Identidades Trigonométricas
|
|
|
- Julia Jiménez Núñez
- hace 9 años
- Vistas:
Transcripción
1 Identidades Trigonométricas Una identidad trigonométrica es una igualdad entre expresiones que contienen funciones trigonométricas y es válida para todos los valores del ángulo en los que están definidas las funciones (y las operaciones aritméticas involucradas). Notación: se define α como ( α). Lo mismo se aplica a las demás funciones trigonométricas. Relación pitagórica Identidad de la razón De estas dos identidades, se puede extrapolar la siguiente tabla. Sin embargo, nótese que estas ecuaciones de conversión pueden devolver el signo incorrecto (+ ó ). Por ejemplo, si la conversión propuesta en la tabla indica que -, aunque es posible que. Para obtener la única respuesta correcta se necesitará saber en qué cuadrante está θ. Funciones de ángulos negativo cot Cot sec - sec csc - Csc
2 Fórmulas de adición. cot cot cot cot En términos de Funciones trigonométricas en función de las otras cinco. Sen Cos Tan co Sec Csc cot sec sec Csc Cos Cos Cot cot sec Csc Csc Tan Tan cot sec Csc cot Cos cot sec Csc Sec cot cot Sec Csc Csc Csc ses cot sec sec Csc Identidades de ángulos múltiples Si T n es el n-ésimo Polinomio de Chebyshev entonces nx T x Formula de De Moivre: nx i nx x i x n Identidades para ángulos doble, triple y medio Pueden obtenerse remplazándolo y por x (o sea x x x ) en las identidades anteriores, y usando el teorema de Pitágoras para los dos últimos (a veces es útil expresar la identidad en términos de o, o de eno solamente), o bien aplicando la fórmula de De Moivre cuando n.
3 4 Fórmula del ángulo doble - Fórmula del ángulo triple cot Cot 4 Fórmula del ángulo medio Csc cot cot csc cot Producto infinito de Euler: 4 8 n n Identidades para la reducción de exponentes Resuelve las identidades tercera y cuarta del ángulo doble para x y x. Sen Cos Otros
4 Paso de producto a suma Puede probarse usando el teorema de la suma para desarrollar los segundos miembros. Deducción de la identidad casos: i. ii. Si tomamos la ecuación i y despejamos iii. Sabemos por el teorema de la suma y la resta que: Si separamos la suma de la resta quedan entonces los dos posibles nos queda que: Y si sumamos el miembro de la derecha de la ecuación ii al miembro izquierdo de la ecuación iii, y para mantener la igualdad se suma el lado izquierdo de la ecuación ii en el lado derecho de la ecuación iii (al sumar la misma cantidad a ambos miembros de la ecuación la nueva ecuación sigue siendo cierta), quedaría: Simplificando el elemento y sumando - quedaría: Y por último multiplicando ambos lados de la ecuación por ½ queda: Nota: Este procedimiento también se puede aplicar para demostrar el origen de las otras dos ecuaciones simplemente cambiando los valores. Usando iii y el resultado anterior se obtiene también: cambio de signo. Notar el
5 Funciones trigonométricas inversas Las tres funciones trigonométricas inversas comúnmente usadas son: Areno es la función inversa del o de un ángulo. Se nota arc -, 0, arco cuyo o es dicho valor. La función areno real es una función. El significado geométrico es: el, es decir, no está definida para cualquier número real. Esta función puede expresarse mediante la siguiente serie de Taylor: - x arc x 5 7 x 5x x - x x Arcoeno es la función inversa del eno de un ángulo. Se nota arc. El significado geométrico es: el arco cuyo eno es dicho valor. Es una función similar a la anterior, de hecho puede definirse como: arc ar Arcogente es la función inversa de la gente de un ángulo. Se nota arc. El significado geométrico es: el arco cuya gente es dicho valor. A diferencia de las anteriores la función arcogente está definida para todos los reales. Su expresión en forma de serie es: 5 7 x x x x x arc 5 7. con x, con x - 5 x x 5x arc ar cot,, si x 0 si x 0 arc arc arc -
6 Series de potencias A partir de la definición anterior pueden establecerse que las funciones o y eno son funciones analíticas cuya serie de Maclaurin viene dada por: k k 0 0 k k k k k x! x! k 5 7 x x x x!! 5! 7! 4 6 x x x x 0!! 4! 6! Estas identidades son a veces usadas como las definiciones de las funciones o y eno. Con frecuencia se utilizan como el punto de partida para el tratamiento riguroso de las funciones trigonométricas y sus aplicaciones (por ejemplo en las Series de Fourier), debido a que la teoría de las series infinitas puede ser desarrollada a partir de la base del sistema de números reales, independientemente de cualquier consideración geométrica. La diferenciabilidad y continuidad de estas funciones es entonces establecida a partir de las definiciones de series por sí misma. Relación con la exponencial compleja Existe una relación importe entre la exponenciación de números complejos y las funciones trigonométricas según la fórmula de Euler: e i i Esta relación puede probarse usando el desarrollo en serie de Taylor para la función exponencial y el obtenido en la sección anterior para las funciones o y eno. Separando ahora en parte real e imaginaria en la expresión anterior se encuentran las definiciones de o y eno en términos de exponenciales complejas: i i e e ; e i e i i A partir de ecuaciones diferenciales Las funciones o y eno satisfacen la igualdad: y y Es decir, la segunda derivada de cada función es la propia función con signo inverso. Dentro del espacio funcional de dos dimensiones V, que consiste en todas las soluciones de esta ecuación, La función o es la única solución que satisface la condición inicial y0, y 0,0 Y La función eno es la única solución que satisface la condición inicial y0, y 0 0,
7 Dado que las funciones o y eno son linealmente independientes, juntas pueden formar la base de V. Este método para definir las funciones o y eno es ecialmente equivalente a utilizar la fórmula de Euler. Además esta ecuación diferencial puede utilizarse no solo para definir al o y al eno, con ella también se pueden probar las identidades trigonométricas de las funciones o y eno. Además, la observación de que el o y el eno satisfacen y y implica que son funciones eigen del operador de la segunda derivada. La función gente es la única solución de la ecuación diferencial no lineal y y satisfaciendo la condición inicial y(0) = 0. Existe una interesante prueba visual de que la función gente satisface esta ecuación diferencial. Referencias: Stewart, J. Cálculo. Trascendentes tempranas.cengage Learning. Sexta edición Texto guía del curso. Stewart. Weisstein, E.W: CRC Concise Encyclopedia of Mathematics. Chapman & Hall 999 Heath, Sir Thomas (9) (en inglés). A history of Greek Mathematics vol.. Londres, Inglaterra: Oxford University Press. OCLC «Esquema del desarrollo histórico de la matemática» págs. pág. 6. Universidad Nacional del Nordeste. J J O'Connor y E F Robertson. «Abu Abdallah Mohammad ibn Jabir Al-Bati» (en inglés) (html). Consultado el «La trigonometria àrab, Al-Bati, Abu l-wafa, Ibn Yunus, Nasir al-tusi» (en catalán) (html). Consultado el «Al-Kashi, Gamshid ibn Messaoud» (en francés). Viète, François (579). Canon mathematicus seu ad triangula. Lutetia Mettayer. OCLC Boyer, Carl B.; Uta C. Merzbach (968). A History of Mathematics. New York: Estados Unidos: John Wiley & Sons. pp ISBN
Taller Trigonometría
Taller Trigonometría 1. Verificar si los siguientes ejercicios son o no identidades trigonométricas: ( 1 cos )( 1 cos ) sen b. Csc sec cos sen Cotan c. sec - Csc tan - Cotan sen cos sen d. 1 1 cos cos
MATEMATICAS GRADO DECIMO
MATEMATICAS GRADO DECIMO TERCER PERIODO TEMAS Funciones Trigonométricas. Funciones trigonométricas. Son relaciones angulares; guardan relación con el estudio de la geometría de los triángulos y son de
Demostración de la Transformada de Laplace
Transformada de Laplace bilateral Demostración de la Transformada de Laplace Transformada Inversa de Laplace En el presente documento trataremos de demostrar matemáticamente cómo puede obtenerse la Transformada
Anexo C. Introducción a las series de potencias. Series de potencias
Anexo C Introducción a las series de potencias Este apéndice tiene como objetivo repasar los conceptos relativos a las series de potencias y al desarrollo de una función ne serie de potencias en torno
Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas II.- Factorización y Operaciones con las Fracciones III.- Funciones y Relaciones
Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas 1.- Adición y sustracción 2.- Multiplicación 3.- División 4.- Productos especiales 5.- Triángulo de Pascal II.- Factorización y Operaciones
Matemáticas I: Hoja 1
Matemáticas I: Hoja 1 1. Números complejos Hasta ahora, hemos visto que los números reales son aquellos que poseen una expresión decimal y que podemos representar en una recta infinita. No obstante, para
Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 5. Números complejos
Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN 3 Dado el número complejo z3i, su conjugado, z, su opuesto, z, y su inverso,, son: z a) z 3, z 3, z 3 3 3 b) z 3, z 3, z 3 c) z 3, z 3, z 3
FECHA OBJETIVO CONTENIDO 12 DE MARZO. Introducir el tema de funciones
Página 1 de 11 INA Turismo Bachillerato por madurez Cronograma 2011 de Matemáticas Profesora: Lordys Serrano Ramírez FECHA OBJETIVO CONTENIDO 12 DE MARZO Introducir el tema de funciones inicio de clases
RAZONES TRIGONOMÉTRICAS
RAZONES TRIGONOMÉTRICAS.- PRIMERAS DEFINICIONES Se denomina ángulo en el plano a la porción de plano comprendida entre dos semirrectas con un origen común denominado vértice. Ángulo central es el ángulo
ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250)
Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico Departamento de Matemática Aplicada ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Semestre 1-2011 Mayo 2011 Álgebra Lineal y Geometría
Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad
y Laterales Curso Propedéutico de Cálculo Sesión 2: y Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico y Esquema Laterales 1 Laterales 2 y Esquema Laterales
3.3 Funciones crecientes y decrecientes y el criterio de la primera derivada
SECCIÓN. Funciones crecientes decrecientes el criterio de la primera derivada 79. Funciones crecientes decrecientes el criterio de la primera derivada Determinar los intervalos sobre los cuales una función
Sucesiones y series de números reales
Capítulo 2 Sucesiones y series de números reales 2.. Sucesiones de números reales 2... Introducción Definición 2... Llamamos sucesión de números reales a una función f : N R, n f(n) = x n. Habitualmente
Una sucesión infinita es una función cuyo dominio es el conjunto de los enteros positivos. Podemos denotar una sucesión como una lista
Cap 9 Sec 9.1 9.3 Una sucesión infinita es una función cuyo dominio es el conjunto de los enteros positivos. Podemos denotar una sucesión como una lista a 1, a 2, a 3, a n, Donde cada a k es un término
FECHA OBJETIVO CONTENIDO Semana. Introducir el tema de funciones ( tentativo)
Página 1 de 11 INA Uruca Bachillerato por madurez Cronograma 2011 de Matemáticas Profesora: Lordys Serrano Ramírez FECHA OBJETIVO CONTENIDO Semana Introducir el tema de funciones ( tentativo) inicio de
Complejos, C. Reales, R. Fraccionarios
NÚMEROS COMPLEJOS Como ya sabemos, conocemos distintos cuerpos numéricos en matemáticas como por ejemplo el cuerpo de los números racionales, irracionales, enteros, negativos,... Sin embargo, para completar
b 11 cm y la hipotenusa
. RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS UNIDAD : Trigonometría II Resolver un triángulo es conocer la longitud de cada uno de sus lados y la medida de cada uno de sus ángulos. En el caso de triángulos rectángulos,
Tema Contenido Contenidos Mínimos
1 Números racionales - Fracciones equivalentes. - Simplificación de fracciones. - Representación y comparación de los números fraccionarios. - Operaciones con números fraccionarios. - Ordenación de los
VECTORES EN EL ESPACIO
VECTORES EN EL ESPACIO Página 133 REFLEXIONA Y RESUELVE Relaciones trigonométricas en el triángulo Halla el área de este paralelogramo en función del ángulo a: cm a cm Área = sen a = 40 sen a cm Halla
A.1 Razones trigonométricas de un triángulo rectángulo: Las razones trigonométricas de un triángulo rectángulo son las siguientes funciones:
MATEMÁTICAS EJERCICIOS RESUELTOS DE TRIGONOMETRÍA Juan Jesús Pascual TRIGONOMETRÍA A. Introducción teórica A. Razones trigonométricas de un triángulo rectángulo. A.. Valores del seno, coseno tangente para
TEMA N 2 RECTAS EN EL PLANO
2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración
SESIÓN 4: ESPACIOS VECTORIALES
SESIÓN 4: ESPACIOS VECTORIALES Un espacio vectorial sobre un campo (como el cuerpo de los números reales o los números complejos) es un conjunto no vacío, dotado de dos operaciones para las cuales será
1. NUMEROS COMPLEJOS.
Apunte de Números complejos o imaginarios: Representación gráfica. Complejos conjugados y opuestos. Forma trigonométrica, de De Moivre, exponencial. Operaciones. Raíces.Fórmula de Euler. 1. NUMEROS COMPLEJOS.
180º 36º 5. rad. rad 7. rad
ÁNGULOS: Usaremos dos unidades para expresar los ángulos: grados sexagesimales (MODE: DEG en la calculadora) y radianes (MODE: RAD en la calculadora). El radián es la unidad de ángulo plano en el Sistema
Curso de Álgebra Lineal
Curso de Álgebra Lineal 1. NÚMEROS COMPLEJOS 1.1 Definición, origen y operaciones fundamentales con números complejos Definición. Un número complejo, z, es una pareja ordenada (a, b) de números reales
CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García
INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica
Tema 1. Álgebra lineal. Matrices
1 Tema 1. Álgebra lineal. Matrices 0.1 Introducción Los sistemas de ecuaciones lineales aparecen en un gran número de situaciones. Son conocidos los métodos de resolución de los mismos cuando tienen dos
Lección 8: Potencias con exponentes enteros
GUÍA DE MATEMÁTICAS III Lección 8: Potencias con exponentes enteros Cuando queremos indicar productos de factores iguales, generalmente usamos la notación exponencial. Por ejemplo podemos expresar x, como
CAPITULO 7.SERIES DE FOURIER. 7.1. Sistemas de funciones ortogonales
CAPITULO 7.SERIES DE FOURIER La publicación por Fourier (1768-1830) de la " Teoría analítica del calor ", fue de una influencia decisiva en las matemáticas posteriores. Se supone en ella que cualquier
Seno y coseno de una matriz
Miscelánea Matemática 5 (200 29 40 SMM Seno y coseno de una matriz Rafael Prieto Curiel Instituto Tecnológico Autónomo de México ITAM rafaelprietocuriel@yahoocom Introducción En muchas áreas de las matemáticas
LA INTEGRAL COMO ANTIDERIVADA
UNIDAD II La integral como antiderivada LA INTEGRAL COMO ANTIDERIVADA La integración tiene dos interpretaciones distintas ) como procedimiento inverso de la diferenciación, y ) como método para determinar
Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)
Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:
rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:
Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián
MENORES, COFACTORES Y DETERMINANTES
MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una
1.5 Límites infinitos
SECCIÓN.5 Límites infinitos 8.5 Límites infinitos Determinar ites infinitos por la izquierda por la derecha. Encontrar dibujar las asíntotas verticales de la gráfica de una función., cuando Límites infinitos
N = {1, 2, 3, 4, 5,...}
Números y Funciones.. Números Los principales tipos de números son:. Los números naturales son aquellos que sirven para contar. N = {,,, 4, 5,...}. Los números enteros incluyen a los naturales y a sus
Cálculo Diferencial e Integral - Recta tangente y velocidad. Farith J. Briceño N.
Cálculo Diferencial e Integral - Recta tangente y velocidad. Farit J. Briceño N. Objetivos a cubrir Código : MAT-CDI.7 Problema: Recta tangente a una curva en un punto 0. Problema: Velocidad promedio y
UNIDAD IV. LEYES DE SENOS Y COSENOS.
UNIDAD IV. LEYES DE SENOS Y COSENOS. OBJETIVO. El estudiante resolverá problemas leyes de senos y cosenos, teóricos o prácticos de distintos ámbitos, mediante la aplicación las leyes y propiedades de Senos
VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO)
VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO) En trigonometría plana, es fácil de encontrar el valor exacto de la función seno y coseno de los ángulos de 30, 5 y 60, gracias a la ayuda de
Funciones Exponenciales y Logarítmicas
Funciones Exponenciales y Logarítmicas 0.1 Funciones exponenciales Comencemos por analizar la función f definida por f(x) = x. Enumerando coordenadas de varios puntos racionales, esto es de la forma m,
Profr. Efraín Soto Apolinar. Método de despeje
Método de despeje Cuando tenemos una ecuación cuadrática incompleta es muy buena idea hacer un despeje para resolverla. Este método es el más sencillo para este tipo de ecuaciones. Resuelve la siguiente
COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II
COLEGIO UNIVERSITARIO CARDENAL CISNEROS Libro de Ejercicios de Matemáticas Empresariales II Manuel León Navarro 2 Capítulo 1 Ejercicios lección 1 1. Sea el conjunto de las matrices cuadradas de orden 2
El alumno conocerá los fundamentos conceptuales de los números complejos 1.1. DEFINICIÓN Y ORIGEN Y OPRACIONES FUNDAMENTALES CON NÚMEROS COMPLEJOS
ALGEBRA LINEAL OBJETIVO GENERAL: EL ALUMNO ANALIZARÁ Y ADQUIRIRÁ LOS CONOCIMEINTOS DEL ÁÑGEBRA LINEAL Y LOS PALICARÁ COMO UNA HERRAMIENTA PARA LA SOLUCIÓN DE PROBLEMAS PRÁCTICO DEL ÁREA DE INGENOERÍA.
Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos
Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos
CONCEPTOS NÚMEROS COMPLEJOS En el conjunto de los números reales, una ecuación tan sencilla como x + = 0 no se puede resolver ya que es equivalente a x = - y no existe ningún número real cuyo cuadrado
Apuntes Trigonometría. 4º ESO.
Apuntes Trigonometría. 4º ESO. Conceptos previos: Notación: En un triángulo, los vértices se denotan con letras mayúsculas (A, B y C). Los lados se denotan con la letra minúscula del vértice opuesto al
MODULO DE LOGARITMO. 1 log 2 4 16. log N x b N N se llama antilogaritmo, b > 0 y b 1. Definición de Logaritmo. Liceo n 1 Javiera Carrera 2011
MODULO DE LOGARITMO Nombre:.. Curso : Medio Los aritmos están creados para facilitar los cálculos numéricos. Por aritmo podemos convertir los productos en sumas, los cocientes en restas, las potencias
Proyecciones. Producto escalar de vectores. Aplicaciones
Proyecciones La proyección de un punto A sobre una recta r es el punto B donde la recta perpendicular a r que pasa por A corta a la recta r. Con un dibujo se entiende muy bien. La proyección de un segmento
Sistemas de Ecuaciones Lineales
Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a
GUÍA PARA EL EXAMEN DE UBICACIÓN DE MATEMÁTICAS TECNOLÓGICO DE MONTERREY
GUÍA PARA EL EXAMEN DE UBICACIÓN DE MATEMÁTICAS TECNOLÓGICO DE MONTERREY INSTRUCCIONES Este examen debe ser presentado antes de las inscripciones, por los alumnos de primer ingreso que provengan de preparatorias
CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES
CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES Parte A: determinantes. A.1- Definición. Por simplificar, consideraremos que a cada matriz cuadrada se le asocia un número llamado determinante que se
Ecuaciones. 3º de ESO
Ecuaciones 3º de ESO El signo igual El signo igual se utiliza en: Igualdades numéricas: 2 + 3 = 5 Identidades algebraicas: (x + 4) x = x 2 + 4 4x Fórmulas: El área, A,, de un círculo de radio r es: A =
VALOR ABSOLUTO. Definición.- El valor absoluto de un número real, x, se define como:
VALOR ABSOLUTO Cualquier número a tiene su representación en la recta real. El valor absoluto de un número representa la distancia del punto a al origen. Observe en el dibujo que la distancia del al origen
Ecuaciones trigonométricas resueltas
Ecuaciones trigonométricas resueltas 1. Resuelve: sen 2 x cos 2 x= 1 2 Despejando el coseno de x de la primera relación fundamental, se tiene: Sustituyendo en la ecuación original: sen 2 x 1sen 2 x= 1
UNIDAD III Artificios de Integración
UNIDAD III Artificios de Integración 8 UNIDAD III ARTIFICIOS DE INTEGRACIÓN La integración depende, en última instancia, del empleo adecuado de las formas básicas de integración. Cuando en un caso no sucede
SESIÓN 13 DERIVACIÓN DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS (2ª PARTE)
SESIÓN 13 DERIVACIÓN DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS (2ª PARTE) I. CONTENIDOS: 1. Ejercicios resueltos aplicando exponentes y logaritmos (2ª. Parte) 2. Derivación de funciones exponenciales y
APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS
APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS 5 TRAYECTORIAS DE UN HAZ DE CURVAS: Se dice que una familia de curvas T(,, k) 0 (k una constante arbitraria)
2. SISTEMAS DE ECUACIONES LINEALES. Introducción
2. SISTEMAS DE ECUACIONES LINEALES Introducción El presente curso trata sobre álgebra lineal. Al buscarla palabra lineal en un diccionario se encuentra, entre otras definiciones la siguiente: lineal, perteneciente
rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:
Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián
Problemas de 4 o ESO. Isaac Musat Hervás
Problemas de 4 o ESO Isaac Musat Hervás 5 de febrero de 01 Índice general 1. Problemas de Álgebra 7 1.1. Números Reales.......................... 7 1.1.1. Los números....................... 7 1.1.. Intervalos.........................
Matemáticas 1 1 RESUMEN TEORÍA: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria
Matemáticas 1 1 RESUMEN TEORÍA: Números Complejos Elena Álvare Sái Dpto. Matemática Aplicada y C. Computación Universidad de Cantabria Ingeniería de Telecomunicación Teoría: Números Complejos Necesidad
MATERIALES DIDÁCTICOS
MATERIALES DIDÁCTICOS LUIS QUINTANAR MEDINA* Ejercitaremos el despeje en ecuaciones de primer grado y lo haremos a tres niveles: El primero en que solo se consideran expresiones directas, la habilidad
Sistemas de Ecuaciones Lineales. Solución de Sistemas de Ecuaciones Lineales. www.math.com.mx. José de Jesús Angel Angel. [email protected].
Sistemas de Ecuaciones Lineales Solución de Sistemas de Ecuaciones Lineales www.math.com.mx José de Jesús Angel Angel [email protected] MathCon c 2007-2008 Contenido 1. Sistemas de Ecuaciones Lineales 2
Números complejos (lista de problemas para examen)
Números complejos (lista de problemas para examen) En esta lista de problemas trabajamos con la construcción de números complejos (como pares ordenados de los reales) y con su representación en la forma
Expresiones algebraicas
Expresiones algebraicas Una expresión algebraica es una combinación de letras y números relacionadas por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las
Determinante de una matriz
25 Matemáticas I : Preliminares Tema 3 Determinante de una matriz 31 Determinante de una matriz cuadrada Definición 67- Sea A una matriz cuadrada de orden n Llamaremos producto elemental en A al producto
GEOMETRÍA ANALÍTICA EN EL PLANO
GEOMETRÍA ANALÍTICA EN EL PLANO Coordenadas cartesianas Sistema de ejes Cartesianos: Dicho nombre se debe a Descartes, el cual tuvo la idea de expresar un objeto geométrico como un punto o una recta, mediante
Para que un punto P(x, y) pertenezca a la circunferencia unitaria debe cumplir con la ecuación x 2 + y 2 = 1.
GUIA FUNCIONES TRIGONOMETRICAS GRADO DECIMO FUNCIOENES TRIGONOMETRICAS El estudio de la trigonometría se puede realizar por medio de las relaciones entre los ángulos y los lados de un triángulo rectángulo,
Uso de representaciones geométricas para facilitar la transición de la aritmética al álgebra 1
Docencia Uso de representaciones geométricas para facilitar la transición de la aritmética al álgebra 1 Alfinio Flores Peñafiel Arizona State University recibido: noviembre de 1998 publicado: febrero del
Expresiones algebraicas
Expresiones algebraicas Expresiones algebraicas Las expresiones algebraicas Elementos de una expresión algebraica Números de cualquier tipo Letras Signos de operación: sumas, restas, multiplicaciones y
Cálculo de Derivadas
Cálculo de Derivadas Sean a, b y k constantes (números reales) y consideremos a: u y v como funciones. Derivada de una constante Derivada de x Derivada de la función lineal Derivada de una potencia Derivada
Guía de Reforzamiento N o 2
Guía de Reforzamiento N o Teorema de Pitágoras y Trigonometría María Angélica Vega Guillermo González Patricio Sepúlveda 19 de Enero de 011 1 TEOREMA DE PITÁGORAS B a c C b A El Teorema de Pitágoras afirma
Sistemas de Ecuaciones y Matrices
Sistemas de Ecuaciones y Matrices 0.1 Sistemas de ecuaciones Consideremos las gráficas de dos funciones f y g como en la figura siguiente: P Q y = fx y = gx En la práctica, en ocasiones hay que encontrar
Ecuaciones. 2x + 3 = 5x 2. 2x + 1 = 2 (x + 1) 2x + 1 = 2x + 2 1 2. 2x + 2 = 2 (x + 1) 2x + 2 = 2x + 2 2 = 2. x + 1 = 2 x = 1
Ecuaciones Igualdad Una IGUALDAD se compone de dos expresiones unidas por el signo igual. 2x + 3 = 5x 2 Una igualdad puede ser: Falsa: 2x + 1 = 2 (x + 1) 2x + 1 = 2x + 2 1 2. Cierta 2x + 2 = 2 (x + 1)
a) A la mitad del número le sumo 3 y el resultado es 8 ( ) 9 b) En la ecuación 3x = 54 Qué valor puede tomar x? ( ) Rombo
Guía Matemáticas 3 ELIGE LA RESPUESTA CORRECTA.. Anota en el paréntesis de la derecha la letra que corresponda. a) A la mitad del número le sumo 3 y el resultado es 8 9 b) En la ecuación 3 = 54 Qué valor
T3: TRIGONOMETRÍA 1º BCT
1 RAZONES TRIGONOMÉTRICAS DE LA SUMA DE DOS ÁNGULOS Queremos calcular las razones trigonométricas de la suma de dos ángulos, α + β, a partir de las razones de los ángulos α y β. 1.1 SENO DE LA SUMA DE
Luis Zegarra A. Sucesiones, inducción y sumatorias 97
Luis Zegarra A. Sucesiones, inducción y sumatorias 97 Note que a i representa a una suma desde el primer término de la sucesión i a para i hasta el último término que en este caso es a n para i n. Es decir,
Asignatura: Horas: Total (horas): Obligatoria X Teóricas 4.5 Semana 4.5 Optativa Prácticas 0.0 16 Semanas 72.0
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTADES DE ECONOMÍA E INGENIERÍA LICENCIATURA EN ECONOMÍA Y NEGOCIOS PROGRAMA DE ESTUDIO Cálculo Diferencial P81 /P71 /P91 09 Asignatura Clave Semestre Créditos
Es cierta para x = 0. d) Sí, son soluciones. Se trata de una identidad pues es cierta para cualquier valor de x.
EJERCICIOS RESUELTOS MÍNIMOS 3º ESO TEMA 4 ECUACIONES Ejercicio nº 1.- Dada la siguiente igualdad: x 1 3 9 x 5 3x = x responde razonadamente: a) Es cierta si sustituimos la incógnita por el valor cero?
Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación
Profesor: Jaime Álvarez Maldonado Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación DIFERENCIAS FINITAS Ayudante: Rodrigo Torres Aguirre El método
En este capítulo obtendremos los resultados básicos del cálculo diferencial para funciones reales definidas sobre R o sobre intervalos.
Capítulo 6 Derivadas 61 Introducción En este capítulo obtendremos los resultados básicos del cálculo diferencial para funciones reales definidas sobre R o sobre intervalos Definición 61 Sea I R, I, f :
RESUMEN DE TEORIA. Primera Parte: Series y Sucesiones
RESUMEN DE TEORIA Primera Parte: Series y Sucesiones SUCESIONES Definición: La sucesión converge a L y se escribe lim = si para cada número positivo hay un número positivo correspondiente N tal que =>
Los números complejos
7 Los números complejos 1. Forma binómica del número complejo Piensa y calcula Halla mentalmente cuántas soluciones tienen las siguientes ecuaciones en el conjunto de los números reales. a) x 2 25 = 0
Métodos de solución de ED de primer orden
CAPÍTULO Métodos de solución de E de primer orden. Ecuaciones diferenciales de variables separables El primer tipo de E que presentamos es el de variables separables, porque con frecuencia se intenta separar
MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares.
ESTUDIO ANALÍTICO DE LA LÍNEA RECTA Y APLICACIONES SEMESTRE II VERSIÓN 03 FECHA: Septiembre 29 de 2011 MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA LOGROS: 1. Hallar la dirección, la
Distribuciones bidimensionales. Regresión.
Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 5: Distribuciones bidimensionales. Regresión. Resumen teórico Resumen teórico de los principales conceptos estadísticos
TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas.
TEMA 11 F MATEMÁTICOS TEMA 11 Autovalores y autovectores Diagonalización y formas canónicas 1 Introducción Definición 1 (Matrices semejantes) Sean A y B dos matrices cuadradas de orden n Decimos que A
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 25
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 5 La Trigonometría es el estudio de la relación entre las medidas de los lados y los ángulos del triángulo. Ángulos En este
1 ÁNGULO 2 FUNCIÓN SENO Y FUNCIÓN COSENO 3 FUNCIÓN TANGENTE 4 VALORES DE FUNCIONES TRIGONOMÉTRICAS PARA ÁNGULOS
ÁNGULO FUNCIÓN SENO Y FUNCIÓN COSENO FUNCIÓN TANGENTE 4 VALORES DE FUNCIONES TRIGONOMÉTRICAS PARA ÁNGULOS CONOCIDOS 5 IDENTIDADES TRIGONOMÉTRICAS. Eisten epresiones algebraicas que contienen funciones
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría
TRIGONOMETRÍA La trigonometría se inicia estudiando la relación entre los ángulos y los lados de un triángulo, surgiendo las razones trigonométricas de un ángulo y a partir de ellas las funciones trigonométricas.
NÚMEROS COMPLEJOS. Página 146 PARA EMPEZAR, REFLEXIONA Y RESUELVE. Página 147. El paso de Z a Q
NÚMEROS COMPLEJOS Página PARA EMPEZAR, REFLEXIONA Y RESUELVE El paso de Z a Q Imaginemos que solo se conocieran los números enteros, Z. Sin utilizar otro tipo de números, intenta resolver las siguientes
Es evidente la continuidad en En el punto, se tiene:
Tema 3 Continuidad Ejercicios Resueltos Ejercicio 1 Estudia la continuidad de la función La función puede expresarse como Para representarla basta considerar dos arcos de parábola: Es evidente la continuidad
Definición 3.1 Dado z = x + iy lc se define la función exponencial compleja como. exp(z) = e x (cos(y) + i sen(y))
Capítulo 3 Funciones elementales En este capítulo se introducen la funciones elementales variable compleja: la exponencial, el logaritmo y las funciones trigonométricas e hiperbólicas. Como veremos, muchas
Representación simbólica y angular del entorno
Representación simbólica y angular del entorno Área(s): Electricidad y electrónica Mantenimiento e instalación Producción y transformación Tecnología y transporte Contaduría y administración Turismo Salud
Lección 1. Algoritmos y conceptos básicos.
Página 1 de 8 Lección 1. Algoritmos y conceptos básicos. Objetivos. La primera lección del curs está dedicada a repasar los conceptos y algoritmos del álgebra lineal, básicos para el estudio de la geometría
Espacios vectoriales con producto interior
Espacios vectoriales con producto interior Longitud, norma o módulo de vectores y distancias entre puntos Generalizando la fórmula pitagórica de la longitud de un vector de R 2 o de R 3, definimos la norma,
Ejercicios resueltos de trigonometría
Ejercicios resueltos de trigonometría 1) Convierte las siguientes medidas de grados en radianes: a) 45º b) 60º c) 180º d) 270º e) 30º f) 225º g) 150º h) 135º i) -90º j) 720º 2) Expresa las siguientes razones
circulares y trigonométricas Unidad 2:Funciones ÁNGULO DE REFERENCIA: Triángulo de referencia y ángulo de referencia
1 Unidad :Funciones circulares y trigonométricas Tem: Ángulos Lección 6: Ángulos de referencia 11 ÁNGULO DE REFERENCIA: Triángulo de referencia y ángulo de referencia Para dibujar un triángulo de referencia
Integración por partes VIII INTEGRACIÓN POR PARTES. Supóngase que se tiene la función producto y = uv. Si se deriva con respecto de x se obtiene:
VIII INTEGRACIÓN POR PARTES Área Supóngase que se tiene la función producto y = uv. Si se deriva con respecto de x se obtiene: dy d = uv dx dx dy dv du = u + v dx dx dx Multiplicando toda la igualdad por
La ecuación de segundo grado para resolver problemas.
La ecuación de segundo grado para resolver problemas. Como bien sabemos, una técnica potente para modelizar y resolver algebraicamente los problemas verbales es el uso de letras para expresar cantidades
