TEMA I. Teoría de Circuitos
|
|
|
- María Cristina Robles Marín
- hace 9 años
- Vistas:
Transcripción
1 TEMA I Teoría de Circuitos Electrónica II Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos. 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos: Thevenin y Norton. 1.6 Fuentes reales dependientes. 1.7 Condensadores e inductores. 1.8 Respuesta en frecuencia. 2 1
2 1.4 Métodos de análisis: mallas y nodos Corrientes de rama y malla. Matrices y determinantes. Resistencias de entrada y transferencia. Simplificación de circuitos. 3 Método de los nodos 1 Etiquetar los parámetros del circuito distinguiendo conocidos y desconocidos 2 Identificar todos los nodos del circuito 3 Seleccionar un nodo como nodo de referencia. Todos los voltajes del circuito se medirán respecto al nodo de referencia (que por tanto tendrá 0V, es decir, será equivalente a tierra). 4 Etiquetar los voltajes en el resto de los nodos 5 Asignar polaridades a cada elemento. Etiquetar las corrientes en cada rama del circuito. 6 Aplicar KCL y expresar las corrientes en cada rama del circuito en términos de los voltajes en los nodos. 7 Resolver las ecuaciones resultantes para los voltajes en los nodos. 8 Aplicar la ley de Ohm para obtener las corrientes en cada rama del circuito. 4 2
3 Método de los nodos. Ejemplo Resolución paso a paso 3 1 Seleccionar Etiquetar i todos un nodo d los parámetros como el nodo del de circuito referencia Asignar Identificar distinguiendo Etiquetar Aplicar KCL polaridades los todos y voltajes expresar los los conocidos a nodos en cada las el corrientes del elemento. resto y los circuito de desconocidos los en nodos. cada rama del circuito Etiquetar en términos las corrientes de los voltajes en cada rama en los del nodos. circuito. Fijémonos que i3 también se podría poner en función de V3 y R4. Por Hay tanto dos se reglas tiene para que elegir cumplir un buen la nodo siguiente de referencia: relación: El que tenga un mayor número de elementos conectados a él: 2 y 4 El que tenga un mayor número de fuentes de voltaje conectadas a él: 4 5 Método de los nodos. Ejemplo 7 Resolver las ecuaciones resultantes para los voltajes en los nodos. 6 3
4 Método de los nodos. Ejemplo Las ecuaciones obtenidas se expresan en forma matricial: solución 7 Método de los nodos. Ejemplo Fijémonos que en este ejemplo sencillo podríamos haber buscado una resistencia equivalente 8 4
5 Método de los nodos con fuentes flotantes KCL Fuente se puede flotante: aplicar fuente a un supernodo conectada de al la nodo misma de forma referencia. que a un Recibe nodo normal. el nombre de supernodo. Supernodo A partir de aquí, aplicamos la ley de Ohm para encontrar las corrientes. 9 Método de los nodos con fuentes flotantes. Ejemplo 1 Supernodo El signo negativo indica sentido contrario KCL se puede aplicar a un supernodo de la misma forma que a un nodo normal. 10 5
6 Método de los nodos con fuentes flotantes. Ejemplo 1 A partir de aquí, aplicamos la ley de Ohm para encontrar las corrientes. 11 Método de los nodos con fuentes flotantes. Ejemplo 2 Supernodo 12 6
7 Método de las mallas Una malla es un lazo que no contiene ningún otro lazo 3 lazos 2 mallas 13 Método de las mallas Utiliza las corrientes de malla como variables del circuito. Asigna un nodo como referencia de potencial. 1 Etiquetar los parámetros del circuito distinguiendo los conocidos y los desconocidos 2 Identificar todas las mallas del circuito 3 Nombrar las corrientes de cada malla y asignar polaridades a cada elemento. 4 Aplicar KVL en cada malla y expresar los voltajes en términos de las corrientes en las mallas. 5 Resolver las ecuaciones para las corrientes en las mallas. 6 Aplicar la ley de Ohm para obtener los voltajes. 14 7
8 Método de las mallas. Ejemplo 1 1 Etiquetar La asignación los parámetros del sentido del circuito las corrientes distinguiendo las mallas los conocidos es arbitraria y los (puede desconocidos ser horaria o anti-horaria). La corriente de malla a veces coincidirá con la corriente en una rama del circuito. 15 Método de las mallas. Ejemplo 1 2 Identificar La asignación todas del las sentido mallas de del las circuito corrientes en las mallas es arbitraria (puede ser horaria o anti-horaria). La corriente de malla a veces coincidirá con la corriente en una rama del circuito. 16 8
9 Método de las mallas. Ejemplo Nombrar Aplicar La asignación KVL las corrientes del cada sentido malla de cada de y expresar las malla corrientes y los asignar voltajes en las polaridades mallas en términos es a arbitraria cada de las corrientes (puede elemento. ser Se en horaria establecen las mallas. o anti-horaria). relaciones entre las corrientes de malla y las La corrientes en de las malla ramas a veces del circuito. coincidirá con la corriente en una rama del circuito. 17 Método de las mallas. Ejemplo 1 4 Aplicar La asignación KVL en del cada sentido malla de y expresar las corrientes los voltajes en las en mallas términos es arbitraria de las (puede corrientes ser en horaria las mallas. o anti-horaria). La corriente de malla a veces coincidirá con la corriente en una rama del circuito. 18 9
10 Método de las mallas. Ejemplo 1 5 Recordemos Resolver las que ecuaciones las incógnitas para las son corrientes las corrientes las mallas. de : I1 e I2 Las corrientes de rama (i1, i2 e i3) se obtienen a partir de las corrientes de I1 e I2 19 Método de las mallas. Ejemplo 2 A La Ahora la fuente hora tenemos de asignar corriente una fuente sentido ha reducido de a corriente las corrientes el número además tenemos de la ecuaciones de voltaje en cuenta que necesarias la intensidad para resolver en la segunda el problema. malla ha de ser igual a Is
1 Teoría de Circuitos
1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos: Thevenin y Norton. 1.6 Fuentes reales dependientes.
Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas.
http:///wpmu/gispud/ ANÁLISIS DE CIRCUITO POR CORRIENTES DE MALLA Ejercicio 27. Análisis de circuitos por corrientes de malla. Determinar a través de análisis de mallas las corrientes que circulan en el
Tema 2. Métodos de Análisis de Circuitos
Tema. Métodos de Análisis de Circuitos. Introducción. Análisis de nudos. Análisis de mallas.4 Comparación entre el análisis de nudos y el de mallas A Ω i Ω A i R? i i 0 6 Ω Ω Análisis de Circuitos (G-86).
MÉTODOS DE RESOLUCIÓN DE CIRCUITOS
MÉTODOS DE RESOLUCIÓN DE CIRCUITOS Un circuito eléctrico está formado por elementos activos (generadores) y pasivos (resistencias, condensadores, y bobinas). En muchas ocasiones estos elementos forman
MÉTODOS DE ANÁLISIS DE CIRCUITOS. Mg. Amancio R. Rojas Flores
MÉTODOS DE ANÁLISIS DE CIRCUITOS Mg. Amancio R. Rojas Flores INTRODUCCION En base a la comprensión de las leyes fundamentales de la teoría de circuitos, se aplicara al desarrollo de dos eficaces técnicas
CAPITULO X LEYES DE LOS CIRCUITOS ELÉCTRICOS
LEYES DE LOS CIRCUITOS ELECTRICOS CAPITULO X LEYES DE LOS CIRCUITOS ELÉCTRICOS Con estas leyes podemos hallar las corrientes y voltajes en cada una de las resistencias de los diferentes circuitos de CD.
TEMA I. Teoría de Circuitos
TEMA I Teoría de Circuitos Electrónica II 2009-2010 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos. 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:
Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas.
http:///wpmu/gispud/ ANÁLISIS DE MALLAS CON FUENTES INDEPENDIENTES DE TENSIÓN Y CORRIENTE. Ejercicio 30. Análisis de mallas con fuentes independientes de tensión y corriente. a) Determinar a través de
Objetivo de la actividad
Tema 8. Método de análisis de Nodos Objetivo de la actividad Al finalizar la actividad id d serásá capaz de: Aplicar el método de nodos al análisis de circuitos. 1 Temas Introducción al análisis de Nodos
Electrotecnia 1 3E1 (Plan 2003)
Electrotecnia E (Plan 00) UNDAD TEMÁTCA Unidad Temática Las Leyes de Kirchoff Transformaciones de Fuentes Método de las Tensiones de Nodos Método de las Corrientes de Malla Teoremas de Theenin y Norton
Análisis de circuitos. Unidad II
Análisis de circuitos Unidad II Objetivo del análisis de circuitos: Determinar todos los voltajes y corrientes en un circuito. Método de las tensiones (o voltajes) de nodo. 1. Identificar los nodos del
CAPITULO II.- RESISTENCIAS Y FUENTES INTRODUCCION LA RESISTENCIA Y LA LEY DE OHM Conceptos básicos
INDICE CAPITULO I.- INTRODUCCION A LAS REDES ELECTRICAS. CONCEPTOS BASICOS Y LEYES DE KIRCHHOFF 1 1.1.- UN POCO DE HISTORIA. 2 1.2.- EL CIRCUITO ELECTRICO. 3 1.2.1.- Definición del Circuito Eléctrico.
Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas.
http:///wpmu/gispud/.4 ANALISIS POR TENSION DE NODO SUPERNODO Ejercicio 36. Análisis de supernodo. a) Determinar a través de supernodo las caídas de tensión sobre las resistencias. b) Determinar las corrientes
Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas.
http:///wpmu/gispud/ 3.10 EQUIVALENTE THEVENIN CON FUENTESDEPENDIENTES Y RESISTENCIAS Ejercicio 59. Equivalente Thévenin con fuentes dependientes y resistencias. Determine el equivalente Thévenin visto
Circuitos con fuentes independientes de corriente y resistencias, circuitos R, I
MÉTODO DE LOS NUDOS Es un método general de análisis de circuitos que se basa en determinar los voltajes de todos los nodos del circuito respecto a un nodo de referencia. Conocidos estos voltajes se pueden
TEMA I. Teoría de Circuitos
TEMA I Teoría de Circuitos Electrónica II 2007 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:
CIRCUITOS y SISTEMAS I
CIRCUITOS y SISTEMAS I I II - III LEYES IV - V MÉTODOS VI ANÁLISIS TEMPORAL INTRODUCCIÓN componentes + general conexiones simplificativos VII asociaciones ANÁLISIS FRECUENCIAL 4,5 horas (4,5 + 4) horas
1. La ley de Ohm, es una propiedad específica de ciertos materiales. La relación
CIRCUITOS RESISTIVOS: 1. La ley de Ohm, es una propiedad específica de ciertos materiales. La relación es un enunciado de la ley de Ohm. Un conductor cumple con la ley de Ohm sólo si su curva V-I es lineal;
TEMA I. Teoría de Circuitos
TEMA I Teoría de Circuitos Electrónica II 2009-2010 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:
FUNDAMENTOS DE INGENIERÍA ELÉCTRICA - PROBLEMAS -
PROBLEMAS EN CORRIENTE CONTINUA 1. Calcular la intensidad que circula por la siguiente rama si en todos los casos se tiene V AB = 24 V 2. Calcular la diferencia de potencial entre los puntos A y B de los
Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas.
http:///wpmu/gispud/ 3.7 EQUIVALENTE THEVENIN Y NORTON Ejercicio 52. Equivalente Thévenin y Norton. a) Determine el equivalente Thévenin visto desde los terminales a y b. Circuito 162. Equivalente Thévenin
Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas.
http:///wpmu/gispud/ 2.13 ANÁLISIS DE CIRCUITO POR TENSIÓN DE NODOS Ejercicio 20. Análisis de nodos. A partir de análisis de tensión de nodos determinar sobre el circuito: a) La caída de tensión en cada
Tema 3. Circuitos Resistivos
Tema 3. Circuitos esistivos Sistemas y Circuitos 1 3.1 Elementos en Circuitos Elementos de circuitos Dos terminales Potencia (instantánea) vt () it () Dispositivo (, L,C) (Generador) Tanto la tensión como
Universidad Nacional de Quilmes 1. Teoría de Circuitos. Métodos de resolución de circuitos
1 Teoría de Circuitos Métodos de resolución de circuitos Condición: se aplican a redes bilaterales lineales. El término bilateral se refiere a que no habrá cambios en el comportamiento de la respuesta
TCI - Teoría de Circuitos
Unidad responsable: 330 - EPSEM - Escuela Politécnica Superior de Ingeniería de Manresa Unidad que imparte: 750 - EMIT - Departamento de Ingeniería Minera, Industrial y TIC Curso: 2016 Titulación: Créditos
CAPITULO III ANALISIS DE REDES RESISTIVAS.
CAPITULO III ANALISIS DE REDES RESISTIVAS. 3.1.-METODO DE MALLAS Y METODO DE NODOS. El análisis de circuitos eléctricos está vinculado por lo general con la solución de un conjunto de n ecuaciones con
Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas.
http:///wpmu/gispud/ 3.9 EQUIVALENTE THEVENIN CON FUENTE INDEPENDIENTES Y DEPENDIENTES Ejercicio 57. Equivalente Thévenin con fuentes independientes y dependientes. Determine el equivalente Thévenin para
Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas.
http:///wpmu/gispud/ MALLAS CON FUENTES DEPENDIENTES E INDEPENDIENTES DE TENSIÓN Y CORRIENTE Ejercicio 33. Análisis de mallas, fuentes dependientes e independientes de tensión y corrientes a) Mediante
Módulo 4 - Electrotecnia MÉTODO DE CORRIENTES DE MALLAS MÉTODO DE POTENCIALES DE NODOS
2016 Módulo 4 - Electrotecnia MÉTODO DE CORRIENTES DE MALLAS MÉTODO DE POTENCIALES DE NODOS Ing. Rodríguez, Diego 01/01/2016 MÉ TODO DÉ LAS CORRIÉNTÉS DÉ MALLA El método de las corrientes de malla consiste
Análisis de redes eléctricas de baterías y resistencias (una aplicación de sistemas de ecuaciones lineales)
Análisis de redes eléctricas de baterías y resistencias (una aplicación de sistemas de ecuaciones lineales) Objetivos. Conocer una aplicación de sistemas de ecuaciones lineales al análisis de redes eléctricas
MÉTODOS DE ANÁLISIS DE CIRCUITOS. Mg. Amancio R. Rojas Flores
MÉTODOS DE ANÁLSS DE CRCUTOS Mg. Amancio R. Rojas Flores NTRODUCCON En base a la comprensión de las leyes fundamentales de la teoría de circuitos, se aplicara al desarrollo de dos eficaces técnicas para
TECNICAS DE ANÁLISIS DE CIRCUITOS ANÁLISIS NODAL Y ANÁLISIS DE MALLA
TECNICAS DE ANÁLISIS DE CIRCUITOS ANÁLISIS NODAL Y ANÁLISIS DE MALLA TÉCNICAS DE ANÁLISIS DE CIRCUITOS ANÁLISIS NODAL OBJETIVO: HALLAR EL VOLTAJE DE CADA UNO DE LOS NODOS DEL CIRCUITO ANÁLISIS NODAL Identificar
Instrumental y Dispositivos Electrónicos
F-UNE - DAE - DE- nstrumental y Dispositivos Electrónicos Departamento Académico Electrónica Facultad de ngeniería 2018 DE- DAE - F-UNE nstrumental y Dispositivos Electrónicos Análisis de circuitos eléctricos
LABORATORIO DE ELECTRICIDAD Y MAGNETISMO CUESTIONARIO PREVIO PRÁCTICA PLANTEAMIENTO DE UNA RED ELÉCTRICA SENCILLA
CUESTIONARIO PREVIO PRÁCTICA PLANTEAMIENTO DE UNA RED ELÉCTRICA SENCILLA Instrucciones: Responder las siguientes preguntas. 1. Explicar cuál es la utilidad de resolver un sistema de ecuaciones 2. Explicar
Ley de Ohm. I = Intensidad en amperios (A) VAB = Diferencia de potencial en voltios (V) R = Resistencia en ohmios (Ω).
V Ley de Ohm I = Intensidad en amperios (A) VAB = Diferencia de potencial en voltios (V) R = Resistencia en ohmios (Ω). En un conductor recorrido por una corriente eléctrica, el cociente entre la diferencia
Lección 1. Algoritmos y conceptos básicos.
Página 1 de 8 Lección 1. Algoritmos y conceptos básicos. Objetivos. La primera lección del curs está dedicada a repasar los conceptos y algoritmos del álgebra lineal, básicos para el estudio de la geometría
Electrotecnia. Tema 7. Problemas. R-R -N oro
R-R -N oro R 22 0^3 22000 (+-) 00 Ohmios Problema.- Calcular el valor de la resistencia equivalente de un cubo cuyas aristas poseen todas una resistencia de 20 Ω si se conecta a una tensión los dos vértices
Módulo 4 MÉTODOS DE RESOLUCIÓN DE CIRCUITOS EN CORRIENTE ALTERNA
E.E.S.T. 8 Módulo 4 MÉTODOS DE RESOLUCIÓN DE CIRCUITOS EN CORRIENTE ALTERNA Ing. Rodríguez, Diego E.E.S.T. 8 INTRODUCCIO N Se entiende por resolver un circuito eléctrico el calcular sus corrientes de rama
Tema 2. Sistemas de ecuaciones lineales
Tema 2. Sistemas de ecuaciones lineales Estructura del tema. Definiciones básicas Forma matricial de un sistema de ecuaciones lineales Clasificación de los sistemas según el número de soluciones. Teorema
Corriente Alterna: Circuitos serie paralelo y mixto. Resolución de problemas
Corriente Alterna: Circuitos serie paralelo y mixto. Resolución de problemas En el tema anterior viste como se comportaban las resistencias, bobinas y condensadores cuando se conectaban a un circuito de
ELECTROTECNIA Circuitos de Corriente Continua
ELECTROTECNIA Circuitos de Corriente Continua Juan Guillermo Valenzuela Hernández ([email protected]) Universidad Tecnológica de Pereira Primer Semestre de 2014 Juan Valenzuela 1 Leyes de Kirchhoff
Objetivo de la actividad
Tema 7. Métodos de análisis de mallas Objetivo de la actividad Al finalizar la actividad serás capaz de: Aplicar el método de mallas al análisis de circuitos. 1 Temas Introducción alanálisis de Mallas
Análisis de nodos Objetivo: Calcular los voltajes de los nodos, utilizando LCK, LVK y Ley de Ohm
TÉCNCAS DE ANÁLSS - Análisis de nodos - Análisis de mallas - Transformación de fuentes - División de voltajes y corrientes ESUMEN TECNCAS DE ANALSS JESÚS BAEZ Análisis de nodos Objetivo: Calcular los voltajes
Tema 1. Circuitos eléctricos de corriente continua.
Tema 1. Circuitos eléctricos de corriente continua. Se simplificarán las ecuaciones del electromagnetismo aplicadas a dispositivos eléctricos que nos interesarán para generar, almacenar, transportar o
SIMULACIONES INTERACTIVAS DE FUNDAMENTOS DE CIRCUITOS
SIMULACIONES INTERACTIVAS DE FUNDAMENTOS DE CIRCUITOS ANTONIO JOSE SALAZAR GOMEZ UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERIA DEPARTAMENTO DE INGENIERIA ELECTRICA Y ELECTRONICA TABLA DE CONTENIDO 1.
Circuitos de corriente directa. Circuito eléctrico es cualquier conexión de elementos eléctricos
Circuitos de corriente directa Circuito eléctrico es cualquier conexión de elementos eléctricos (resistencia, baterías, fuentes, capacitores, etc.) a través de los cuales puede circular corriente en forma
Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias.
38 6. LEY DE OHM. REGLAS DE KIRCHHOFF Objetivo Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias. Material Tablero de conexiones, fuente de tensión
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales Este tema resulta fundamental en la mayoría de las disciplinas, ya que son muchos los problemas científicos y de la vida cotidiana que requieren resolver simultáneamente
Tema 5: Sistemas de Ecuaciones Lineales
Tema 5: Sistemas de Ecuaciones Lineales Eva Ascarza-Mondragón Helio Catalán-Mogorrón Manuel Vega-Gordillo Índice 1 Definición 3 2 Solución de un sistema de ecuaciones lineales 4 21 Tipos de sistemas ecuaciones
Verificar el cumplimiento de las leyes de Kirchhoff. Calcular la potencia disipada en el circuito.
1 Leyes de Kirchhoff Objetivo Verificar el cumplimiento de las leyes de Kirchhoff. Calcular la potencia disipada en el circuito. Material 2 Amperímetro Osciloscopio Fluke Generador de onda Computador Fuente
Métodos generales de análisis
Métodos generales de análisis Objetivo Explicar los métodos generales de análisis de circuitos eléctricos y ejemplificar su aplicación, utilizando la metodología impartida en este material. Sumario: a)
Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas.
http:///wpmu/gispud/ Ejercicio 44. Superposición. 3.2 TEOREMA DE SUPERPOSICIÓN Determinar a través de superposición las corrientes y tenciones del circuito. Circuito 87. Superposición. Algoritmo de solución.
Análisis de Circuitos Resistivos
Análisis de Circuitos Resistivos Danilo Rairán Análisis de Circuitos Resistivos Bogotá: Universidad Distrital Francisco José de Caldas 432 págs. 18x27 cm ISBN 958-8175-03-8 Colección: textos universitarios
Carrera: ECC Participantes Representante de las academias de ingeniería electrónica de los Institutos Tecnológicos. Academias de Ingeniería
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Circuitos Eléctricos I Ingeniería Electrónica ECC-0403 4 2 10 2.- HISTORIA DEL
Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas.
Trabajo de Grado Tecnología en Electricidad. Estévez, Gallego, Pérez. Marzo 202 ANÁLISIS POR TENSIÓN DE NODO CON FUENTES DEPENDIENTES Ejercicio 23. Análisis de nodos con fuentes dependientes. Determinar
GUIA DIDACTICA DE TECNOLOGIA N º5 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO PRIMERO 6
1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO PRIMERO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA
3. Métodos clásicos de optimización lineal
3. Métodos clásicos de optimización lineal Uso del método Simplex El problema que pretende resolverse es un problema de optimización lineal sujeto a restricciones. Para el modelo construido para el problema
INDICE Capitulo 1. Variables del Circuito Eléctrico Capitulo 2. Elementos del Circuito Capitulo 3. Circuitos Resistivos
INDICE Capitulo 1. Variables del Circuito Eléctrico 1 1.1. Albores de la ciencia eléctrica 2 1.2. Circuitos eléctricos y flujo de corriente 10 1.3. Sistemas de unidades 16 1.4. Voltaje 18 1.5. Potencia
Análisis de circuitos eléctricos en estado estable y circuitos acoplados
Análisis de circuitos eléctricos en estado estable y circuitos acoplados Pedro Infante Moreira Tomo 1 ESPOCH 2016 Análisis de circuitos eléctricos en estado estable y circuitos acoplados Análisis de
CRONOGRAMA DE MATERIA
1 CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERIAS DIVISIÓN DE INGENIERIAS DEPARTAMENTO DE INGENIERIA MECANICA ELECTRICA CRONOGRAMA DE MATERIA CARRERA: Ingeniería Industrial MATERIA: Introducción
MODELOS MATEMÁTICOS. 1. Diagrama de flujo de señal. 2. Fórmula de Mason. Flujograma. Método de Mason.
MODELOS MATEMÁTICOS Flujograma. Método de Mason. 1. Diagrama de flujo de señal. 2. Fórmula de Mason. ibliografía Ogata, K., "Ingeniería de control moderna", Ed. Prentice-Hall. Capítulo 3 Dorf, R.C., "Sistemas
UD. 4 CÁLCULO DE CIRCUITOS 4.1. ACOPLAMIENTO DE RECEPTORES EN SERIE.
UD. 4 CÁLCULO DE CICUITOS 4.1. ACOPLAMIENTO DE ECEPTOES EN SEIE. Consiste en ir conectando el terminal de salida de uno con el de entrada del otro. I V V = V AB + V BC + V CD A 1 B 2 C 3 D V AB V BC V
Diferencias finitas aplicadas a ecuaciones en derivadas parciales
Diferencias finitas aplicadas a ecuaciones en derivadas parciales Segundo curso Grado en Física Índice Introducción Aproximación de FD de la ecuación de Laplace. Métodos iterativos. Aproximación de FD
1.2 Elementos Básicos
1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos. 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos: Thevenin y Norton. 1.6 Fuentes reales dependientes.
Principio de Superposición Principio de Superposición
Principio de Superposición Principio de Superposición Si en un sistema lineal la respuesta a una excitación x k (k=1,2,,n) es una salida y k, la respuesta a una excitación compuesta por una combinación
La corriente eléctrica: Problemas. Juan Ángel Sans Tresserras
La corriente eléctrica: Problemas Juan Ángel Sans Tresserras E-mail: [email protected] Circuitos de una sola malla Leyes de Kirchhoff Son útiles para encontrar las corrientes que circulan por las diferentes
TEMA 1: ANÁLISIS BÁSICO DE CIRCUITOS LINEALES. 1.1. Magnitudes eléctricas fundamentales. Componentes básicos. Linealidad.
Fundamentos teóricos para analizar circuitos TEMA : ANÁLISIS BÁSICO DE CIRCUITOS LINEALES.. Magnitudes eléctricas fundamentales. Componentes básicos. Linealidad. Variables eléctricas fundamentales: carga
INDICE Capitulo 1. Variables y Leyes de Circuitos 1.1. Corriente, Voltaje y Potencia 1.2. Fuentes y Cargas (1.1) 1.3. Ley de Ohm y Resistores (1.
INDICE Capitulo 1. Variables y Leyes de Circuitos 1 1.1. Corriente, Voltaje y Potencia 3 Carga y corriente * Energía y voltaje * Potencia eléctrica * Prefijos de magnitud 1.2. Fuentes y Cargas (1.1) 11
1.1. Divisor de voltaje y corriente.
1.1. Divisor de voltaje y corriente. Los dos resistores están en serie, ya que en ambos fluye la misma corriente i. Al aplicar la ley de Ohm a cada uno de los resistores se obtiene Si se aplica la LTK
Práctica 19. CIRCUITOS DE CORRIENTE CONTINUA
Práctica 19. CIRCUITOS DE CORRIENTE CONTINUA OBJETIVOS Estudiar las asociaciones básicas de elementos resistivos en corriente continua: conexiones en serie y en paralelo. Comprobar experimentalmente las
INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS
PROGRAMA SINTÉTICO CARRERA: Ingeniería Eléctrica ASIGNATURA: Análisis de Circuitos Eléctricos I SEMESTRE: Cuarto OBJETIVO GENERAL: El alumno aplicará los conceptos y leyes fundamentales de la teoría de
TEMA I. Teoría de Circuitos
TEMA I Teoría de Circuitos Electrónica II 2007 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:
LEYES DE KIRCHHOFF LEYES DE KIRCHOFF
CONTENIDO: 1) 2) 3) 4) 5) La técnica de simplificar los circuitos de forma progresiva mediante la agrupación en serie o en paralelo de resistencias no siempre es posible. La aplicación sistemática de las
ACOPLADORES DE IMPEDANCIA
Universidad de Cantabria - 009 Los acopladores de impedancia son elementos indispensables para conseguir la máxima transferencia de potencia entre circuitos, ya sean amplificadores, osciladores, mezcladores,
Tema 1. Álgebra lineal. Matrices
1 Tema 1. Álgebra lineal. Matrices 0.1 Introducción Los sistemas de ecuaciones lineales aparecen en un gran número de situaciones. Son conocidos los métodos de resolución de los mismos cuando tienen dos
SISTEMAS DE ECUACIONES LINEALES
1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables
Figura 3.1. Grafo orientado.
Leyes de Kirchhoff 46. ECUACIONES DE INTERCONEXION. Leyes de Kirchhoff..1. Definiciones. Una red está formada por la interconexión de componentes en sus terminales; y deben cumplirse simultáneamente las
U.N.E.F.A. Universidad Nacional Experimental de las Fuerzas Armadas Dpto. Ing. Aeronáutica Dpto. Ing. Eléctrica Núcleo Aragua Sede Maracay
MSc. MSEE Dhionny Strauss Electrotecnia Abril 00 U.N.E.F.A. Universidad Nacional Experimental de las Fuerzas Armadas Dpto. ng. Aeronáutica Dpto. ng. Eléctrica Núcleo Aragua Sede Maracay Electrotecnia MSc.
CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES
CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES Parte A: determinantes. A.1- Definición. Por simplificar, consideraremos que a cada matriz cuadrada se le asocia un número llamado determinante que se
Problemas Tema 3. Introducción al análisis de circuitos eléctricos
Problemas Tema 3. Introducción al análisis de circuitos eléctricos PROBLEMA 1. Calcule la potencia total generada en el circuito siguiente [Prob. 2.3 del Nilsson]: PROBLEMA 2. Calcule la potencia total
Circuitos de Corriente Continua
Fundamentos Físicos y Tecnológicos de la Informática Circuitos de Corriente Continua - Análisis de circuitos en corriente continua. Agustín Álvarez Marquina Departamento de Arquitectura y Tecnología de
CRONOGRAMA DE MATERIA
1 CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERIAS DIVISIÓN DE INGENIERIAS DEPARTAMENTO DE INGENIERIA MECANICA ELECTRICA CRONOGRAMA DE MATERIA CARRERA: mec-elec./electrónica/computación MATERIA:
Semana 6. Circuitos Eléctricos CEX
Semana 6 Circuitos Eléctricos CEX24 2011-1 CONTENIDO Análisis Nodal Circuitos con fuentes dependientes Supernodos Análisis por Mallas Circuitos con fuentes dependientes Supermallas Transformación de fuentes
Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas.
http:///wpmu/gispud/ Forma general Circuito 109. Forma general transformación de fuentes. 3.3TRANSFORMACIÓN DE FUENTES Ejercicio 47. Transformación de fuentes. A partir del circuito y aplicando el método
LEYES BASICAS DE LOS CIRCUITOS ELECTRICOS. Mg. Amancio R. Rojas Flores
LEYES BASICAS DE LOS CIRCUITOS ELECTRICOS Mg. Amancio R. Rojas Flores LEY DE OHM Ohm determino experimentalmente que la corriente en un circuito resistivo es directamente proporcional al voltaje aplicado
GUSTAVO ROBERTO KIRCHHOFF
Los circuitos eléctricos que no tienen componentes ni en serie, ni en paralelo, ni mixto, se solucionan según la regla de se aplican métodos más generales, en lo que el físico alemán GUSTAVO ROBERTO KIRCHHOFF
Técnicas o Métodos de Análisis para Circuitos
Técnicas o Métodos de Análisis para Circuitos Objetivos: o Analizar y Aplicar el método del análisis nodal en los circuitos eléctricos, con fuentes de voltaje y corriente independientes y dependientes
Nombre de la asignatura: Análisis de Circuitos Eléctricos. Carrera: Ingeniería Mecatrónica. Clave de la asignatura: MCC-0205
1. - DATOS DE LA ASIGNATURA Nombre de la asignatura: Análisis de Circuitos Eléctricos Carrera: Ingeniería Mecatrónica Clave de la asignatura: MCC-0205 Horas teoría-horas práctica- créditos : 4-2-10 2.
Fundamentos Físicos de la Informática. Grupo de Tecnología de Computadores-DATSI. Facultad de Informática. UPM. 4 o Z 3 Z 4 I V. Las ecuaciones son:
Fundamentos Físicos de la nformática. Grupo de Tecnología de omputadores-dts. Facultad de nformática. UPM. Ejercicio En el circuito de la figura se conocen los valores de,,,,,, y g. Sin realizar ninguna
Sistemas de Ecuaciones Lineales
Sistemas de Ecuaciones Lineales El sistema de ecuaciones lineales como modelo matemático de problemas Los sistemas de ecuaciones lineales permiten el planteamiento de problemas y soluciones que toman en
CIE-CV REV00. Ingeniería en Aeronáutica. Circuitos Eléctricos
CIE-CV REV00 Ingeniería en Aeronáutica Circuitos Eléctricos DIRECTORIO Mtro. Secretario de Educación Pública Dr. Subsecretario de Educación Superior Mtra. Coordinadora de Universidades Politécnicas II
TEMA 1 Nociones básicas de Teoría de Circuitos
TEMA 1 Nociones básicas de Teoría de Circuitos http://www.el.uma.es/marin/ ÍNDICE 1.1. MAGNITUDES ELÉCTRICAS Y CONCEPTOS FUNDAMENTALES: Conceptos básicos de circuitos. Leyes de Kirchoff. Potencia Eléctrica.
