Tema 3. Circuitos Resistivos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 3. Circuitos Resistivos"

Transcripción

1 Tema 3. Circuitos esistivos Sistemas y Circuitos 1

2 3.1 Elementos en Circuitos Elementos de circuitos Dos terminales Potencia (instantánea) vt () it () Dispositivo (, L,C) (Generador) Tanto la tensión como la corriente son variales que tienen signo. it () 3 A 5 V pt () = 15 W p() t = v()() t i t Si p(t)>0, el dispositivo consume Si p(t)<0, el dispositivo genera 3 A 5 V pt () = 15 W 3 A -5 V pt () = 15 W vt () Dispositivo (, L,C) (Generador) Consume Genera Genera Sistemas y Circuitos 2

3 Signo en voltajes Por qué un voltaje puede ser negativo? Los voltímetros miden la diferencia de voltaje entre dos terminales. Si conectamos la pinza roja a un terminal y la negra a otra tendremos un determinado valor de voltaje. Si camiamos de terminal las pinzas, oservaremos que el voltaje ha camiado de signo. Sistemas y Circuitos 3

4 Activos Generadores ideales: mantienen su valor nominal independientemente de lo que haya conectado a sus terminales Tensión 3.1 Elementos en Circuitos vt () V S constante Corriente it () 5 V 5 A Tanto la tensión como la corriente son variales que tienen signo. 2 A 2 A Permitido No Permitido Sistemas y Circuitos 4

5 3.1 Elementos en Circuitos Activos Generadores dependientes: su valor nominal depende de otra magnitud en el circuito Generadores de tensión dependientes de Tensión αv () t [V] x Corriente ρi () t [V] y Generadores de corriente dependientes de Corriente βi () t [A] s Tensión μv () t [A] r Sistemas y Circuitos 5

6 3.1 Elementos en Circuitos Pasivos elaciones tensión-corriente en esistencias (ley de Ohm) Tanto la tensión como la corriente son variales que tienen signo. vt () it () 5 V 0.5 A 10 Ω 10 Ω 5 V 0.5 A vt () = it () it () = vt () 0.5 A 0.5 A 5 V 10 Ω 5 V 10 Ω Sistemas y Circuitos 6

7 3.1 Elementos en Circuitos Pasivos esistencias (ley de Ohm) vt () vt () = it () vt () it () it () -200 vt ( ) = sin(2π 50 t) V = 10Ω vt () it ( ) = = 22 2 sin(2π 50 t) A Potencia 2 v () t 2 pt () = vtit ()() = = i() t [W] p(t)>0,» resistencias siempre consumen p() t Consume Sistemas y Circuitos 7

8 3.1 Elementos en Circuitos Pasivos elaciones tensión-corriente en Boinas it () di() t vt () = L vt () L dt Condensadores vt () it () C dv() t it () = C dt Sistemas y Circuitos 8

9 3.1 Elementos en Circuitos Circuitos Nodos (nudos), ramas, lazos y mallas Malla L1 ama ama esencial: une dos nodos esenciales L2 vt () 2 1 C2 L3 C3 Lazo C4 C1 Nodo Nodo esencial: punto donde se conectan tres o más elementos Sistemas y Circuitos 9

10 3.2 esolución mediante Lemas Kirchhoff esolución de circuitos Otener los valores de la corriente en cada rama y/o del voltaje en cada nodo Ley de Corrientes de Kirchhoff (LCK) La suma algeraica de todas las corrientes en un nodo es 0 A i c ia i i d ia i ic id = ia i ic id = 0 0 Corrientes entrantes () Corrientes de salida (-) Corrientes entrantes (-) Corrientes de salida () i = i i i a c d Suma Corrientes entrantes = Suma Corrientes de salida Sistemas y Circuitos 10

11 3.2 esolución mediante Lemas Kirchhoff esolución de circuitos Otener los valores de la corriente en cada rama y/o del voltaje en cada nodo Ley de Corrientes de Kirchhoff (LCK) La suma algeraica de todas las corrientes en un nodo es 0 A 1A I 12A 16A I = = 0 I Corrientes entrantes () Corrientes de salida (-) Corrientes entrantes (-) Corrientes de salida () I? I = Suma Corrientes entrantes = Suma Corrientes de salida Sistemas y Circuitos 11

12 3.2 esolución mediante Lemas Kirchhoff esolución de circuitos Otener los valores de la corriente en cada rama y/o del voltaje en cada nodo Ley de Voltajes (Tensiones) de Kirchhoff (LVK) La suma algeraica de todas las tensiones en un lazo es 0 V El sentido en el que se recorre el lazo es aritrario. 2 L1 v () C 2 t C2 v () L2 t L2 v () t v () t v () t v () t = 0 L3 C2 L2 C1 v () t v () t v () t v () t = 0 L3 C2 L2 C1 Suidas tensión () Bajadas tensión (-) Suidas tensión () Bajadas tensión (-) C4 v () L3 t L3 v () C1 t C1 v () t = v () t v () t v () t C1 L3 C2 L2 Suma caídas tensión = Suma suidas de tensión Sistemas y Circuitos 12

13 3.3 Circuitos resistivos esistencia equivalente Serie: 1 I 2 3 N V V V 1 = I V 1 2 = I2 3 N Ley de Tensiones de Kirchhoff I eq N V = I = I k = 1 ( ) k 1 2 N eq = = eq 1 2 N k k = 1 N Sistemas y Circuitos 13

14 3.3 Circuitos resistivos esistencia equivalente Paralelo: Ley de Corrientes de Kirchhoff V I N V I eq V V = 1 2 N eq eq 1 1 = = N N k= 1 k Paralelo de dos resistencias 1 = = eq 1 2 eq Sistemas y Circuitos 14

15 3.3 Circuitos resistivos Circuito divisor de tensión V 1 2 V 2 V 2 V2 = 2 = V Sistemas y Circuitos 15

16 3.3 Circuitos resistivos Circuito divisor de corriente I 1 I 1 I 2 2 I1 I2 = I I 1 1 = I I1 I1 = I 2 I 1 2 = 1 2 I I 2 1 = 1 2 I Sistemas y Circuitos 16

17 3.4 esolución de circuitos Método de las tensiones en nodos 1. Marcar y etiquetar los nodos esenciales vt () Datos: vt ( ), it ( ), 1, 2, 3, 4 1 va a c 3 2 v 4 it () 2. Elegir nodo de referencia (su voltaje relativo es 0 V) Generalmente, se elige aquel al que se conectan más ramas 3. Definir voltajes en nodos respecto al nodo de referencia 4. Aplicar Ley de corrientes de Kirchhoff en cada nodo Sistemas y Circuitos 17

18 3.4 esolución de circuitos Método de las tensiones en nodos 4. Aplicar Ley de corrientes de Kirchhoff en cada nodo 1 a 3 V va 2 v 4 I c V 1 i 1 v a a i i 3 v Nodo a: v a i i i V v i a = 0 = i2 1 v = a i V v = = v 3 v a 1 ecuación, 2 incógnitas Sistemas y Circuitos 18

19 3.4 esolución de circuitos Método de las tensiones en nodos 4. Aplicar Ley de corrientes de Kirchhoff en cada nodo 1 a 3 V va 2 v 4 I c v a 3 i 3 v i 4 4 I Nodo : I i i = v va i = i4 3 = v va v = I ecuación, 2 incógnitas Sistemas y Circuitos 19

20 3.4 esolución de circuitos Método de las tensiones en nodos 5. esolver ecuaciones Nº Ecuaciones = Nº nodos esenciales -1 1 a 3 V va c 2 v 4 I v a V v = Si conocemos v a y v va v = I conoceremos todas las tensiones y corrientes en el circuito Sistemas y Circuitos 20

21 3.4 esolución de circuitos Método de las corrientes en mallas 1. Marcar y etiquetar las mallas 1 3 vt () 2 4 it () Datos: vt ( ), it ( ), 1, 2, 3, 4 Ia I Ic Malla a Malla Malla c 2. Definir corrientes de malla Se elige aritrariamente el sentido en el que circulan 3. Aplicar Ley de tensiones de Kirchhoff en cada malla 4. esolver ecuaciones Nº Ecuaciones = Nº Mallas Sistemas y Circuitos 21

22 3.4 esolución de circuitos Método de las corrientes en mallas 3. Aplicar Ley de tensiones de Kirchhoff en cada malla 1 3 V Datos: vt ( ), it ( ), 1, 2, 3, 4 Ia 2 I 4 Ic I Malla a Malla Malla c Malla a: ( ) V I I I = a 1 a 2 0 I I I I I a 2 3 c 4 = 0 Malla : ( ) ( ) Malla c: Ic = I 3 ecuaciones, 3 incógnitas I ( ) I = V a a 4. esolver ecuaciones ( ) I I =I ecuaciones, 2 incógnitas Sistemas y Circuitos 22

23 Transformación de generadores : Procedimiento por el cual una fuente de tensión en serie con una resistencia se transforma en un generador de corriente en paralelo con un resistencia. El comportamiento de amos circuitos respecto de los terminales a y es idéntico. V S 3.5 Transformación de generadores S i v a a V S S P = S I = P I S P i v a a Pendiente - S v a Circuito aierto (i=0) V S Característica v-i V S S Cortocircuito (v a =0) i Pendiente - P v a Característica v-i I S P Cortocircuito (v a =0) I S i Sistemas y Circuitos 23

24 3.6 Superposición Linealidad en circuitos resisitivos Anulamos el generador de corriente 0 A. circuito aierto Anulamos el generador de tensión 0 V cortocircuito i = i i Sistemas y Circuitos 24

25 3.7 Equivalente de Thèvenin Un circuito lineal conteniendo resistencias y generadores dependientes y/o independientes puede reemplazarse por un generador independiente de tensión en serie con una resistencia Tensión y resistencia de Thèvenin Circuito A a TH i a V TH L L Sistemas y Circuitos 25

26 3.7 Equivalente de Thèvenin Un circuito conteniendo resistencias y generadores independientes y/o dependientes puede reemplazarse por un generador independiente de tensión en serie con una resistencia. Circuito A a TH i a V TH Procedimiento 1.Calcular la tensión en circuito aierto: V a = V TH L I SC L 2.Calcular la corriente en cortocircuito: I a = I V SC 3.La resistencia dethèvenin es = OC TH ISC Sistemas y Circuitos 26

27 3.7 Equivalente de Norton Un circuito lineal conteniendo resistencias y generadores dependientes y/o independientes puede reemplazarse por un generador independiente de corriente en paralelo con una resistencia Corriente y resistencia de Norton Circuito A a a i L I N N L Sistemas y Circuitos 27

28 3.7 Equivalente de Norton Un circuito conteniendo resistencias y generadores independientes y/o dependientes puede reemplazarse por un generador independiente de corriente en paralelo con una resistencia. Circuito A a i a L I N N L Procedimiento 1.Calcular la corriente en cortocircuito: I SC = I N 2.Calcular la tensión en circuito aierto: V AB = I N V N OC 3.La resistencia de Norton es = N I N Sistemas y Circuitos 28

29 3.7 Equivalente Thèvenin Máxima transferencia de potencia: Cuánto ha de valer L para que la potencia que disipe sea máxima? TH i a V TH L P L P L MAX P L V TH = TH L 2 L 0 L, MAX L Sistemas y Circuitos 29

30 3.7 Equivalente Thèvenin Máxima transferencia de potencia: Cuánto ha de valer L para que la potencia que disipe sea máxima? TH i a V TH 2 V TH L P = L TH L L P L 0 dp L TH 0 L 2 ( ) i2( ) 4 ( ) dp L 2 TH L L TH L = VTH d L TH L dp L 2 0 TH L L 2 TH L 0 d = i = d = L ( ) ( ) L dp L 0 TH d = = L Sistemas y Circuitos 30 L

31 3.7 Equivalente Thèvenin Sistemas y Circuitos 31

32 Ejercicios de epaso Sistemas y Circuitos 32

33 Ejercicios de epaso Sistemas y Circuitos 33

34 Ejercicios de epaso Sistemas y Circuitos 34

Tema 3. Circuitos Resistivos

Tema 3. Circuitos Resistivos Tem 3. Circuitos esistivos Sistems y Circuitos 1 3.1 Elementos en Circuitos Elementos de circuitos Dos terminles Dispositivo (, L,C) (Generdor) Tnto l tensión como l corriente son vriles que tienen signo.

Más detalles

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas.

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas. http:///wpmu/gispud/ 3.7 EQUIVALENTE THEVENIN Y NORTON Ejercicio 52. Equivalente Thévenin y Norton. a) Determine el equivalente Thévenin visto desde los terminales a y b. Circuito 162. Equivalente Thévenin

Más detalles

Análisis de circuitos. Unidad II

Análisis de circuitos. Unidad II Análisis de circuitos Unidad II Objetivo del análisis de circuitos: Determinar todos los voltajes y corrientes en un circuito. Método de las tensiones (o voltajes) de nodo. 1. Identificar los nodos del

Más detalles

Principio de Superposición Principio de Superposición

Principio de Superposición Principio de Superposición Principio de Superposición Principio de Superposición Si en un sistema lineal la respuesta a una excitación x k (k=1,2,,n) es una salida y k, la respuesta a una excitación compuesta por una combinación

Más detalles

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas.

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas. http:///wpmu/gispud/ 3.10 EQUIVALENTE THEVENIN CON FUENTESDEPENDIENTES Y RESISTENCIAS Ejercicio 59. Equivalente Thévenin con fuentes dependientes y resistencias. Determine el equivalente Thévenin visto

Más detalles

Corriente continua (Repaso)

Corriente continua (Repaso) Fundamentos de Tecnología Eléctrica (º ITIM) Tema 0 Corriente continua (epaso) Damián Laloux, 004 Índice Magnitudes esenciales Tensión, corriente, energía y potencia Leyes fundamentales Ley de Ohm, ley

Más detalles

Tema 1. Circuitos eléctricos de corriente continua.

Tema 1. Circuitos eléctricos de corriente continua. Tema 1. Circuitos eléctricos de corriente continua. Se simplificarán las ecuaciones del electromagnetismo aplicadas a dispositivos eléctricos que nos interesarán para generar, almacenar, transportar o

Más detalles

TEMA 1 DISPOSITIVOS ELECTRONICOS ANALISIS DE CIRCUITOS

TEMA 1 DISPOSITIVOS ELECTRONICOS ANALISIS DE CIRCUITOS Tema. Dispositivos Electrónicos. Análisis de Circuitos. rev TEMA DSPOSTVOS ELECTONCOS ANALSS DE CCUTOS Profesores: Germán Villalba Madrid Miguel A. Zamora zquierdo Tema. Dispositivos Electrónicos. Análisis

Más detalles

Circuitos. Métodos de Análisis Marzo Plantear el método de las nudos en el circuito de la Figura y determinar todas las magnitudes del circuito.

Circuitos. Métodos de Análisis Marzo Plantear el método de las nudos en el circuito de la Figura y determinar todas las magnitudes del circuito. Circuitos. Métodos de Análisis Marzo 003 POBLEMA 3.1 Plantear el método de las mallas en el circuito de la Figura y determinar todas las magnitudes del circuito ( tensiones en nudos y corrientes en ramas

Más detalles

1 Teoría de Circuitos

1 Teoría de Circuitos 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos: Thevenin y Norton. 1.6 Fuentes reales dependientes.

Más detalles

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA - PROBLEMAS -

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA - PROBLEMAS - PROBLEMAS EN CORRIENTE CONTINUA 1. Calcular la intensidad que circula por la siguiente rama si en todos los casos se tiene V AB = 24 V 2. Calcular la diferencia de potencial entre los puntos A y B de los

Más detalles

Tema 5. Régimen Permanente Senoidal. Sistemas y Circuitos

Tema 5. Régimen Permanente Senoidal. Sistemas y Circuitos Tema 5. Régimen Permanente Senoidal Sistemas y Circuitos 5. Respuesta SLT a exponenciales complejas Analicemos la respuesta de los SLT ante exponenciales complejas Tiempo continuo: xt () e st s σ + jω

Más detalles

1) En el sistema trifásico de la figura se tiene el siguientes señales de voltaje medidas entre cada fase y neutro. Calcule:

1) En el sistema trifásico de la figura se tiene el siguientes señales de voltaje medidas entre cada fase y neutro. Calcule: UNIVERSIDAD TECNOLOGICA DE PEREIRA Taller Nº 1- Circuitos Eléctricos II. 1) En el sistema trifásico de la figura se tiene el siguientes señales de voltaje medidas entre cada fase y neutro. v an = 2 13200

Más detalles

Circuitos eléctricos Básicos

Circuitos eléctricos Básicos Circuitos eléctricos Básicos Escuela de Ingeniería Civil en Informática Universidad de Valparaíso, Chile http:// Fecha revisión: 02/09/2014 Modelos de sistemas eléctricos 2 Diagramas eléctricos v a 3 Cables

Más detalles

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas.

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas. http:///wpmu/gispud/ Ejercicio 44. Superposición. 3.2 TEOREMA DE SUPERPOSICIÓN Determinar a través de superposición las corrientes y tenciones del circuito. Circuito 87. Superposición. Algoritmo de solución.

Más detalles

CAPITULO II.- RESISTENCIAS Y FUENTES INTRODUCCION LA RESISTENCIA Y LA LEY DE OHM Conceptos básicos

CAPITULO II.- RESISTENCIAS Y FUENTES INTRODUCCION LA RESISTENCIA Y LA LEY DE OHM Conceptos básicos INDICE CAPITULO I.- INTRODUCCION A LAS REDES ELECTRICAS. CONCEPTOS BASICOS Y LEYES DE KIRCHHOFF 1 1.1.- UN POCO DE HISTORIA. 2 1.2.- EL CIRCUITO ELECTRICO. 3 1.2.1.- Definición del Circuito Eléctrico.

Más detalles

Electrotecnia. Tema 7. Problemas. R-R -N oro

Electrotecnia. Tema 7. Problemas. R-R -N oro R-R -N oro R 22 0^3 22000 (+-) 00 Ohmios Problema.- Calcular el valor de la resistencia equivalente de un cubo cuyas aristas poseen todas una resistencia de 20 Ω si se conecta a una tensión los dos vértices

Más detalles

Es decir, cuando se aplica una tensión alterna entre sus bornes, el desfase obtenido no es el teórico.

Es decir, cuando se aplica una tensión alterna entre sus bornes, el desfase obtenido no es el teórico. En la práctica no existen estos receptores lineales puros: esistencia real: componente inductivo Bobina real: posee resistencia Condensador real: corriente de fuga a través del dieléctrico Es decir, cuando

Más detalles

1.1. Divisor de voltaje y corriente.

1.1. Divisor de voltaje y corriente. 1.1. Divisor de voltaje y corriente. Los dos resistores están en serie, ya que en ambos fluye la misma corriente i. Al aplicar la ley de Ohm a cada uno de los resistores se obtiene Si se aplica la LTK

Más detalles

UNIDAD 5. Técnicas útiles del análisis de circuitos

UNIDAD 5. Técnicas útiles del análisis de circuitos UNIDAD 5 Técnicas útiles del análisis de circuitos 5.2 Linealidad y superposición En cualquier red resistiva lineal, la tensión o la corriente a través de cualquier resistor o fuente se calcula sumando

Más detalles

TEMA 1 Nociones básicas de Teoría de Circuitos

TEMA 1 Nociones básicas de Teoría de Circuitos TEMA 1 Nociones básicas de Teoría de Circuitos http://www.el.uma.es/marin/ ÍNDICE 1.1. MAGNITUDES ELÉCTRICAS Y CONCEPTOS FUNDAMENTALES: Conceptos básicos de circuitos. Leyes de Kirchoff. Potencia Eléctrica.

Más detalles

Problemas Tema 3. Introducción al análisis de circuitos eléctricos

Problemas Tema 3. Introducción al análisis de circuitos eléctricos Problemas Tema 3. Introducción al análisis de circuitos eléctricos PROBLEMA 1. Calcule la potencia total generada en el circuito siguiente [Prob. 2.3 del Nilsson]: PROBLEMA 2. Calcule la potencia total

Más detalles

LEYES BASICAS DE LOS CIRCUITOS ELECTRICOS. Mg. Amancio R. Rojas Flores

LEYES BASICAS DE LOS CIRCUITOS ELECTRICOS. Mg. Amancio R. Rojas Flores LEYES BASICAS DE LOS CIRCUITOS ELECTRICOS Mg. Amancio R. Rojas Flores LEY DE OHM Ohm determino experimentalmente que la corriente en un circuito resistivo es directamente proporcional al voltaje aplicado

Más detalles

CAPITULO III ANALISIS DE REDES RESISTIVAS.

CAPITULO III ANALISIS DE REDES RESISTIVAS. CAPITULO III ANALISIS DE REDES RESISTIVAS. 3.1.-METODO DE MALLAS Y METODO DE NODOS. El análisis de circuitos eléctricos está vinculado por lo general con la solución de un conjunto de n ecuaciones con

Más detalles

TEOREMAS DE REDES. Mg. Amancio R. Rojas Flores

TEOREMAS DE REDES. Mg. Amancio R. Rojas Flores TEOREMAS DE REDES Mg. Amancio R. Rojas Flores PROPIEDAD DE LINELIDAD La linealidad es a propiedad de un elemento que describe una relación lineal entre causa y efecto. Esta propiedad es una combinación

Más detalles

Universidad Nacional de Quilmes 1. Teoría de Circuitos. Métodos de resolución de circuitos

Universidad Nacional de Quilmes 1. Teoría de Circuitos. Métodos de resolución de circuitos 1 Teoría de Circuitos Métodos de resolución de circuitos Condición: se aplican a redes bilaterales lineales. El término bilateral se refiere a que no habrá cambios en el comportamiento de la respuesta

Más detalles

CARACTERÍSTICAS FUNDAMENTALES DEL MULTISIM

CARACTERÍSTICAS FUNDAMENTALES DEL MULTISIM INTRODUCCIÓN El propósito del presente trabajo es hacer uso del Multisim, el cual nos permite verificar los resultados teóricos que se obtienen por medio de técnicas circuitales, aplicando las leyes principales

Más detalles

Centro Universitario UAEM Zumpango Ingeniería en Computación. Dr. Arturo Redondo Galván

Centro Universitario UAEM Zumpango Ingeniería en Computación. Dr. Arturo Redondo Galván Centro Universitario UAEM Zumpango Ingeniería en Computación Dr. Arturo edondo Galván CICUITOS ELÉCTICOS UNIDAD I Conocer la teoría básica de los circuitos relativa a los diversos métodos de análisis y

Más detalles

Electrotecnia. Circuitos de Corriente Continua

Electrotecnia. Circuitos de Corriente Continua ESCELA TÉCNCA SPEO DE NGENEÍA Departamento de Electrotecnia y Sistemas Electrotecnia CCTOS DE COENTE CONTNA Circuitos de Corriente Continua 1. Terminología 2. Leyes de Kirchhoff 3. Elementos lineales de

Más detalles

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas.

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas. http:///wpmu/gispud/.4 ANALISIS POR TENSION DE NODO SUPERNODO Ejercicio 36. Análisis de supernodo. a) Determinar a través de supernodo las caídas de tensión sobre las resistencias. b) Determinar las corrientes

Más detalles

Electrotecnia 1 3E1 (Plan 2003)

Electrotecnia 1 3E1 (Plan 2003) Electrotecnia E (Plan 00) UNDAD TEMÁTCA Unidad Temática Las Leyes de Kirchoff Transformaciones de Fuentes Método de las Tensiones de Nodos Método de las Corrientes de Malla Teoremas de Theenin y Norton

Más detalles

Se agrupan ambos generadores de corriente, obteniéndose el circuito equivalente de la figura.

Se agrupan ambos generadores de corriente, obteniéndose el circuito equivalente de la figura. EJEMPLO Obtener el circuito equivalente Thevenin del circuito de la figura, mediante transformaciones Thevenin-Norton RESOLUCIÓN: Para agrupar los generadores de tensión V 1 y V 2 se aplica la transformación

Más detalles

1.1. Divisor de voltaje y corriente.

1.1. Divisor de voltaje y corriente. 1.1. Divisor de voltaje y corriente. Los dos resistores están en serie, ya que en ambos fluye la misma corriente i. Al aplicar la ley de Ohm a cada uno de los resistores se obtiene Si se aplica la LTK

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009-2010 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos. 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

Tema 2. Circuitos de Corriente Continua. Dpto. Ingeniería Eléctrica Escuela Politécnica Superior Universidad de Sevilla.

Tema 2. Circuitos de Corriente Continua. Dpto. Ingeniería Eléctrica Escuela Politécnica Superior Universidad de Sevilla. Tema 2 Circuitos de Corriente Continua Tecnología Eléctrica Dpto. Ingeniería Eléctrica Escuela Politécnica Superior Universidad de Sevilla Curso 2010/2011 Tecnología Eléctrica (EPS) Tema 2 Curso 2010/2011

Más detalles

Tema 1. Teoría de Circuitos. DC. Ingeniería Eléctrica y Electrónica

Tema 1. Teoría de Circuitos. DC. Ingeniería Eléctrica y Electrónica Tema. Teoría de Circuitos. DC Índice Conceptos básicos: magnitudes eléctricas, unidades. El Sistema nternacional. Elementos de un circuito. Conexión de elementos. Asociación de elementos. Leyes de Kirchhoff

Más detalles

Análisis de circuitos eléctricos en estado estable y circuitos acoplados

Análisis de circuitos eléctricos en estado estable y circuitos acoplados Análisis de circuitos eléctricos en estado estable y circuitos acoplados Pedro Infante Moreira Tomo 1 ESPOCH 2016 Análisis de circuitos eléctricos en estado estable y circuitos acoplados Análisis de

Más detalles

Tema 1. Dpto. Ingeniería Eléctrica Escuela Politécnica Superior Universidad de Sevilla. Curso 2010/2011

Tema 1. Dpto. Ingeniería Eléctrica Escuela Politécnica Superior Universidad de Sevilla. Curso 2010/2011 Tema 1 Fundamentos de Teoría de Circuitos Tecnología Eléctrica Dpto. Ingeniería Eléctrica Escuela Politécnica Superior Universidad de Sevilla Curso 2010/2011 Tecnología Eléctrica (EPS) Tema 1 Curso 2010/2011

Más detalles

GUIA DIDACTICA DE TECNOLOGIA N º5 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO PRIMERO 6

GUIA DIDACTICA DE TECNOLOGIA N º5 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO PRIMERO 6 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO PRIMERO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA

Más detalles

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas.

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas. http:///wpmu/gispud/ MALLAS CON FUENTES DEPENDIENTES E INDEPENDIENTES DE TENSIÓN Y CORRIENTE Ejercicio 33. Análisis de mallas, fuentes dependientes e independientes de tensión y corrientes a) Mediante

Más detalles

1.2 Elementos Básicos

1.2 Elementos Básicos 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos. 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos: Thevenin y Norton. 1.6 Fuentes reales dependientes.

Más detalles

CORRIENTE CONTINUA. 1 KV (kilovoltio) = 10 3 V 1 mv (milivoltio) = 10-3 V A = Amperio 1 ma (miliamperio) = ua (microamperio) = 10-6

CORRIENTE CONTINUA. 1 KV (kilovoltio) = 10 3 V 1 mv (milivoltio) = 10-3 V A = Amperio 1 ma (miliamperio) = ua (microamperio) = 10-6 CORRIENTE CONTINUA 1. CIRCUITOS BÁSICOS 1.1 LEY DE OHM La ley de ohm dice que en un conductor el producto de su resistencia por la corriente que pasa por él es igual a la caída de voltaje que se produce.

Más detalles

TECNOLOGÍA ELECTRÓNICA

TECNOLOGÍA ELECTRÓNICA TECNOLOGÍA ELECTÓNICA Boletín de problemas de Tema 1: Circuitos eléctricos de corriente continua Ejercicios a entregar por el alumno en clase de tutorías en grupo Semana 27/09 01/10: 1, 2 y 4 1. Los condensadores

Más detalles

LEY DE OHM - CIRCUITOS - RESISTENCIA - INSTRUMENTOS

LEY DE OHM - CIRCUITOS - RESISTENCIA - INSTRUMENTOS LEY DE OHM - CICUITOS - ESISTENCIA - INSTUMENTOS Amperímetros y Voltímetros Las dos magnitudes que siempre interesa conocer para un componente de circuito (por ejemplo una resistencia), son la corriente

Más detalles

9 José Fco. Gómez Glez., Benjamín Glez. Díaz, María de la Peña Fabiani, Ernesto Pereda de Pablo

9 José Fco. Gómez Glez., Benjamín Glez. Díaz, María de la Peña Fabiani, Ernesto Pereda de Pablo PROBLEMAS DE CIRCUITOS EN CORRIENTE ALTERNA 25. Una fuente de voltaje senoidal, de amplitud Vm = 200 V y frecuencia f=500 Hz toma el valor v(t)=100 V para t=0. Determinar la dependencia del voltaje en

Más detalles

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas.

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas. http:///wpmu/gispud/ Forma general Circuito 109. Forma general transformación de fuentes. 3.3TRANSFORMACIÓN DE FUENTES Ejercicio 47. Transformación de fuentes. A partir del circuito y aplicando el método

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009-2010 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

ELECTRÓNICA Y CIRCUITOS

ELECTRÓNICA Y CIRCUITOS ELECTRÓNICA Y CIRCUITOS EJERCICIOS TEMA 1 1.- Dado el dispositivo de la figura, en el que = V, obtener el valor de su parámetro, R, para que la corriente que lo atraviesa tenga un valor =0 ma. Resolver

Más detalles

CIRCUITOS ELEMENTALES CC

CIRCUITOS ELEMENTALES CC UNIVESIDAD JOSE CALOS MAIATEGUI LECCIÓN Nº 02 CICUITOS ELEMENTALES CC. LEY DE OHM La corriente fluye por un circuito eléctrico siguiendo varias leyes definidas. La ley básica del flujo de la corriente

Más detalles

Introducción A qué se denomina resistor lineal? Cómo es su característica volt- ampere? Elíptica? Hiperbólica?

Introducción A qué se denomina resistor lineal? Cómo es su característica volt- ampere? Elíptica? Hiperbólica? Linealidad en los circuitos eléctricos Objetivos 1. Establecer el concepto de circuito lineal y sus principales propiedades, según los criterios dados en el texto. 2. Definir el concepto de función de

Más detalles

Circuitos de Corriente Continua

Circuitos de Corriente Continua Fundamentos Físicos y Tecnológicos de la Informática Circuitos de Corriente Continua Análisis de circuitos en corriente continua. Agustín Álvarez Marquina Departamento de Arquitectura y Tecnología de Sistemas

Más detalles

Ley de Ohm. I = Intensidad en amperios (A) VAB = Diferencia de potencial en voltios (V) R = Resistencia en ohmios (Ω).

Ley de Ohm. I = Intensidad en amperios (A) VAB = Diferencia de potencial en voltios (V) R = Resistencia en ohmios (Ω). V Ley de Ohm I = Intensidad en amperios (A) VAB = Diferencia de potencial en voltios (V) R = Resistencia en ohmios (Ω). En un conductor recorrido por una corriente eléctrica, el cociente entre la diferencia

Más detalles

Circuitos de Corriente Continua

Circuitos de Corriente Continua Fundamentos Físicos y Tecnológicos de la Informática Circuitos de Corriente Continua - Análisis de circuitos en corriente continua. Agustín Álvarez Marquina Departamento de Arquitectura y Tecnología de

Más detalles

Institución Educativa Barrio Santander Medellín - Antioquia EXAMEN PARCIAL NOMBRE DEL ALUMNO GRADO FECHA

Institución Educativa Barrio Santander Medellín - Antioquia EXAMEN PARCIAL NOMBRE DEL ALUMNO GRADO FECHA Fecha: 29/03/202 Página : de 8 NOMBRE DEL ALUMNO GRADO FECHA. Calcula el siguiente circuito y completa la tabla de resultados V R T I I I 2 I 3 V AB V BC P P R P R2 P R3 2. Resuelve el siguiente circuito

Más detalles

Física II CF-342 Ingeniería Plan Común.

Física II CF-342 Ingeniería Plan Común. Física II CF-342 Ingeniería Plan Común. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Física

Más detalles

Circuitos con fuentes independientes de corriente y resistencias, circuitos R, I

Circuitos con fuentes independientes de corriente y resistencias, circuitos R, I MÉTODO DE LOS NUDOS Es un método general de análisis de circuitos que se basa en determinar los voltajes de todos los nodos del circuito respecto a un nodo de referencia. Conocidos estos voltajes se pueden

Más detalles

Ejemplo: Calcula la tensión en la fuente de corriente

Ejemplo: Calcula la tensión en la fuente de corriente 1 I 1 =1mA 20k" 1 20k" + 1 = 0.2mA 5k" I 2 = 3V 25k" = 0.12mA I = I 1 + I 2 = 0.32mA Ejemplo: Calcula la tensión en la fuente de corriente 1 V = 42/31 + 126/31 + 30/31 = 198/31 = 6,38 Resolución asistida

Más detalles

ELECTRICIDAD QUE ES MAGNITUDES BÁSICAS_CIRCUITOS ELÉCTRICOS SERIE_PARALELO.KIRCHHOFF.

ELECTRICIDAD QUE ES MAGNITUDES BÁSICAS_CIRCUITOS ELÉCTRICOS SERIE_PARALELO.KIRCHHOFF. ELECTRICIDAD QUE ES MAGNITUDES BÁSICAS_CIRCUITOS ELÉCTRICOS SERIE_PARALELO.KIRCHHOFF. QUÉ ES? La electricidad se manifiesta por la presencia de cargas eléctricas ( negativas o positivas) tanto si están

Más detalles

Realizado por: Dra. Ing. Esperanza Ayllón Fandiño, CIPEL, Instituto Superior Politécnico José Antonio Echeverría, CUJAE. Cuba

Realizado por: Dra. Ing. Esperanza Ayllón Fandiño, CIPEL, Instituto Superior Politécnico José Antonio Echeverría, CUJAE. Cuba Teoremas de los circuitos lineales. Primera parte Objetivos 1. Explicar el Teorema de Thévenin para determinar el equivalente de Thévenin de cualquier red lineal, ejemplificando su aplicación en el análisis

Más detalles

Electrotecnia General

Electrotecnia General Universidad Nacional de Mar del Plata Departamento de Ingeniería Eléctrica Área Electrotecnia Electrotecnia General (para la Carrera Ingeniería Industrial) Leyes Fundamentales Profesor Adjunto: Ingeniero

Más detalles

CIRCUITOS DE CORRIENTE ALTERNA CON NUMEROS COMPLEJOS

CIRCUITOS DE CORRIENTE ALTERNA CON NUMEROS COMPLEJOS CIRCUITOS DE CORRIENTE ALTERNA CON NUMEROS COMPLEJOS CIRCUITO R-L-C CONECTADO EN SERIE. Debido a que la impedancia (Z) es un termino general que se puede referir a una resistencia, una reactancia o combinación

Más detalles

ÍNDICE OBJETIVOS... 3 INTRODUCCIÓN... 4

ÍNDICE OBJETIVOS... 3 INTRODUCCIÓN... 4 5 CIRCUITOS ELÉCTRICOS. LEYES Y TEOREMAS Electrónica Analógica ÍNDICE OBJETIVOS... 3 INTRODUCCIÓN... 4 1.1. CIRCUITO EQUIVALENTE... 5 1.. leyes de hirchhoff... 9 1.3. teorema de thevenin... 11 1.4. teorema

Más detalles

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores CAPACITORES E INDUCTORES Mg. Amancio R. Rojas Flores A diferencia de resistencias, que disipan la energía, condensadores e inductores no se disipan, pero almacenan energía, que puede ser recuperada en

Más detalles

Tarea 1 1-Calcular la potencia en cada uno de los elementos. E = 36 V. 7-Calcular la tensión V ab. Respuesta: - 2 V

Tarea 1 1-Calcular la potencia en cada uno de los elementos. E = 36 V. 7-Calcular la tensión V ab. Respuesta: - 2 V Tarea 1 1-Calcular la potencia en cada uno de los elementos. 2- Calcular la potencia en todos los resistores. Datos: Vab = Vac = 4 V 4 W, 8 W, 6 W, 12 W, 0 W 3-Calcular E. E = 36 V Dato: I 0 = 5 A Respuesta:

Más detalles

Unidad. Circuitos eléctricos 5 de corriente continua

Unidad. Circuitos eléctricos 5 de corriente continua Unidad 5 Circuitos eléctricos d i t ti 5 de corriente continua 15.1. 1 El circuito eléctrico A Concepto de energía eléctrica Composición de un átomo. Cationes y aniones. 1 Diferentes métodos para producir

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009-2010 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos. 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Corriente directa

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Corriente directa Corriente directa La corriente alterna es muy útil para transmitir la energía eléctrica, pues presenta menos pérdidas disipativas, y permite una fácil conversión entre voltaje y corriente por medio de

Más detalles

Módulo 4 MÉTODOS DE RESOLUCIÓN DE CIRCUITOS EN CORRIENTE ALTERNA

Módulo 4 MÉTODOS DE RESOLUCIÓN DE CIRCUITOS EN CORRIENTE ALTERNA E.E.S.T. 8 Módulo 4 MÉTODOS DE RESOLUCIÓN DE CIRCUITOS EN CORRIENTE ALTERNA Ing. Rodríguez, Diego E.E.S.T. 8 INTRODUCCIO N Se entiende por resolver un circuito eléctrico el calcular sus corrientes de rama

Más detalles

Transitorios, Circuitos de Corriente Alterna, Transformadores.

Transitorios, Circuitos de Corriente Alterna, Transformadores. Física 3 Guia 5 - Corrientes variables Verano 2016 Transitorios, Circuitos de Corriente Alterna, Transformadores. 1. Un condensador de 3µF se carga a 270 V y luego se descarga a través de una resistencia

Más detalles

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas.

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas. http:///wpmu/gispud/ Ejercicios Autoevaluación Capitulo 3. Nivel ALTO Ejercicio 77. Auto evaluación capítulo 3, ALTO 1. Determine el circuito equivalente de Thévenin para el circuito 254. Circuito 254.Equivalente

Más detalles

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas.

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas. Trabajo de Grado Tecnología en Electricidad. Estévez, Gallego, Pérez. Marzo 202 ANÁLISIS POR TENSIÓN DE NODO CON FUENTES DEPENDIENTES Ejercicio 23. Análisis de nodos con fuentes dependientes. Determinar

Más detalles

TEOREMAS DE CIRCUITOS

TEOREMAS DE CIRCUITOS TEOREMAS DE CIRCUITOS MOTIVACIÓN Las técnicas de análisis de circuitos son chéveres Pero Implican cálculos largos y tediosos Entonces Se han desarrollado teoremas para simplificar Ojo! Entendamos que es

Más detalles

Ejercicio 1 Sea el circuito de la siguiente figura: a) Calcula la resistencia equivalente del circuito.

Ejercicio 1 Sea el circuito de la siguiente figura: a) Calcula la resistencia equivalente del circuito. Ejercicio Sea el circuito de la siguiente figura: a) Calcula la resistencia equivalente del circuito. b) Calcula la intensidad de la corriente que atraviesa el circuito. c) Calcula la diferencia de potencial

Más detalles

Teorema de Redes. M en C Alejandro Pérez López. México D.F. 27 de enero de 2009

Teorema de Redes. M en C Alejandro Pérez López. México D.F. 27 de enero de 2009 Teorema de Redes M en C Alejandro Pérez López México D.F. 27 de enero de 2009 Resumen La existencia de modelos matemáticos que describen los circuitos equivalente de sistema eléctricos complejos, para

Más detalles

TEOREMAS DE CIRCUITOS

TEOREMAS DE CIRCUITOS Sistemas Lineales II Unidad 3 TEOREMAS DE CIRCUITOS Material de apoyo Indice. Introducción. 2. Principio de superposición. 3. Teorema de Thévenin. 4. Teorema de Norton. 5. Generalización. 6. Ejemplos.

Más detalles

Teoría de circuitos Segundo Parcial

Teoría de circuitos Segundo Parcial Teoría de circuitos Segundo Parcial CUE 13 de julio de 2015 Indicaciones: La prueba tiene una duración total de 3 horas. Cada hoja entregada debe indicar nombre, número de C.I., y número de hoja. La hoja

Más detalles

COLECCIÓN DE EJERCICIOS TEORÍA DE CIRCUITOS I

COLECCIÓN DE EJERCICIOS TEORÍA DE CIRCUITOS I COLECCÓN DE EJECCOS TEOÍA DE CCUTOS ngeniería de Telecomunicación Centro Politécnico Superior Curso 9 / Aspectos Fundamentales de la Teoría de Circuitos Capítulo Problema.. (*) En cada uno de los dispositivos

Más detalles

Fundamentos Físicos de la Informática. Grupo de Tecnología de Computadores-DATSI. Facultad de Informática. UPM. 4 o Z 3 Z 4 I V. Las ecuaciones son:

Fundamentos Físicos de la Informática. Grupo de Tecnología de Computadores-DATSI. Facultad de Informática. UPM. 4 o Z 3 Z 4 I V. Las ecuaciones son: Fundamentos Físicos de la nformática. Grupo de Tecnología de omputadores-dts. Facultad de nformática. UPM. Ejercicio En el circuito de la figura se conocen los valores de,,,,,, y g. Sin realizar ninguna

Más detalles

1. La ley de Ohm, es una propiedad específica de ciertos materiales. La relación

1. La ley de Ohm, es una propiedad específica de ciertos materiales. La relación CIRCUITOS RESISTIVOS: 1. La ley de Ohm, es una propiedad específica de ciertos materiales. La relación es un enunciado de la ley de Ohm. Un conductor cumple con la ley de Ohm sólo si su curva V-I es lineal;

Más detalles

TEOREMAS DE REDES EN C.A. Mg. Amancio R. Rojas Flores

TEOREMAS DE REDES EN C.A. Mg. Amancio R. Rojas Flores TEOREMAS DE REDES EN C.A Mg. Amancio R. Rojas Flores TEOREMA DE SUPERPOSICION 2 El teorema de superposición enuncia lo siguiente: El voltaje a través (o corriente a través) un elemento es determinado sumando

Más detalles

Circuitos de Corriente Continua

Circuitos de Corriente Continua Fundamentos Físicos y Tecnológicos de la Informática Circuitos de Corriente Continua -Elementos activos de un circuito: generadores ideales y reales. Equivalencia de generadores. -Potencia y energía. Ley

Más detalles

TECNICAS DE ANÁLISIS DE CIRCUITOS ANÁLISIS NODAL Y ANÁLISIS DE MALLA

TECNICAS DE ANÁLISIS DE CIRCUITOS ANÁLISIS NODAL Y ANÁLISIS DE MALLA TECNICAS DE ANÁLISIS DE CIRCUITOS ANÁLISIS NODAL Y ANÁLISIS DE MALLA TÉCNICAS DE ANÁLISIS DE CIRCUITOS ANÁLISIS NODAL OBJETIVO: HALLAR EL VOLTAJE DE CADA UNO DE LOS NODOS DEL CIRCUITO ANÁLISIS NODAL Identificar

Más detalles

Circuitos de corriente directa. Circuito eléctrico es cualquier conexión de elementos eléctricos

Circuitos de corriente directa. Circuito eléctrico es cualquier conexión de elementos eléctricos Circuitos de corriente directa Circuito eléctrico es cualquier conexión de elementos eléctricos (resistencia, baterías, fuentes, capacitores, etc.) a través de los cuales puede circular corriente en forma

Más detalles

TEORIA DE CIRCUITOS. 2.- Métodos de análisis

TEORIA DE CIRCUITOS. 2.- Métodos de análisis TEORIA DE CIRCUITOS TEMA 2. MÉTODOS DE ANÁLISIS Josep Lluís Rosselló. Febrer 2011 2.- Métodos de análisis Leyes de Kirchoff } Corrientes Tensiones Métodos de resolución: Nudos Mallas Divisores de tensión

Más detalles

MÉTODOS DE RESOLUCIÓN DE CIRCUITOS

MÉTODOS DE RESOLUCIÓN DE CIRCUITOS MÉTODOS DE RESOLUCIÓN DE CIRCUITOS Un circuito eléctrico está formado por elementos activos (generadores) y pasivos (resistencias, condensadores, y bobinas). En muchas ocasiones estos elementos forman

Más detalles

INDICE Capitulo 1. Variables del Circuito Eléctrico Capitulo 2. Elementos del Circuito Capitulo 3. Circuitos Resistivos

INDICE Capitulo 1. Variables del Circuito Eléctrico Capitulo 2. Elementos del Circuito Capitulo 3. Circuitos Resistivos INDICE Capitulo 1. Variables del Circuito Eléctrico 1 1.1. Albores de la ciencia eléctrica 2 1.2. Circuitos eléctricos y flujo de corriente 10 1.3. Sistemas de unidades 16 1.4. Voltaje 18 1.5. Potencia

Más detalles

Circuitos resistivos 01

Circuitos resistivos 01 Ins. Ind. Luis A. Huergo Departamento de Telecomunicaciones Circuitos resistivos 0 introduccion A continuación se presentaran de forma sintética fundamentos teóricos básicos para el análisis de circuitos

Más detalles

Tema I: Conceptos básicos

Tema I: Conceptos básicos Tema I: Conceptos básicos Fundamentos del análisis de redes... 2 Magnitudes fundamentales... 3 Elementos de un circuito... 4 Ejemplos de medidas en un elemento... 5 Potencia y energía en un elemento...

Más detalles

Contenido. Circuitos Eléctricos - Dorf. Alfaomega

Contenido. Circuitos Eléctricos - Dorf. Alfaomega CAPÍTULO 1 Variables de circuitos eléctricos... 1 1.1 Introducción... 1 1.2 Circuitos eléctricos y corriente... 1 1.3 Sistemas de unidades... 5 1.4 Voltaje... 7 1.5 Potencia y energía... 7 1.6 Análisis

Más detalles

Sistemas y Circuitos

Sistemas y Circuitos Sistemas y Circuitos Práctica 3: Circuitos Resistivos Curso Académico 08/09 1. Circulab Resolver circuitos con CIRCULAB es extremadamente rápido. Esta herramienta nos servirá para calcular tanto la corriente,

Más detalles

TCI - Teoría de Circuitos

TCI - Teoría de Circuitos Unidad responsable: 330 - EPSEM - Escuela Politécnica Superior de Ingeniería de Manresa Unidad que imparte: 750 - EMIT - Departamento de Ingeniería Minera, Industrial y TIC Curso: 2016 Titulación: Créditos

Más detalles

EJERCICIOS DE RESOLUCIÓN DE CIRCUITOS ELÉCTRICOS MEDIANTE LOS TEOREMAS GENERALES.

EJERCICIOS DE RESOLUCIÓN DE CIRCUITOS ELÉCTRICOS MEDIANTE LOS TEOREMAS GENERALES. EJERCICIOS DE RESOLUCIÓN DE CIRCUITOS ELÉCTRICOS MEDIANTE LOS TEOREMAS GENERALES. EJERCICIO. En el circuito de la figura, hallar la corriente que circula por la impedancia Ω. RESOLUCIÓN: MÉTODO DE LAS

Más detalles

5.3 La energía en los circuitos eléctricos.

5.3 La energía en los circuitos eléctricos. CAPÍTULO 5 Corriente eléctrica y circuitos de corriente continua Índice del capítulo 5 51 5.1 Corriente eléctrica. 5.2 esistencia y la ley de Ohm. 5.3 La energía en los circuitos eléctricos. 5.4 Asociaciones

Más detalles

TEMA VII RED DE DOS PUERTOS - CUADRIPOLOS

TEMA VII RED DE DOS PUERTOS - CUADRIPOLOS 7.1. INTRODUCCIÓN. TEMA VII RED DE DOS PUERTOS - CUADRIPOLOS En Temas precedentes se ha puesto el énfasis en el análisis del funcionamiento interno de redes, es decir, el aspecto fundamental del análisis

Más detalles

Figura 3.1. Grafo orientado.

Figura 3.1. Grafo orientado. Leyes de Kirchhoff 46. ECUACIONES DE INTERCONEXION. Leyes de Kirchhoff..1. Definiciones. Una red está formada por la interconexión de componentes en sus terminales; y deben cumplirse simultáneamente las

Más detalles

Electrotécnica 1 Práctico 1

Electrotécnica 1 Práctico 1 Ejercicio 1.1 Electrotécnica 1 Práctico 1 IIE - Facultad de Ingeniería - Universidad de la República Hallar las fuentes equivalentes de las siguientes fuentes ideales, conectadas como en la figura siguiente:

Más detalles

TEMA 12. TEORIA DE REDES

TEMA 12. TEORIA DE REDES TEMA. TEOA DE EDES. ED ELECTCA Se denomina red eléctrica a un conjunto de dipolos activos (fuentes) y pasivos (resistencias, inductores, condensadores, receptores, etc) unidos por conductores, formando

Más detalles

INSTITUTO TECNOLÓGICO DE ESTUDIOS SUPERIORES DE LOS CABOS

INSTITUTO TECNOLÓGICO DE ESTUDIOS SUPERIORES DE LOS CABOS SUPERIORES DE LOS CABOS RESPONSABLE: Dirección académica y de investigación HOJA: 1 de 5 Desarrollo de la Práctica Unidad de aprendizaje: Practica número: 5 y 6 Nombre de la practica: 5. Confirmación de

Más detalles

* Energía en circuitos eléctricos. Ley de Joule.

* Energía en circuitos eléctricos. Ley de Joule. Tema 2: Electrocinética * Intensidad de corriente eléctrica. * esistencia. Ley de Ohm. * Energía en circuitos eléctricos. Ley de Joule. * Generadores y fem. * Leyes de Kirchhoff. Aplicaciones - Conexiones

Más detalles

GUSTAVO ROBERTO KIRCHHOFF

GUSTAVO ROBERTO KIRCHHOFF Los circuitos eléctricos que no tienen componentes ni en serie, ni en paralelo, ni mixto, se solucionan según la regla de se aplican métodos más generales, en lo que el físico alemán GUSTAVO ROBERTO KIRCHHOFF

Más detalles