VARIABLES Y ORGANOS BINARIOS
|
|
|
- Vicenta Toledo Rivero
- hace 9 años
- Vistas:
Transcripción
1
2 LÓGICA NEUMÁTICA
3 VARIABLES Y ORGANOS BINARIOS Captores eléctricos Captores neumáticos E e P p L E E e P p e Alimentación eléctrica E ē E e e P p p E e ē
4 FUNCIÓN Y o PRODUCTO LÓGICO Símbolo Ecuación Tabla de verdad Estado de reposo a b S S = a. b S = a AND b
5 FUNCIÓN Y PRODUCTO LÓGICO
6 FUNCIÓN Y PRODUCTO LÓGICO
7 FUNCIÓN Y PRODUCTO LÓGICO
8 FUNCIÓN Y PRODUCTO LÓGICO
9 FUNCIÓN O SUMA LÓGICA Símbolo Ecuación Tabla de verdad Estado de reposo a b S S = a + b S = a OR b
10 FUNCIÓN O SUMA LÓGICA
11 FUNCIÓN O SUMA LÓGICA
12 FUNCIÓN O SUMA LÓGICA
13 FUNCIÓN O SUMA LÓGICA
14 FUNCIÓN NO INVERSIÓN LÓGICA Símbolo Ecuación Tabla de verdad Estado de reposo S = a a s a b S S = a. b
15 FUNCIÓN NO INVERSIÓN LÓGICA
16 FUNCIÓN NO INVERSIÓN LÓGICA
17 FUNCIÓN NO INVERSIÓN LÓGICA
18 FUNCIÓN NO INVERSIÓN LÓGICA
19 FUNCIÓN NO INVERSIÓN LÓGICA
20 FUNCIÓN SI IGUALDAD LÓGICA Símbolo Ecuación Tabla de verdad Estado de reposo S = a a S
21 FUNCIÓN SI IGUALDAD LÓGICA
22 FUNCIÓN SI IGUALDAD LÓGICA
23 FUNCIÓN SI o IGUALDAD LÓGICA
24 FUNCIÓN SI o IGUALDAD LÓGICA
25 FUNCIÓN SI o IGUALDAD LÓGICA
26 RESUMEN Símbolo Ecuación Tabla de verdad Estado de reposo S = a. b S = a AND b S = a + b S = a OR b S = a. b a b S a b S a b S S = a a S
27 EJERCICIOS Completar los circuitos con los componentes lógicos necesarios Cuando se activan los botones a ó b el indicador visual se debe encender, así permanecerá encendido mientras uno de los botones sea actuado
28 EJERCICIOS Completar los circuitos con los componentes lógicos necesarios Cuando se activan los botones a ó b el indicador visual se debe encender, así permanecerá encendido mientras uno de los botones sea actuado
29 EJERCICIOS Completar los circuitos con los componentes lógicos necesarios Cuando se activan los botones a y b, el indicador visual se debe encender, tan pronto como uno de los botones sea desactivado el indicador se desactivará.
30 EJERCICIOS Completar los circuitos con los componentes lógicos necesarios Cuando se activan los botones a y b, el indicador visual se debe encender, tan pronto como uno de los botones sea desactivado el indicador se desactivará.
31 EJERCICIOS Escribir ecuación y realizar el esquema Un indicador se encuentra activo. Se debe desactivar al momento de presionar a a S = a. b b
32 EJERCICIOS Un elevador neumático podrá ser accionado desde la planta baja ó de su piso superior, siempre que la puerta del elevador este cerrada Función Lógica: Y = ( A + B ). C Y = Elevador A = Botón Planta Baja B = Botón er Piso C = Puerta de elevador En movimiento Accionado Accionado Abierta En reposo Desaccionado Desaccionado Cerrada A B C C ( A + B) Y = ( A + B ). C Tabla de verdad
33 EJERCICIOS Un elevador neumático podrá ser accionado desde la planta baja ó de su piso superior, siempre que la puerta del elevador este cerrada Simbologicamente: a A + B Y = ( A + B ). C b c C
34 EJERCICIOS Dibujar S = ca + cb
35 EJERCICIOS Dibujar S = ca + cb
36 EJERCICIO Transformar la ecuación y dibujar el esquema lógico S = ao( byc)
37 RELACIONES LÓGICAS CARACTERÍSTICAS NEGACIONES LOGÍCAS CARACTERÍSTICAS a = a = PRODUCTOS LÓGICOS CARACTERÍSTICOS = a = SUMAS LÓGICAS CARACTERÍSITICAS + = a + = a = a = a a + = a a = a a + a = a a a = a + a =
38 PROPIEDADES CONMUTATIVAS DISTRIBUTIVAS Y ASOCIATIVA CONMUTATIVAS a. b = b. a a + b = b + a ASOCIATIVAS a. ( b. c ) = ( a. b). c a + ( b + c ) = ( a + b) + c DISTRIBUTIVAS a. b + a. c = a. (b + c ) (a + b). (a + c) = a + ( b. c ) RELACIONES de DE MORGAN S = a b S = a b = a + b S = a + b S = a + b = a b
39 SIMPLIFICACIÓN DE CIRCUITOS Vamos a considerar, como ejemplo, una función lógica representada por la siguiente tabla de verdad. Y C B A Observar que la salida Y es verdadera (Nivel ) en cuatro combinaciones de las variables de entrada:
40 ) Y es verdadera (nivel ) cuando las entradas A, B y C son falsas (nivel ). Por lo tanto, Y será salida cuando : Y = A B C A B C Y 2 ) Y es verdadera (nivel ) cuando la entrada A, sea falsa (nivel ), B sea verdadera (nivel ) y C sea falsa (nivel ). Por lo tanto, Y será salida cuando : Y = A B C 3 ) Y es verdadera (nivel ) cuando la entrada A, sea verdadera (nivel ), B sea falsa (nivel ) y C sea falsa (nivel ). Por lo tanto, Y será salida cuando:, Y = A B C 4 ) Y es verdadera (nivel ) cuando la entrada A, B y C sean verdaderas (nivel ), Por lo tanto, Y será salida cuando: Y = A B C Sumando las 4 combinaciones, Y = A B C + A B C + A B C + A B C
41 SIMPLIFICACIÓN ALGEBRAICA Sea la siguiente Tabla de verdad A B Y Escribiendo la expresión booleana suma de productos, tendremos Y = A B + A B + AB Aplicando la propiedad distributiva en los dos últimos términos de la expresión, tendremos; Y = B + A ( + B ) A B ( B + B ) = Y = B + A A
42 EJERCICIO Simplificar y realizar el esquema S = a + bc + ab
43 EJERCICIO Simplificar y realizar el esquema S = ab + ab
44 EJERCICIO Simplificar y realizar el esquema S = ab + ba
45 EJERCICIO Simplificar y realizar el esquema S = ab + dc S 2 = abc + d
46 EJERCICIO Utilización de los Teoremas de De Morgan Un indicador se pueden encender por 3 botones a, b y c. Él no funciona si: b y c están en reposo, o si a está en reposo y b actuado, o si b está actuado y c en reposo.
47 LA FUNCIÓN MEMORIA Una memoria es un órgano binario que conserva el estado ( ó ) en el que le haya puesto la última acción a que haya sido sometido, aunque, esta acción haya sido transitoria.
48 LA FUNCIÓN MEMORIA
49 LA FUNCIÓN MEMORIA
50 LA FUNCIÓN MEMORIA
51 LA FUNCIÓN MEMORIA
52 LA FUNCIÓN MEMORIA
53 BASES Unitaria Intermedia S = a. b S = a AND b
54 EJEMPLO DE ESQUEMAS REALES a ) Montaje en cascada Posicionamiento del selector Esquema lógico
55 EJEMPLO DE ESQUEMAS REALES b ) Montaje de entrada común con un cable común de presión para las células activas Sí -No ó los componentes periféricos Con una variable común Posicionamiento del selector Esquema lógico
56 EJEMPLO DE ESQUEMAS REALES c ) Montaje mixto Posicionamiento del selector Esquema lógico
57 MODULOS REGISTROS
58 MODULOS REGISTROS
59 MODULOS REGISTROS
60 MODULOS REGISTROS
61 MODULOS REGISTROS
62 MODULOS REGISTROS
63 MODULOS REGISTROS
64 MODULOS REGISTROS
65 MODULOS REGISTROS
66 MODULOS REGISTROS Y MEMORIA O
67
68 MODULOS REGISTROS
69 GRAFCET
70 EJERCICIO Realizar el esquema lógico
71 EJERCICIO Realizar el esquema lógico del siguiente automatismo de pintado
72 EJERCICIO Realizar el esquema lógico del siguiente automatismo de pintado
73
74
75 EJERCICIO Realizar el esquema lógico del siguiente automatismo de apertura y cierre de tolva B + / A - / A + / B -
76
77
78 TEMPORIZADOR
79 TEMPORIZADOR
80 TEMPORIZADOR
81 TEMPORIZADOR
82 TEMPORIZADOR
83 TEMPORIZADOR
84 TEMPORIZADOR
85 IMPULSO UNICO
86 IMPULSO UNICO
87 IMPULSO UNICO
88 IMPULSO UNICO
89 IMPULSO UNICO
90 GENERADOR DE FRECUENCIA
91 IMPULSO UNICO
92 IMPULSO UNICO
93 IMPULSO UNICO
94 IMPULSO UNICO
95 GRACIAS!!!
Algebra de Boole y simplificación de funciones lógicas. Capítulo 4
Algebra de Boole y simplificación de funciones lógicas Capítulo 4 Contenido 1. Expresiones y operaciones Booleanas 2. Propiedades y Reglas del Algebra de Boole 3. Teoremas de DeMorgan 4. Análisis booleano
Álgebra Booleana y Simplificación Lógica
Álgebra Booleana y Simplificación Lógica M. en C. Erika Vilches Parte 1 Operaciones Booleanas y Expresiones Variable, complemento y literal son los términos utilizados en álgebra booleana. Variable símbolo
Existen distintas formas de representar una función lógica, entre las que podemos destacar las siguientes:
Función booleana Se denomina función lógica o booleana a aquella función matemática cuyas variables son binarias y están unidas mediante los operadores del álgebra de Boole suma lógica (+), producto lógico
UNIDAD 2 COMPUERTAS LOGICAS
UNIDAD 2 TABLA DE CONTENIDO. 2.1 Qué es Electrónica Digital. 30 2.2 Álgebra de booleana. 31 2.3 Operación booleana y compuertas lógicas. 31 2.4 Inversión o negación (complemento). 32 2.5 Suma booleana
Algebra de Boole. Algebra de Boole. Ing. José Alberto Díaz García. EL - 3307 Diseño Lógico. Página 1
Página 1 Simplificación de circuitos Como los circuitos lógicos son representaciones de funciones lógicas, se pueden utilizar los recursos disponibles para simplificarlos y así reducir la cantidad de componentes
El álgebra booleana fue estudiada por Pitágoras y George Boole.
ALGEBRA DE BOOLE Centro CFP/ES ALGEBRA DE BOOLE El álgebra booleana fue estudiada por Pitágoras y George Boole. Con el álgebra booleana, partiendo de una serie de sentencias lógicas iniciales verdaderas
Álgebra de Boole. Adición booleana. Multiplicación booleana. Escuela Politécnica Superior
Álgebra de Boole El Álgebra de Boole es una forma muy adecuada para expresar y analizar las operaciones de los circuitos lógicos. Se puede considerar las matemáticas de los sistemas digitales. Operaciones
CIRCUITOS LOGICOS. Que es una Proposición? Es una expresión verbal de un juicio acerca de algo.
GUIA : III CIRCUITOS LOGICOS OBJETIVOS Realizar la tabla de verdad para las compuertas lógicas básicas. AND,OR, NOT, NAND, OR-EX Representar simbólicamente una función booleana usando las compuertas básicas.
Tema 2. Funciones Lógicas. Algebra de Conmutación. Representación de circuitos digitales. Minimización de funciones lógicas.
Tema 2. Funciones Lógicas Algebra de Conmutación. Representación de circuitos digitales. Minimización de funciones lógicas. Álgebra de conmutación Algebra de Conmutación: Postulados y Teoremas. Representación
PRÁCTICAS DE ELECTRÓNICA DIGITAL
PRÁCTICAS DE ELECTRÓNICA DIGITAL Práctica 0: CONEXIÓN DE LOS CIRCUITOS INTEGRADOS (C.I.) 1º: Para que funcionen correctamente, han de estar conectados a una tensión de 5V. Para realizar esto, el polo (+)
2. ÁLGEBRA DE BOOLE OPERACIONES BÁSICAS DEL ÁLGEBRA DE BOOLE. OPERACIONES LÓGICAS.
2. ÁLGEBRA DE BOOLE 2..- Definición. 2.2.- Operaciones básicas. 2.3.- Propiedades o teoremas del álgebra de Boole. 2.4.- Función Booleana / Lógica. 2.5.- Representación de función Booleana. 2.6.- Formas
Oliverio J. Santana Jaria. Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007
Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 7. Álgebra de Boole Este El que éxito resulta de la diseñar tecnología y fabricar digital circuitos
1ª evaluación: 1: INTRODUCCIÓN A LOS SISTEMAS DIGITALES SISTEMAS DE NUMERACIÓN BINARIO OCTAL Y HEXADECIMAL CAMBIOS DE BASE
Electrónica digital Página 1 1ª evaluación: 1: 2: 3: 4: INTRODUCCIÓN A LOS SISTEMAS DIGITALES SISTEMAS DE NUMERACIÓN BINARIO OCTAL Y HEXADECIMAL CAMBIOS DE BASE ALGEBRA DE BOOLE POSTULADOS Y TEOREMAS PUERTAS
Diseño combinacional (Parte #2) Mapas de Karnaugh
Departamento de Electrónica Electrónica Digital Diseño combinacional (Parte #2) Mapas de Karnaugh Facultad de Ingeniería Bioingeniería Universidad Nacional de Entre Ríos Procedimiento de diseño de un circuito
2. CONTROL DE CIRCUITOS ELECTRÓNICOS COLEGIO MALVAR DPTO. CCNN Y TECNOLOGÍA 3º ESO
2. CONTROL DE CIRCUITO ELECTRÓNICO COLEGIO MALVAR DPTO. CCNN Y TECNOLOGÍA 3º EO INTRODUCCIÓN Las agujas de un reloj, que giran representando el avance del tiempo, lo hacen en forma aná- loga (análogo =
k k N b Sistemas Númericos Sistemas con Notación Posicional (1) Sistemas con Notación Posicional (2) Sistemas Decimal
Sistemas con Notación Posicional (1) Sistemas Númericos N b = a n-1 *b n-1 + a n-2 *b n-2 +... + a 0 *b 0 +a -1 *b - 1 + a -2 *b -2 +... + a -m *b -m Sistemas con Notación Posicional (2) N b : Número en
TEMA 4. Diseño de Sistemas Combinacionales SSI.
Fundamentos de los Computadores. Sistemas Combinacionales T4-1 TEMA 4. Diseño de Sistemas Combinacionales SSI. INDICE: SISTEMAS COMBINACIONALES METODOLOGÍA DE DISEÑO MÉTODOS DE SIMPLIFICACIÓN o MAPAS DE
QUÉ ES LA ELECTRÓNICA DIGITAL?... 2 ÁLGEBRA DE BOOLE... 2 PUERTAS LÓGICAS...
UNIDAD DIDÁCTICA ELECTRÓNICA DIGITAL NIVEL: 4ºESO 1 QUÉ ES LA ELECTRÓNICA DIGITAL?... 2 2 ÁLGEBRA DE BOOLE... 2 3 PUERTAS LÓGICAS... 3 3.1 TIPOS DE PUERTAS LÓGICAS... 3 4 INTERPRETACIÓN Y SIMPLIFICACIÓN
Álgebra de Boole. Tema 5
Álgebra de Boole Tema 5 Qué sabrás al final del capítulo? Leyes y propiedades del Álgebra de Boole Simplificar funciones utilizando el Álgebra de Boole Analizar circuitos mediante Álgebra de Boole y simplificarlos
Álgebra de BOOLE. Tema 4
Álgebra de BOOLE Tema 4 1. Definición formal del álgebra de Boole. 2. Leyes y reglas del álgebra de Boole. 3. Operaciones y expresiones booleanas. 4. Formas canónicas de las expresiones booleanas. 5. Expresiones
PROPIEDADES DE LOS NUMEROS REALES
PROPIEDADES DE LOS NUMEROS REALES Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Prof. Yuitza T. Humarán Martínez Adaptado por Prof. Caroline Rodriguez Naturales N={1, 2, 3, 4, } {0}
Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole
Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole Índice Algebra de Boole. Definición. Operaciones lógicas: OR, AND, XOR y NOT Puertas lógicas Algebra de Boole Postulados Teoremas
Algebra de Boole. » a + a = 1» a a = 0
Algebra de Boole Dos elementos: 0 y 1 Tres operaciones básicas: producto ( ) suma ( + ) y negación ( ` ) Propiedades. Siendo a, b, c números booleanos, se cumple: Conmutativa de la suma: a + b = b + a
Profesor Rubén Martín Pérez ELECTRÓNICA DIGITAL. TECNOLOGÍA 4º ESO ELECTRÓNICA DIGITAL
INDICE: ELECTRÓNICA DIGITAL. INTRODUCCIÓN.. TIPOS DE SEÑALES. 2. REPRESENTACIÓN DE LAS SEÑALES DIGITALES. 3. SISTEMA BINARIO. 4. FUNCIONES BÁSICAS. 5. COMBINACIONES ENTRE FUNCIONES BÁSICAS. 6. PROPIEDADES
Expresiones algebraicas
Expresiones algebraicas Expresiones algebraicas Las expresiones algebraicas Elementos de una expresión algebraica Números de cualquier tipo Letras Signos de operación: sumas, restas, multiplicaciones y
ALGEBRA DE BOOLE George Boole C. E. Shannon E. V. Hungtington [6]
ALGEBRA DE BOOLE El álgebra booleana, como cualquier otro sistema matemático deductivo, puede definirse con un conjunto de elementos, un conjunto de operadores y un número de axiomas no probados o postulados.
Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta
Centro Asociado Palma de Mallorca Arquitectura de Ordenadores Tutor: Antonio Rivero Cuesta Unidad Didáctica 1 Representación de la Información y Funciones Lógicas Tema 3 Algebra Booleana y Puertas Lógicas
Circuitos Combinatorios
Circuitos Combinatorios Primer Cuatrimestre de 2010 Departamento de Computación, FCEyN,Universidad de Buenos Aires. 7 de abril de 2010 Objetivos de la clase de hoy Repasar los operadores y propiedades
Conceptos previos. Revisión de Sistemas Lógicos Formatos Numéricos. Dpto. Ingeniería Electrónica y Comunicaciones
Conceptos previos Revisión de Sistemas Lógicos Formatos Numéricos Revisión de Sistemas Lógicos Álgebra de Boole Base matemática de la Electrónica Digital Consta de dos elementos: 0 lógico y 1 lógico Tecnología
Álgebra de Boole. Tema 5
Álgebra de Boole Tema 5 Qué sabrás al final del capítulo? Leyes y propiedades del Algebra de Boole Simplificar funciones utilizando el Algebra de Boole Analizar circuitos mediante Algebra de Boole y simplificarlos
Claude Shannon fue el primero en aplicarla en el diseño de circuitos de conmutación eléctrica biestables, en 1948.
La llamada álgebra de Boole es una estructura algebraica que rigoriza las operaciones lógicas Y, O y NO, así como el conjunto de operaciones de unión, intersección y complemento que se pueden dar entre
UNIVERSIDAD NACIONAL DEL SANTA Facultad de Ingeniería EAP INGENIERIA DE SISTEMAS E INFORMATICA
UNIVERSIDAD NACIONAL DEL SANTA Facultad de Ingeniería EAP INGENIERIA DE SISTEMAS E INFORMATICA DISEÑO DE CIRCUITOS COMBINATORIOS USANDO EL CONVERTIDOR LOGICO DIGITAL PARA APLICACIONES EN SISTEMAS DIGITALES
I UNIDAD ÁLGEBRA BOOLEANA Y COMPUERTAS LÓGICAS
I UNIDAD ÁLGEBRA BOOLEANA Y COMPUERTAS LÓGICAS 1.1 Electrónica Digital Obviamente es una ciencia que estudia las señales eléctricas, pero en este caso son señales discretas, es decir, están bien identificadas,
Curso Completo de Electrónica Digital. 3.7. Simplificación de funciones booleanas
CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez Capítulo 3 ALGEBRA DE BOOLE Continuación...
FUNDAMENTOS DE SISTEMAS DIGITALES. Tema 2: Lógica combinacional (I): Funciones aritmético-lógicas
FUNDAMENTOS DE SISTEMAS DIGITALES Tema 2: Lógica combinacional (I): Funciones aritmético-lógicas 1 Programa 1. Representación conjunta de números positivos y negativos. 2. Sumadores y restadores. 3. Sumadores
Algebra de Boole: Teoremas
Teorema 1: A + A = A Teorema 2: A A = A Teorema 3: A + 0 = A Teorema 4: A 1 = A Teorema 5: A 0 = 0 Teorema 6: A + 1 = 1 Teorema 7: (A + B) = A B Teorema 8: (A B) = A + B Teorema 9: A + A B = A Teorema
Álgebra Booleana. Suma Booleana. El término suma es 1 si al menos uno de sus literales son 1. El término suma es 0 solamente si cada literal es 0.
Álgebra Booleana El álgebra de Boole son las matemáticas de los sistemas digitales. En el nivel de lógica digital de una computadora, lo que comúnmente se llama hardware y que está formado por los componentes
Práctica 3: Lógica Digital - Combinatorios 1/2
Práctica 3: Lógica Digital - Combinatorios 1/2 Matías López Organización del Computador I DC - UBA Verano 2010 Compuertas - NOT Propiedades A NOT A 0 1 1 0 Compuertas - AND Propiedades A B A AND B 0 0
UNIVERSIDAD DEL VALLE ESCUELA DE INGENIERIA ELÉCTRICA Y ELÉCTRONICA CÁTEDRA DE PERCEPCIÓN Y SISTEMAS INTELIGENTES
UNIVERSIDAD DEL VALLE ESCUELA DE INGENIERIA ELÉCTRICA Y ELÉCTRONICA CÁTEDRA DE PERCEPCIÓN Y SISTEMAS INTELIGENTES LABORATORIO No. 4 Fundamentos de electrónica Compuertas Lógicas I. OBJETIVOS. Conocer el
Arquitectura de Computadoras Algebra de Boole Basadas en las Notas de Teórico Versión 1.0 del Dpto. de Arquitectura-InCo-FIng
Basadas en las Versión.0 del Dpto. de Arquitectura-InCo-FIng ALGEBRA DE BOOLE Introducción. El álgebra de Boole es una herramienta de fundamental importancia en el mundo de la computación. Las propiedades
El álgebra de las matrices Suma y producto por un escalar Producto de matrices Propiedades y ejemplos
El álgebra de las matrices Suma y producto por un escalar Producto de matrices Propiedades y ejemplos c Jana Rodriguez Hertz p. 1/1 Suma de matrices - definición Si dos matrices A,B M m n K tienen el mismo
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos
NÚMEROS REALES NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de
Electrónica Digital: Sistemas Numéricos y Algebra de Boole
Electrónica Digital: Sistemas Numéricos y Algebra de Boole Profesor: Ing. Andrés Felipe Suárez Sánchez Grupo de Investigación en Percepción y Sistemas Inteligentes. Email: [email protected]
3.1 Reglas de equivalencia
3.1 Reglas de equivalencia En esta sección estudiarás y aplicarás algunas reglas de equivalencia de proposiciones lógicas. Es decir, vamos a empezar a aplicar algunas reglas que nos permitirán transformar
UNIDAD 4. Álgebra Booleana
UNIDAD 4 Álgebra Booleana ÁLGEBRA BOOLEANA El Álgebra Booleana se define como una retícula: Complementada: existe un elemento mínimo 0 y un elemento máximo I de tal forma que si a esta en la retícula,
TEMA 2: Control combinacional. 1.- Introducción. Esquema:
Esquema: TEMA 2: Control combinacional TEMA 2: Control combinacional...1 1.- Introducción...1 1.1.-Diseño de circuitos combinacionales...2 2.- Circuitos combinacionales avanzados...2 2.1.- Codificadores...2
SISTEMAS LÓGICOS. UNIDAD 2: Álgebra De Boole
Definición SISTEMAS LÓGICOS UNIDAD 2: Álgebra De Boole Comenzaremos definiendo el Álgebra de Boole como el conjunto de elementos B que puede asumir dos valores posibles (0 y 1) y que están relacionados
EJERCICIOS TEMA 17: CIRCUITOS DIGITALES COMBINACIONALES
EJERCICIOS TEMA 17: CIRCUITOS DIGITALES COMBINACIONALES Ejercicio PAU Septiembre 2010/2011 a) Rellenamos la tabla de la verdad colocando salidas 1 en las posiciones indicadas: Posición a b c d f 0 0 0
EL LENGUAJE DE LAS COMPUTADORAS
EL LENGUAJE DE LAS COMPUTADORAS AUTORÍA ANGEL MANUEL RUBIO ORTEGA TEMÁTICA ELECTRICIDAD, ELECTRÓNICA ETAPA ESO, BACHILLERATO Resumen Actualmente nos encontramos rodeados dispositivos digitales. Por ello
UNIDAD 28 CIRCUITOS COMBINACIONALES. ÁLGEBRA DE BOOLE
TECNOLOGÍA INDUSTRIAL II > CONTROL Y PROGRAMACIÓN DE SISTEMAS UNIDAD 28 CIRCUITOS COMBINACIONALES. ÁLGEBRA DE BOOLE A-Relación de ejercicios (con solución) 1.- Dada la función F = cba + cba + cba simplifícala
Práctica 2: Lógica Digital - Combinatorios
Organización del Computador I DC - UBA Segundo Cuatrimestre de 2009 Álgebra booleana Propiedades Álgebra booleana Compuertas - NOT Propiedades A NOT A 0 1 1 0 Compuertas - AND Propiedades A B A AND B 0
Proyecciones. Producto escalar de vectores. Aplicaciones
Proyecciones La proyección de un punto A sobre una recta r es el punto B donde la recta perpendicular a r que pasa por A corta a la recta r. Con un dibujo se entiende muy bien. La proyección de un segmento
Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Expresiones Algebraicas y Polinomios
Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Expresiones Algebraicas y Polinomios Prof. Glorymill Santiago Labrador Adaptado por: Prof. Anneliesse Sánchez, Prof. Caroline Rodríguez
TEMA 2 Álgebra booleana y puertas lógicas
TEMA 2 Álgebra booleana y puertas lógicas Tema 2: Álgebra booleana y puertas lógicas 1) Introducción BB1, Cap 4 (Introducción) 2) Álgebra de Boole BB1, Cap 4, Ap 4.1, 4.2, 4.3 3) Concepto de función lógica
Álgebra de Boole A p u n te N 3
Álgebra de Boole Apunte N 3 G e o r g e B o o l e y C l a u d e S h a n n o n La finalidad de la Electrónica Digital es procesar la información. Para ello utiliza las operaciones definidas por George Boole
Álgebra Booleana. Álgebra Booleana. Definiciones. Definiciones. Definiciones. Definiciones. Sistemas Digitales Mario Medina 1
Álgebra Booleana Álgebra Booleana Mario Medina C. [email protected] Postulados y axiomas Lemas y teoremas Referencias a otras álgebras Álgebra de Boole: estructura algebraica definida sobre un conjunto
UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE 2 ( 12 HORAS)
UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE HORAS) Saberes procedimentales Saberes declarativos Identifica y realiza operaciones básicas con expresiones aritméticas. Jerarquía de las operaciones aritméticas.
TEMA 6. ALGEBRA DE BOOLE
http://www.tech-faq.com/wp-content/uploads/images/integrated-circuit-layout.jpg IEEE 25 Aniversary: http://www.flickr.com/photos/ieee25/with/289342254/ TEMA 6 - ALGEBRA DE BOOLE Y FUNCIONES LÓGICASL 6..
CURSO TALLER ACTIVIDAD 7 CIRCUITOS BÁSICOS DE CONMUTACIÓN USANDO INTERRUPTORES Y PULSADORES
CURSO TALLER ACTIVIDAD 7 CIRCUITOS BÁSICOS DE CONMUTACIÓN USANDO INTERRUPTORES Y PULSADORES Los circuitos eléctricos son controlados mediante interruptores. Todos usamos los interruptores diariamente para
ÁLGEBRA BOOLEANA. INTRODUCCIÓN AL ÁLGEBRA DE BOOLE
ÁLGEBRA BOOLEANA. INTRODUCCIÓN AL ÁLGEBRA DE BOOLE En 1854, George Boole publicó un libro titulado Investigación sobre las leyes del pensamiento, formulando un método simbólico para el estudio de las relaciones
3-Formas Canónicas. 3: Canónicas 1
3-Formas Canónicas 3.1 Expresiones canónicas: mintérminos y maxtérminos 3.2 Expansión a las formas canónicas 3.3 Síntesis de las formas canónicas 3.4 Diseño lógico y simplificación 3: Canónicas 1 Expresiones
Lógica Digital - Circuitos Combinatorios
Lógica Digital - Circuitos Combinatorios Expositor: Esteban Pontnau Primer Cuatrimestre de 2012 Departamento de Computación, FCEyN,Universidad de Buenos Aires. 3 de abril de 2012 Objetivos de la clase
Circuitos Combinatorios
Circuitos Combinatorios Expositor: Esteban Pontnau Autor: Luis Agustín Nieto Primer Cuatrimestre de 2011 Departamento de Computación, FCEyN,Universidad de Buenos Aires. 5 de abril de 2011 Objetivos de
Tema 5. Electrónica digital
Víctor M. Acosta Guerrero Profesor de Tecnología Tema 5. Electrónica digital. 1. INTRODUCCIÓN. Antes de comenzar el tema es importante que sepamos distinguir entre señales analógicas y señales digitales.
TEMA PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS.
PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS. ÍNDICE.- INTRODUCCIÓN... 2.- ELECTRÓNICA DIGITAL... 3.. SISTEMAS DE NUMERACIÓN... 3.2. SEÑAL DIGITAL BINARIA... 3.3. SISTEMAS
PROBLEMAS DE ELECTRÓNICA DIGITAL. Simplificación por Karnaugh: CIRCUITO LÓGICO:
PROBLEMAS DE ELECTRÓNICA DIGITAL.- Un contactor R para el accionamiento de un motor eléctrico, está gobernado por la acción combinada de tres finales de carrera A, B y C. Para que el motor pueda funcionar,
PROBLEMAS DE ELECTRÓNICA DIGITAL
PROBLEMAS DE ELECTRÓNICA DIGITAL.- Un contactor R para el accionamiento de un motor eléctrico, está gobernado por la acción combinada de tres finales de carrera A, B y C. Para que el motor pueda funcionar,
MANUAL DE FUNCIONAMIENTO DE LOS SEMAFOROS IWIX
MANUAL DE FUNCIONAMIENTO DE LOS SEMAFOROS IWIX Características principales Los semáforos con IWIX fueron diseñados para una gran variedad de aplicaciones. Fácil de instalar y versátil en su configuración.
Titulación: Grado en Ingeniería Informática Asignatura: Fundamentos de Computadores
Titulación: Grado en Ingeniería Informática Asignatura: Fundamentos de Computadores Bloque : Sistemas combinacionales Tema 4: Algebra de Boole y funciones lógicas Pablo Huerta Pellitero ÍNDICE Bibliografía
IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES
IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES SIMPLIFICACIÓN DE FUNCIONES LÓGICAS Para implementar mediante un circuito digital formado por puertas lógicas una función lógica el primer paso consiste en realizar
EIE 446 - SISTEMAS DIGITALES Tema 4: Algebra de Boole y Simplificación Lógica. Nombre del curso: Sistemas Digitales Nombre del docente: Héctor Vargas
EIE 446 - SISTEMAS DIGITALES Tema 4: Algebra de Boole y Simplificación Lógica Nombre del curso: Sistemas Digitales Nombre del docente: Héctor Vargas OBJETIVOS DE LA UNIDAD Aplicar las leyes y reglas básicas
Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...
Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,
1 of 18 10/25/2011 6:42 AM
Prof. Anneliesse SánchezDepartamento de MatemáticasUniversidad de Puerto Rico en AreciboEn esta sección discutiremos Expresiones algebraicas y polinomios. Discutiremos los siguientes tópicos: Introducción
Circuitos lógicos combinacionales. Tema 6
Circuitos lógicos combinacionales Tema 6 Qué sabrás al final del capítulo? Implementar funciones con dos niveles de puertas lógicas AND/OR OR/AND NAND NOR Analizar sistemas combinacionales, obteniendo
Bloque IV: Electrónica digital
Bloque IV: Electrónica digital.introducción Una señal analógica es aquella que puede tomar infinitos valores para representar la información. En cambio en una señal digital se utiliza sólo un número finito
MÉTODOS DE RESOLUCIÓN DE CIRCUITOS
MÉTODOS DE RESOLUCIÓN DE CIRCUITOS Un circuito eléctrico está formado por elementos activos (generadores) y pasivos (resistencias, condensadores, y bobinas). En muchas ocasiones estos elementos forman
Sabes cómo simplificar una expresión con fracciones utilizando propiedades? Echa un vistazo a este dilema.
Materia: Matemática de Octavo Tema: Propiedades de la Adición y la Multiplicación en Q Sabes cómo simplificar una expresión con fracciones utilizando propiedades? Echa un vistazo a este dilema. Para simplificar
CAPITULO 2. ELEMENTOS Y OPERACIONES DE LAS EXPRESIONES ALGEBRAICAS. Cuando nos encontramos con dos o más términos algebraicos en un
CAPITULO 2. ELEMENTOS Y OPERACIONES DE LAS EXPRESIONES ALGEBRAICAS. Cuando nos encontramos con dos o más términos algebraicos en un conjunto relacionado, los matemáticos dicen que tratamos con una expresión
Puertas Lógicas. Contenidos. 1. Puertas lógicas básicas. Introducción.
1. Puertas lógicas básicas. Introducción. Las puertas lógicas son circuitos electrónicos capaces de realizar operaciones lógicas básicas. Por ejemplo, para realizar la operación producto utilizamos un
Matemáticas Básicas para Computación
Matemáticas Básicas para Computación MATEMÁTICAS BÁSICAS PARA COMPUTACIÓN 1 Sesión No. 6 Nombre: Álgebra Booleana Objetivo Durante la sesión el participante identificará las principales características
Sistemas de Ecuaciones y Matrices
Sistemas de Ecuaciones y Matrices 0.1 Sistemas de ecuaciones Consideremos las gráficas de dos funciones f y g como en la figura siguiente: P Q y = fx y = gx En la práctica, en ocasiones hay que encontrar
COMPUERTAS LÓGICAS SEPA CUALES SON Y COMO SE COMPORTAN LAS DISTINTAS. Principal Documentos Proyectos Productos Links Contacto [[EN CONSTRUCCION ]]
[[EN CONSTRUCCION ]] Principal Documentos Proyectos Productos Links Contacto Compuertas lógicas. SEPA CUALES SON Y COMO SE COMPORTAN LAS DISTINTAS COMPUERTAS LÓGICAS INTRODUCCIÓN: Dentro de la electrónica
Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)
Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:
03. Introducción a los circuitos lógicos
03. Introducción a los circuitos lógicos 1. LÓGICA DE PROPOSICIONES...2 PROPOSICIÓN...2 CONECTORES U OPERADORES LÓGICOS...2 Tablas de...2 Tautología...2 Contradicción...2 2. ÁLGEBRA DE BOOLE...3 AXIOMAS
NOT. Ejemplo: Circuito C1
Métodos de diseño de circuitos digitales Sistemas combinacionales En un circuito combinacional los valores de las salidas dependen únicamente de los valores que tienen las entradas en el presente. Se construen
Prácticas de electrónica básica para el área de Tecnología en Educación Secundaria. Curso para profesores.
Prácticas de electrónica básica para el área de Tecnología en Educación Secundaria. Curso para profesores. CEP de Albacete. Ponente: Jorge Muñoz Rodenas febrero de 2007 1 ELECTRONICA BASICA PARA PROFESORES
Álgebra Booleana circuitos lógicos
Álgebra Booleana y circuitos lógicos OBJETIVO GENERAL Teniendo en cuenta que los circuitos digitales o lógicos operan de forma binaria, emplear el álgebra booleana como fundamento teórico para el análisis,
Suma Resta Multiplica. División Alg. Boole Tbla Verdad Circuitos Karnaugh
Funciones Lógicas 2009-20102010 Sistemas de Numeración 1 Suma Algebra de Boole: Desarrollada en 1947 por George Boole y se usa para resolver problemas lógico-resolutivos. Son las matemáticas de los sistemas
Cuando p(a) = 0 decimos que el valor a, que hemos sustituido, es una raíz del polinomio.
Regla de Ruffini Teorema del resto Polinomios y fracciones algebraicas Dividir un polinomio por -a Regla de Ruffini Factorización de polinomios Divisibilidad de polinomios Fracciones algebraicas Operaciones
Prácticas Presenciales
PRÁCTICAS PRESENCIALES ELECTRÓNICA DIGITAL Prácticas Presenciales Electrónica Digital Área: Electrónica LUGAR DE CELEBRACIÓN Instalaciones de Fundación San Valero, en c/ Violeta Parra 9 50015 Zaragoza
DISEÑO Y SIMPLIFICACIÓN DE CIRCUITOS LÓGICOS
>PROGRAMA DE INGENIERIA DE SISTEMAS UNIVERSIDAD DEL QUINDÍO < 1 DISEÑO Y SIMPLIFICACIÓN DE CIRCUITOS LÓGICOS Cesar Velásquez Celis, Cristian Camilo Peña Guevara, Neidy Yised Carvajal Londoño. Programa
VALOR ABSOLUTO. Definición.- El valor absoluto de un número real, x, se define como:
VALOR ABSOLUTO Cualquier número a tiene su representación en la recta real. El valor absoluto de un número representa la distancia del punto a al origen. Observe en el dibujo que la distancia del al origen
Organización del Computador 1 Lógica Digital 1: álgebra de Boole y
Introducción Circuitos Bloques Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires
