 0. y y m x x. y mx b. Geometría Analítica 2 ECUACIÓN GENERAL. Teorema: ECUACIÓN PUNTO - PENDIENTE .
LA RECTA En geometría definimos a la recta como la sucesión infinita de puntos uno a continuación de otro en la misma dirección. En el plano cartesiano, la recta es el lugar geométrico de todos los puntos
EJERCICIOS BLOQUE III: GEOMETRÍA
EJERCICIOS BLOQUE III: GEOMETRÍA (00-M-A-4) (5 puntos) Determina el centro y el radio de la circunferencia que pasa por el origen de coordenadas, tiene su centro en el semieje positivo de abscisas y es
8.- GEOMETRÍA ANÁLITICA
8.- GEOMETRÍA ANÁLITICA 1.- PROBLEMAS EN EL PLANO 1. Dados los puntos A = (1, 2), B = (-1, 3), C = (3, 4) y D = (1, 0) halla las coordenadas de los vectores AB, BC, CD, DA y AC. Solución: AB = (-2, 1),
EJERCICIOS BLOQUE III: GEOMETRÍA
EJERCICIOS BLOQUE III: GEOMETRÍA (00-M-A-4) (5 puntos) Determina el centro y el radio de la circunferencia que pasa por el origen de coordenadas, tiene su centro en el semieje positivo de abscisas y es
MATEMÁTICAS II PROBLEMAS DE GEOMETRÍA PAU ANDALUCÍA
1 MATEMÁTICAS II PROBLEMAS DE GEOMETRÍA PAU ANDALUCÍA Ejercicio 1. (Junio 2006-A) Considera el plano π de ecuación 2x + y z + 2 = 0 y la recta r de ecuación x 5 z 6 = y =. 2 m (a) [1 punto] Halla la posición
4º ESO VECTORES y RECTAS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa. VECTORES y RECTAS
º ESO VECTORES RECTAS DEPARTAMENTO DE MATEMÁTICAS. VECTORES RECTAS.- Calcula las coordenadas del punto C(C x,c ) para que forme el paralelogramo ABCD junto con los puntos A(,), B(,) D(,-). Dibujo. _Sol
Boletín de Geometría Analítica
Boletín de Geometría Analítica 1) Si las coordenadas de los vectores a y b son (3,5) y (-2,1) respectivamente, obtén las coordenadas de: a) -2 a + 1/2 b b) 1/2 ( a +b ) - 2/3 ( a -b ) 2) Halla el vector
A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un
ANÁLISIS VECTORIAL MAGNITUD FÍSICA Es todo aquello que se puede medir. CLASIFICACIÓN DE MAGNITUDES POR NATURALEZA MAGNITUD ESCALAR: Magnitud definida por completo mediante un número y la unidad de medida
1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado:
CAPÍTULO. GEOMETRÍA AFÍN.. Problemas. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: a) A(,, ), v = (,, ) ; b) A(0,
RELACION DE PROBLEMAS DE GEOMETRIA. Problemas propuestos para la prueba de acceso del curso 1996/97.
RELACION DE PROBLEMAS DE GEOMETRIA Problemas propuestos para la prueba de acceso del curso 996/97. º. - Explica cómo se puede hallar el área de un triángulo, a partir de sus coordenadas, en el espacio
16. Dados los puntos A(-1,3), B(2,0) y C(-2,1). Halla las coordenadas de otro punto D para que los vectores y sean equivalentes.
TEMA 5. VECTORES 5.1. Vectores en el plano. - Definición. - Componentes de un vector. - Módulo. - Vectores equivalentes. 5.2. Operaciones con vectores. - Suma y resta. - Multiplicación por un número real.
3. 2. Pendiente de una recta. Definición 3. 3.
3.. Pendiente de una recta. Definición 3. 3. Se llama Angulo de Inclinación α de una recta L, al que se forma entre el eje en su dirección positiva y la recta L, cuando esta se considera dirigida hacia
UNIDAD 8 Geometría analítica. Problemas afines y métricos
UNIDAD Geometría analítica. Problemas afines y métricos Pág. 1 de 5 1 Se consideran los puntos A (, ) y B (4, 6). a) Calcula las coordenadas de un punto P que divida al segmento AB en dos partes 1 tales
Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica
Vectores 1) Vectores en R 2 Vector fijo en el plano Elementos de un vector fijo ( módulo, dirección, sentido, origen y extremo) Vectores equipolentes Vector libres Propiedad fundamental de los vectores
VECTORES. BIDIMENSIONAL
VETORES. IDIMENSIONL 1. Dado los vectores,,, D, E, F y G que se muestran en la figura, determinar el modulo del vector resultante si = 5N y F = 4N. Rpta. R = 17,35N. 2. En el primer cuadrante de un sistema
I Unidad Vectores. http://tchefonsecalfaro.wordpress.com/
I Unidad Vectores http://tchefonsecalfaro.wordpress.com/ Contenido 3 1 2 3 4 5 Vectores como desplazamiento Operaciones con vectores Componentes de un vector Producto escalar vectorial de dos vectores
GEOMETRÍA EN EL ESPACIO.
GEOMETRÍA EN EL ESPACIO. Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas
TEMA 7. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO.
TEMA 7. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO. 1. INTRODUCCIÓN.... ÁNGULOS Y DISTANCIAS EN EL PLANO... 3 3. MEDIDA DE ÁNGULOS ENTRE RECTAS Y PLANOS... 4 4. DISTANCIA ENTRE PUNTOS, RECTAS Y PLANOS.... 1
VECTORES vector Vector posición par ordenado A(a, b) representa geométricamente segmento de recta dirigido componentes del vector
VECTORES Un vector (Vector posición) en el plano es un par ordenado de números reales A(a, b). Se representa geométricamente por un segmento de recta dirigido, cuyo punto inicial es el origen del sistema
1.- Escribe las ecuaciones paramétricas de las siguientes rectas: a) Pasa por el punto A(-3,1) y su vector de dirección es v = (2,0)
1.- Escribe las ecuaciones paramétricas de las siguientes rectas: a) Pasa por el punto A(-,1) y su vector de dirección es v = (,0) b) Pasa por el punto P(5,-) y es paralela a : x = 1 t y = t c) Pasa por
Bloque 2. Geometría. 2. Vectores. 1. El plano como conjunto de puntos. Ejes de coordenadas
Bloque 2. Geometría 2. Vectores 1. El plano como conjunto de puntos. Ejes de coordenadas Para representar puntos en un plano (superficie de dos dimensiones) utilizamos dos rectas graduadas y perpendiculares,
Momento de un vector deslizante respecto a un punto. Momento de un vector deslizante respecto a un eje
Magnitudes escalares y vectoriales Tipos de vectores Operaciones con vectores libres Momento de un vector deslizante respecto a un punto Momento de un vector deslizante respecto a un eje Magnitudes escalares
Vectores. Marco A. Merma Jara http://mjfisica.net Versión: 08.2013
Vectores Marco A. Merma Jara http://mjfisica.net Versión: 08.2013 Contenido Definición Representación de vectores Magnitud de un vector Componente de un vector Vector componente Dirección de un vector
Definición de vectores
Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen O también denominado Punto de aplicación. Es el punto exacto sobre
Cálculo vectorial en el plano.
Cálculo vectorial en el plano. Cuaderno de ejercicios MATEMÁTICAS JRM SOLUCIONES Índice de contenidos. 1. Puntos y vectores. Coordenadas y componentes. Puntos en el plano cartesiano. Coordenadas. Vectores
1. Representa en el plano los vectores: v=(2,3), u=(-1,2), w=3451.
PROBLEMAS DE VECTORES 1. Representa en el plano los vectores: v=(2,3), u=(-1,2), w=3451. 2. )Cuales son las componentes del vector de módulo 4 y argumento 301?. Sol: (2 3,2) 3. Escribe las componentes
SERIE ÁLGEBRA VECTORIAL
SERIE ÁLGEBRA VECTORIAL 1.-Sea C(2, -3, 5) el punto medio del segmento dirigido AB. Empleando álgebra vectorial, determinar las coordenadas de los puntos A y B, si las componentes escalares de AB sobre
Matemáticas II - Geometría
PAU Matemáticas II - Geometría 2008.SEPTIEMBRE.1.- Dados los dos planos π 1 : x + y + z = 3 y π 2 : x + y αz = 0, se pide que calculeis razonadamente: a) El valor de α para el cual los planos π 1 y π 2
VECTORES EN EL ESPACIO
VECTORES EN EL ESPACIO Página 133 REFLEXIONA Y RESUELVE Relaciones trigonométricas en el triángulo Halla el área de este paralelogramo en función del ángulo a: cm a cm Área = sen a = 40 sen a cm Halla
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
TRANSFORMACIONES DEL PLANO
PROBLEMAS DE GEOMETRÍA. TRANSFORMACIONES DEL PLANO 1. Un producto de dos simetrías axiales de ejes perpendiculares A qué transformación corresponde? En qué se transforma un segmento vertical? ( ) 2. Cuál
EJERCICIOS DE TRIGONOMETRÍA
EJERIIOS DE TRIGONOMETRÍA EJERIIOS PROPUESTOS 1. El vigía de un barco pirata observa el punto más alto de un acantilado bajo un ángulo de 60º. Si el barco se aleja 100 m se observa bajo un ángulo de 45º.
UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS GUIA N 2
UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS GUIA N 2 NOMBRE DE LA ASIGNATURA: TÍTULO: DURACIÓN: BIBLIOGRAFÍA SUGERIDA: AUTOR: Física Mecánica Vectores 4 sesiones Serway, Giancoli,
EJERCICIOS RESUELTOS DE CÁLCULO VECTORIAL
EJERCICIOS RESUELTOS DE CÁLCULO VECTORIAL La finalidad de este trabajo implica tres pasos: a) Leer el enunciado e intentar resolver el problema sin mirar la solución. b) Si el resultado no es correcto,
VECTORES DE POSICIÓN Y DE FUERZA
VECTORES DE POSICIÓN Y DE FUERZA Objetivos del día de hoy: El estudiante será capaz de: a) Representar un vector de posición en la forma de coordenadas cartesianas, a partir de la geometría dada. b) Representar
Física I. TEMA I. Vectores. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA
Física I TEMA I. Vectores UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejandra Escobar TEMA I. VECTORES Magnitudes Una magnitud se define como toda aquella propiedad que
4 Vectores en el espacio
4 Vectores en el espacio ACTIVIDADES INICIALES 4.I. Efectúa las siguientes operaciones en R³ a) + 5,, 4, 7, b),, c) 6(,, ) + 4(, 5, ) 4 6 5 a),, 6 9 b) 6,, c) (6,, ) 4 4.II. Calcula los valores de a, b
ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250)
Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico Departamento de Matemática Aplicada ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Semestre 1-2011 Mayo 2011 Álgebra Lineal y Geometría
1.- Efectúa las siguientes operaciones con cantidades expresadas en notación científica. Expresa el resultado también en notación científica:
Pàgina 1 de 6 Alumnes suspesos: fer tot el treball obligatòriament. Altres alumnes: Es recomana que realitzeu aquells apartats on heu tingut més dificultats durant el curs. 1.- Efectúa las siguientes operaciones
PUNTOS Y VECTORES EN EL PLANO
PUNTOS Y VECTORES EN EL PLANO PUNTOS EN EL PLANO Tomando como referencia los ejes cartesianos del plano, un punto se representa mediante un par ordenado (a, b) de números reales, es decir, mediante un
Las ecuaciones de estas rectas pueden venir dadas de las formas siguientes:
Geometría Analítica 8-9 RECTAS EN EL ESPACIO En la figura se muestran varias rectas en el espacio, cuas posiciones son las siguientes: a) r r3 se cortan en un punto P cuas coordenadas se obtienen resolviendo
2. Determine el área del triángulo cuyos vértices son los extremos de los vectores u, v y w u = (1,0,-2) v = (-1,1,0) w = (2,-1,1)
2011 ÁLGEBRA II (L. S. I. P. I.) Guíía de Trabajjos Prácttiicos Nºº 4 Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO Prroducctto Veeccttorriiall.. Reecctta.. Pllano
Vectores y Escalares
Vectores y Escalares Suma Grafica y Analítica En física debemos distinguir entre vectores y escalares. Un vector es una cantidad orientada, tiene tanto magnitud como dirección. La velocidad, la fuerza
sen sen sen a 2 a cos cos 2 a
BLOQUE I: TRIGONOMETRÍA Y TRIÁNGULOS.- Sabiendo que tg g y cot, calcular tg y cos( ).- Demostrar razonadamente las fórmulas del seno, coseno y tangente del ángulo mitad.- Demostrar las siguientes igualdades:
Hoja de problemas nº 7. Introducción a la Geometría
Hoja de problemas nº 7 Introducción a la Geometría 1. Un rectángulo tiene de área 135 u 2 a. Si sus lados miden números enteros, averigua cuáles pueden ser sus dimensiones. b. Cortamos los vértices como
EJERCICIOS Nº 10: GEOMETRIA ANALITICA. se extiende hacia cada extremo en una longitud igual a su longitud original. Halle las coordenadas de
EJERCICIOS Nº 1: GEOMETRIA ANALITICA 1) Determine x si el punto A (x,3) equidista de B ( 3, ) y de C (7,4) Respuesta ) Determine los puntos de trisección del segmento de recta AB donde A( 6, 9), B(6,9)
República Bolivariana de Venezuela Universidad Alonso de Ojeda Vicerrectorado Académico Facultad de Ingeniería Escuela de Computación
República Bolivariana de eneuela Universidad Alonso de Ojeda Escuela de Computación UNIDAD I ECTORES Autor: Prof. Guillermo Pinder Adaptado: Ing. Ronn Altuve Ciudad Ojeda, Mao de 2015 Magnitudes Escalares
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 015 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
SUMA Y RESTA DE VECTORES. GL: Mesa No. Fecha: INTEGRANTES (Apellidos, nombres) FIRMA SECCION NOTA
UNIVERSIDAD TECNOLÓGICA DE EL SALVADOR ACULTAD DE INORMATICA Y CIENCIAS APLICADAS ESCUELA DE CIENCIAS APLICADAS DEPARTAMENTO DE MATEMATICA Y CIENCIAS CÁTEDRA DE ÍSICA ASIGNATURA: ISICA I PRACTICA 2 SUMA
GEOMETRÍA ANALÍTICA EJERCITARIO DE FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) UNIVERSIDAD NACIONAL DE ASUNCIÓN
UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO DE GEOMETRÍA ANALÍTICA (ÁLGEBRA VECTORIAL - PRÁCTICA) AÑO 2014 ÁLGEBRA VECTORIAL - EJERCICIOS
UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA
UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA AÑO 014 CURSO PREPARATORIO DE INGENIERÍA CPI-014 TRASLACIÓN Y/O
GEOMETRÍA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014
GEOMETRÍA (Selectividad 014) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 014 1 Aragón, junio 014 Dados el punto P (1, 1, 0), y la recta: x+ z 1= 0 s : 3x y 3= 0 Ax + By
Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática.
Álgebra Geometría Analítica Vectores en R en R 3. Rectas planos en el espacio Prof. Gisela Saslavs Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática..
3. Un triángulo rectángulo es semejante a otro cuyos catetos miden 3 cm y 4 cm. Su hipotenusa vale 2,5 cm. Halla las medidas de sus catetos.
RELACIÓN DE ACTIVIDADES MATEMÁTICAS º ESO TEMA 7: RESOLUCIÓN DE TRIÁNGULOS Y TRIGONOMETRÍA Contesta razonadamente a las siguientes preguntas:. Halla la incógnita en los siguientes triángulos rectángulos:
Geometría 2. Halla a y b sabiendo que la recta que pasa por A y B corta perpendicularmente a la recta que pasa por C y D.
Geometría Ejercicio. Considera el plano π la recta r dados por π a 4 b r. 4 4 a) Halla los valores de a b para los que r está contenida en π. b) Eiste algún valor de a algún valor de b para los que la
PROBLEMAS RESUELTOS GEOMETRÍA
PROBLEMAS RESUELTOS GEOMETRÍA ) Uno de los vértices de un paralelogramo ABCD es el punto A(, ) y dos de los lados están sobre las rectas r : 3x -y- =, s : 6x -7y- =. Calcula los demás vértices. Como el
PROBLEMAS DE APLICACIÓN (TRIÁNGULOS EN GENERAL)
PROBLEMAS DE APLICACIÓN (TRIÁNGULOS EN GENERAL) En las técnicas anteriores utilizamos triángulos rectángulos, si ahora hacemos uso de los casos de resolución de triángulos cualesquiera podemos resolver
Veamos sus vectores de posición: que es la ecuación vectorial de la recta:
T.5: ECUACIONES DE LA RECTA 5.1 Ecuación vectorial de la recta Una recta queda determinada si se conoce un vector que lleve su dirección (de entre todos los vectores proporcionales), llamado vector director,
1. Polígonos. 1.1 Definición
1.1 Definición 1. Polígonos Es toda figura plana, cerrada, limitada por un número finito de lados rectos. De acuerdo al número de lados, los más utilizados se clasifican en: Triángulos 3 lados Cuadriláteros
EJERCICIOS PROPUESTOS
EJERCICIOS PROPUESTOS ) Dadas las coordenadas del punto A(, ). Hallar la ecuación de la recta (r) paralela al eje por dicho punto. Hallar la ecuación de la recta (p) paralela al eje por dicho punto. )
PROBLEMAS METRICOS. r 3
PROBLEMAS METRICOS 1. Hallar el área del triángulo de vértices A(1,1), B(2,3) y C(5,2). 2. Halla las ecuaciones de las bisectrices determinadas por las rectas y=3x e y=1/3 x. Comprueba que ambas bisectrices
ALGEBRA Y GEOMETRIA ANALITICA
Diplomatura en Ciencia y Tecnología ALGEBRA Y GEOMETRIA ANALITICA SEGUNDO CUATRIMESTRE DE 2009 Profesora Mariana Suarez PRACTICA N 7: SISTEMA COORDENADO TRIDIMENSIONAL. VECTORES. PRACTICA 7: Sistema coordenado
TEMA 6 Ejercicios / 3
TEMA 6 Ejercicios / 1 TEMA 6: RECTAS Y PLANOS EN EL ESPACIO 1. Ecuaciones de los planos cartesianos en forma vectorial, paramétrica e implícita. Ecuaciones del plano XY: Punto del plano P 0, 0, 0 Vectores
Índice. GEOMETRÍA ANALÍTICA. Generalidades. Bibliografía:
Índice GEOMETRÍA ANALÍTICA. Generalidades GEOMETRÍA ANALÍTICA EN UNA Y DOS DIMENSIONES. Lugar Geométrico Sistema Unidimensional. Distancia entre dos puntos. Sistema de coordenadas en el Plano Sistema de
Facultad de Ciencias Curso 2010-2011 Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO
SOLUCIONES PROLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO. Dos conductores rectilíneos, paralelos mu largos transportan corrientes de sentidos contrarios e iguales a,5 A. Los conductores son perpendiculares
FIGURAS GEOMÉTRICAS PLANAS
FIGURAS GEOMÉTRICAS PLANAS 1.- Es posible construir un triángulo equilátero y rectángulo? Razona tu respuesta. 2.- Dibuja un triángulo equilátero. Cómo son sus ángulos? 3.- Construye, con regla, compás
MAGNITUDES ESCALARES. expresadas por medio de un número y la correspondiente unidad. Masa Temperatura Presión Densidad
MAGNITUDES ESCALARES Son aquellas en donde las medidas quedan correctamente expresadas por medio de un número y la correspondiente unidad. Masa Temperatura Presión Densidad Para muchas magnitudes físicas
APUNTES DE MATEMÁTICAS 1º BACHILLERATO TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS
APUNTES DE MATEMÁTICAS TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS º BACHILLERATO ÍNDICE. ECUACIONES DE LA RECTA EN EL PLANO.... 4.. SISTEMAS DE REFERENCIA... 4.. COORDENADAS DE UN PUNTO... 4.3. COORDENADAS
1.4. Proporcionalidad de perímetros, áreas y volúmenes en objetos semejantes Si dos figuras son semejantes, entonces se verifica que: V = 3
TEMA 8: SEMEJANZA Y TRIGONOMETRÍA. Teorema de Thales.. Teorema de Thales Si se trazan un conjunto de rectas paralelas entre sí: L, L, L, que cortan a dos rectas r y s, los segmentos que determinan sobre
ANALISIS VECTORIAL. Vectores concurrentes: cuando se interceptan en un mismo punto.
ANALISIS VECTORIAL Vector: Es un operador matemático que sirve para representar a las magnitudes vectoriales. Vectores concurrentes: cuando se interceptan en un mismo punto. Vectores iguales: cuando tienen
By C 10. SEGMENTARIA GEOMETRÍA-ECUACIÓN DE LA RECTA Y POSICIONES. Esta forma se obtiene a partir de la forma general. Ejemplo:
GEOMETRÍA-EUAIÓN DE LA RETA Y POSIIONES Prof: F. López- D. Legal: M-0006/009 0. SEGMENTARIA Esta forma se obtiene a partir de la forma general. 0 B Y A B A B A B A Ejemplo: 0 Los denominadores son los
c) Hallar los planos del haz que cumplen que el ángulo que forman con el eje OY tiene por seno el valor
1. [ANDA] [JUN-A] De un paralelogramo ABCD conocemos tres vértices consecutivos A(,-1,0), B(-,1,0) y C(0,1,). a) Calcula la ecuación de la recta que pasa por el centro del paralelogramo y es perpendicular
Colegio LOPE DE VEGA Luis de Medina, 12 28805 Alcalá de Henares DIBUJO TÉCNICO II EJERCICIOS DE APOYO
Colegio LOPE DE VEGA Luis de Medina, 12 28805 Alcalá de Henares DIBUJO TÉCNICO II EJERCICIOS DE APOYO 1º.- Deducir razonadamente el valor del ángulo α marcado en la figura sabiendo que esta representa
= a 2 b 2 sin 2 φ = = a 2 b 2 (1 cos 2 φ) = a 2 b 2 a 2 b 2 cos 2 φ = a 2 b 2 ( a b) 2.
Ejercicio 2.1 Demuestre las identidades ( a b) c =( a c) b ( b c) a. ( a b) c = a ( b c). a b2 = a 2 b 2 ( a b) 2. Solución. Deben haber muchas demostraciones. La tercera es fácil pues si φ es el ángulo
1.18 Convertir de coordenadas cilíndricas a esféricas el campo vectorial H = (A/r), donde A es constante.
Problemas 1.5 Un campo vectorial está dado por G = 24xy + 12(x 2 + 2) + 18z 2. Dados dos puntos, P(1, 2, - 1) y Q(-2, 1, 3), encontrar: a) G en P; b) un vector unitario en la dirección de G en Q; c) un
Magnitudes vectoriales y escalares.
Magnitudes vectoriales y escalares https://sites.google.com/site/fisicadeterceroedwar/temas/magnitudes-escalares-y-vectoriales Magnitudes escalares Son aquellas que quedan completamente especificadas con
MAGNITUD VECTORIAL. Veamos un ejemplo sencillo: Es un segmento de línea recta orientada que sirve para representar a las magnitudes vectoriales.
Capítulo 3 VECTORES MGNITUD VECTORIL Es aquella magnitud que aparte de conocer su valor numérico y su unidad respectiva, es necesario conocer también la dirección y sentido para que así dicha magnitud
I.P.A.O. Granada EXAMEN ANDALUCÍA 2000. JARR
PROCEDIMIENTO SELECTIVO PARA EL INGRESO AL CUERPO DE PROFESORES DE ENSEÑANZA SECUNDARIA. CONVOCATORIA 2000. MATEMÁTICAS EJERCICIO 1: Construir un triángulo conociendo los lados "b" y "c" y la bisectriz
ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº 5 Recta y Plano Cursada 2014
ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº Recta Plano Cursada Desarrollo Temático de la Unidad La recta en el plano: su determinación. Distintas formas de la ecuación de la recta a partir de la
III A - CAMPO ELÉCTRICO
1.- Una carga puntual de 4 µc se encuentra localizada en el origen de coordenadas y otra, de 2 µc en el punto (0,4) m. Suponiendo que se encuentren en el vacío, calcula la intensidad de campo eléctrico
NIVEL : 1er. AÑO PROFESORAS: L. ALTIMIRAS R. CARRERA : DISEÑO C RAMIREZ N. AÑO : 2010 AYUDANTE : C. ESCOBEDO C.
UNIVERSIDAD DE CHILE FACULTAD DE ARQUITECTURA Y URBANISMO ESCUELA DE DISEÑO DEPARTAMENTO DE CIENCIAS DE LA CONSTRUCCION ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : 1er. AÑO PROFESORAS: L. ALTIMIRAS
Estática Profesor Herbert Yépez Castillo
Estática 2015-2 Profesor Herbert Yépez Castillo Introducción 2.1 Escalares y vectores 2.2 Operaciones vectoriales 2.3 Suma vectorial de fuerzas 2.4 Suma de sistema de fuerzas coplanares 2.5 Vectores cartesianos
OPERACIONES GEOMÉTRICAS CON VECTORES
GUÍA DE APRENDIZAJE Introducción al álgebra vectorial www.fisic.ch Profesor: David Valenzuela Z Magnitudes escalares y vectoriales La gran variedad de cosas medibles (magnitudes) se pueden clasificar en
Matemáticas 4 Enero 2016
Laboratorio #1 Vectores I.- Calcule el producto escalar de los dos vectores y el coseno del ángulo entre ellos. 1) u = 3i + 2j 4k; v = i + 5j 3k 2) u = i + 2j 3k; v = 1i 2j + 3k 3) u = 1 2 i + 1 3 j +
Proyecciones. Producto escalar de vectores. Aplicaciones
Proyecciones La proyección de un punto A sobre una recta r es el punto B donde la recta perpendicular a r que pasa por A corta a la recta r. Con un dibujo se entiende muy bien. La proyección de un segmento
MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS GRADO 10
TEOREMA DE LOS SENOS Y DE LOS COSENOS PERÍODO: UNO VERSIÓN 01 FECHA: Mayo 15 de 01 MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS GRADO 10 LOGROS: Enunciar y demostrar la Ley de los Senos, Ley de los Cosenos
GUÍA DE APRENDIZAJE Introducción al álgebra vectorial
Liceo Juan XXIII V.A Departamento de ciencias Física Prof. David Valenzuela GUÍA DE APRENDIZAJE Introducción al álgebra vectorial www.fisic.jimdo.com Tercero medio diferenciado Magnitudes escalares y vectoriales
Trigonometría y Análisis Vectorial
Unidad Educativa enezuela Trigonometría nálisis ectorial Prof. Ronn J. ltuve Unidad Educativa enezuela Trigonometría nálisis ectorial 1. Teorema de Pitágoras: establece que en un triángulo rectángulo el
Geometría vectorial. [Versión preliminar] Prof. Isabel Arratia Z. Cálculo III - Geometría vectorial 1
Geometría ectorial [Versión preliminar] Prof. Isabel Arratia Z. Cálculo III - Geometría ectorial El espacio R Sistema de coordenadas rectangulares tridimensionales Las coordenadas rectangulares en el plano
Nota: Como norma general se usan tantos decimales como los que lleven los datos
1. Sea ABC un triángulo rectángulo en A, si sen B 1/3 y que el lado AC es igual a 10cm. Calcular los otros lados de este triángulo. Mediante la definición de sen Bˆ, se calcula el lado c. b b 10 sen Bˆ
Electrostática. Procedimientos
Electrostática. Procedimientos 1. Calcula a qué distancia tendrían que situarse un electrón y un protón de manera que su fuerza de atracción eléctrica igualase al peso del protón. 0,12 m 2. Recuerdas la
MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares.
ESTUDIO ANALÍTICO DE LA LÍNEA RECTA Y APLICACIONES SEMESTRE II VERSIÓN 03 FECHA: Septiembre 29 de 2011 MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA LOGROS: 1. Hallar la dirección, la
Trigonometría y problemas métricos
Trigonometría y problemas métricos 1) En un triángulo rectángulo, los catetos miden 6 y 8 centímetros. Calcula la medida de la altura sobre la hipotenusa y la distancia desde su pie hasta los extremos.
LA RECTA Y SUS ECUACIONES
UNIDAD 1 LA RECTA Y SUS ECUACIONES PROBLEMAS PROPUESTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivos
Guía de Reforzamiento N o 2
Guía de Reforzamiento N o Teorema de Pitágoras y Trigonometría María Angélica Vega Guillermo González Patricio Sepúlveda 19 de Enero de 011 1 TEOREMA DE PITÁGORAS B a c C b A El Teorema de Pitágoras afirma
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
SISTEMA DE UNIDADES FÍSICAS. Ing. Ronny Altuve
UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE INGENIERÍA Escuela de Industrial/Computación SISTEMA DE UNIDADES FÍSICAS Elaborado por: Ing. Ronny Altuve Ciudad Ojeda, Mayo de 2015 CONCEPTOS BÁSICOS Medida Magnitud
Figuras Planas. 100 Ejercicios para practicar con soluciones. 1 Comprueba si los siguientes ángulos son complementarios: a) 72 + 35.
Figuras Planas. 100 Ejercicios para practicar con soluciones 1 Comprueba si los siguientes ángulos son complementarios: a) 7º y 35 b) 6º y 64º a) 7 + 35 = 107 90 No son complementarios. b) 6 + 64 = 90
