VIII. MOMENTOS ESTÁTICOS
|
|
|
- Veronica Venegas Villalobos
- hace 9 años
- Vistas:
Transcripción
1 VIII. MOMENTOS ESTÁTICOS El momento estático es la suma de los productos de cada elemento de un cuerpo por su distancia a un eje. Ha momentos estáticos del peso, de la masa, del volumen de los cuerpos, de áreas de líneas. Se llaman momentos por su semejana con los momentos de las fueras, que se obtienen mediante el producto de una fuera por la distancia de su línea de acción a un cierto eje tienden a lograr que el cuerpo gire. Pero los momento estáticos no producen ninguna tendencia al giro, por eso son estáticos. Se llaman también momentos de primer orden. Aunque se trata de un concepto meramente matemático, sin ninguna referencia física, nos servirán para obtener lugares reales, como el centro de gravedad el centro de masa de un cuerpo, así como los centroides de volumen, de área de línea. Peso de un cuerpo La fuera con que la Tierra atrae a un cuerpo se llama peso. Aunque la hemos venido considerando como una fuera concentrada, realmente no lo es, el peso de un costal de mananas, por ejemplo, es la suma de los pesos de cada manana. Pensemos en un menhir o en una gran piedra cualquiera ( 1 ). Su peso es la suma de los pesos de cada una de sus partículas. Todos esos pesos constituen un sistema de fueras paralelas. Para determinar su resultante emplearemos las dos ecuaciones siguientes: de donde que, para este caso particular, se convierten en Esta última integral es el momento estático del peso con respecto al eje de las es, que se suele simboliar así:
2 Y el momento estático del peso respecto al eje de las equis es Puesto que los cuerpos tienen tres dimensiones, es más frecuente trabajar con los momentos estáticos del peso de un cuerpo, no respecto a ejes, sino respecto a planos; o sea Como las coordenadas, pueden ser positivas, negativas o nulas, los momentos estáticos también pueden resultar positivos, negativos o nulos. Los momentos estáticos de un cuerpo, respecto a un plano de simetría son nulos, puesto que el momento de un lado del plano es igual al del otro lado, pero de sentido contrario. Dicho de otra manera, el centro de gravedad de un cuerpo se encuentra en el plano de simetría, si el cuerpo lo tiene. Y se hallará también en el eje o en el punto de simetría, si eiste. Centro de gravedad Con los cocientes de los anteriores momentos estáticos entre el peso del cuerpo se obtienen tres coordenadas de un punto contenido siempre es decir, independientemente de la colocación del cuerpo en la línea de acción del peso. Ese punto se llama centro de gravedad: El centro de gravedad, es pues, la posición del peso de un cuerpo. Centro de masa Así como hablamos de momentos estáticos del peso, podemos pensar en los momentos estáticos de la masa de un cuerpo: 109
3 Y el punto cuas coordenadas sean será el centro de la masa del cuerpo. Fácilmente se puede observar que, como el peso es igual al producto de la masa por la aceleración de la gravedad, es decir, P = mg, también dp = g dm. Y si el valor de la gravedad es el mismo para todas las partículas del cuerpo, el centro de masa el centro de gravedad coinciden. Si un cuerpo es homogéneo, es decir, que en cualquiera de sus partes la raón de la masa al volumen es igual, la posición de los centros de gravedad de masa dependen sólo del volumen. El punto cuas coordenadas son los cocientes de los momentos estáticos del volumen entre el volumen, (/ dv/v, dv/v, dv/v) es el centroide del volumen coincide con los dos centros mencionados. Centroides de algunos volúmenes Puesto que los momentos estáticos con respecto a planos, en particular los de volumen, son la suma de los productos de cada parte por su distancia al plano, el de un cuerpo compuesto se obtiene sumando los momentos estáticos de cada parte. Si dividimos el resultado de esa suma entre el volumen de todo el cuerpo obtenemos la distancia del plano al centroide. Ilustraremos esto con el siguiente ejemplo. 2 cm Ejemplo. El cuerpo que se muestra en la figura es homogéneo. Determine las coordenadas de su centro de gravedad. 20 cm 12 cm 30 cm 2 cm Como en este caso, por la homogeneidad del cuerpo por sus limitadas dimensiones tanto el centro de masa como el centro de gravedad el centroide del volumen son el mismo punto, nos limitaremos a obtener este último. Observamos, en primer lugar, que ha un plano paralelo al que es de simetría, pues corta en dos partes iguales al cuerpo cua ecuación es = 15. Por tanto, la abscisa del centro de gravedad es 15 cm. Podemos descomponer el cuerpo en dos prismas rectangulares, uno de cm, otro de 2 18 por 30 cm. Como cada uno de ellos admite tres planos de simetría. Sabemos que sus respectivos centros de gravedad están en (15, 6, 1) (15, 1,11) [cm]. Podríamos calcular los momentos estáticos respecto a los planos, sumarlos,, al dividirlos entre el peso total, hallar la posición del centro de gravedad del peso. Pero para facilitar el trabajo haremos la siguiente tabla. 110
4 Parte V i i i ivi ivi Como = B V /V = B V /V, entonces = 540/180 = 3, = 1260/180 = 7. Por tanto, las coordenadas buscadas son G(15, 3, 7)[cm]. Centroide del cono Colocaremos un cono cua base tiene un radio cua altura es h con el vértice en el origen de un sistema de referencia con su eje de figura coincidiendo con el eje de las cotas, como se muestra en la figura. Descompondremos el cono en volúmenes cuos centroide sepamos en donde se hallan, de modo que podamos calcular sus momentos estáticos con respeto al plano, sumándolo, obtener el del cono. En realidad se trata de elegir un elemento diferencial del volumen que nos permita realiar esa suma. h Un elemento diferencial idóneo es un cilindro cua base sea paralela al plano horiontal cuo espesor sea infinitamente pequeño. El volumen de este elemento es dv = r 2 d. Y el volumen del cono será V = r 2 d = r 2 d. Es fácil establecer una relación entre r para poder integrar: por semejana de triángulos, r/ = /h, o sea, r = (/h). El volumen es, por tanto, V = ( 2 /h 2 ) 2 d. Los límites de la integral son 0 h, por lo cual resulta V = 2 /3. r d Su momento estático se calcula fácilmente, pues es db V = dv. Con las mismas sustituciones que empleamos para obtener el volumen, llegamos a B V = ( 2 /h 2 ) 3 d. Y, puesto que lo límites son nuevamente 0 h, B V = 2 h 2 /4. Dividiendo este momento estático entre el volumen, encontramos la cota del centroide: o sea, el centroide del volumen del cono se encuentra a un cuarto de su altura, desde la base. 111
5 Centroide de un hemisferio Para hallar la posición del centroide de un hemisferio de radio, se puede seguir un procedimiento mu similar al que utiliamos para la determinación de la ubicación del centride del cono. El elemento diferencial que elegiremos es nuevamente un cilindro de radio r, paralelo al plano, a una distancia de dicho plano: dv = r 2 d. Para poder integrar con respecto a la variable, podemos recurrir al teorema de Pitágoras para establecer la relación 2 = r ; de donde r 2 = 2 2. El lector podrá por su cuenta realiar las integrales correspondientes para llegar a encontrar que r r d al dividir el momento estático entre el volumen, llegar a la posición buscada: Centroides de algunas áreas Limitaremos la determinación de las posiciones de los centroides de superficies a las más usuales, que son el triángulo el sector circular. Centroide del triángulo Para hallar el lugar que ocupa el centroide del triángulo, o baricentro, como lo llamaban los antiguos, podemos recurrir a vario procedimientos, el más conocido es traar las medianas del triángulo determinar su unto de concurrencia. En realidad bastaría con dibujar dos medianas, es decir dos líneas que pasen por el centro de dos lados cualesquiera por sus vértices opuestos: en la intersección se halla el centroide. No obstante, este dato resulta poco práctico en la resolución de problemas usuales de ingeniería. En el capítulo correspondiente a resultantes de fueras paralelas, dedicamos un apartado a las fueras distribuidas, hallamos que la línea de acción de la resultante de un sistema de cargas representado mediante un triángulo pasa por un punto situado a la tercera parte de la altura a partir de la base. De modo que no necesitamos ninguna otra demostración para saber que el centroide de un triángulo tiene esa posición: h G h/3 112
6 basta conocer dos de las alturas para determinar completamente las coordenadas de dicho punto Centroide de un sector circular Estudiaremos un sector circular de radio comprendido en un ángulo 2 elegiremos un eje de las equis sobre su eje de simetría, de modo que su centroide se encuentre en él, es decir Y = 0. dθ ϴ G ds da Como elemento diferencial tomaremos un sector circular de radio, inclinado un ángulo comprendido en un ángulo d, como se muestra en la figura. Asimilaremos tal sector a un triángulo cua altura sea cua base ds. Por tanto Como tenemos que integrar con respecto a, tengamos en cuenta que, como todo ángulo se mide dividiendo el arco entre el radio, d = ds/, o sea que ds = d. Podemos escribir e integrando desde hasta es igual a la de abajo o, mejor, desde 0 hasta 2 (pues el área arriba del eje de las equis Calcularemos ahora el momento estático: Como el momento del área sobre el eje de las equis es igual al del área bajo el eje 113
7 Dos vectores circulares de especial interés son el semicírculo el cuadrante de círculo. Para el primero, es igual a /2 su seno es 1; por tanto Si el semicírculo se le quita el cuadrante inferior, la distancia del centroide del que queda al eje de las es no cambia. Por tanto, las coordenadas del centroide de un cuadrante son: G G Ejemplo. Determine las coordenadas del centroide del área compuesta que se muestra en la figura. 18 cm 6 cm 12 cm Descompondremos el área en tres superficies: un rectángulo de 186 cm, un triángulo de 18 cm de altura por 6 de base, un cuadrante de círculo de 6 cm de radio Parte A i i i i A i i A i
8 Lo que hemos dicho acerca de los momentos estáticos con respecto a los ejes cartesianos, se puede etrapolar sin ninguna dificultad a referirlos a los planos cartesianos. De forma que Ejemplo. Diga cuáles son las tres coordenadas del área compuesta que se representa en la figura Para determinar esas coordenadas, utiliaremos los momentos estáticos del área, descompuesto en partes, respecto a los planos cartesianos Parte A i i i i i A i i A i i A i
9 Con lo que hemos estudiado en este capítulo, podemos también determinar los centros de gravedad de masa de cuerpos no homogéneos, como el que se presenta en el siguiente ejemplo. 30 mm 30 mm Ejemplo. La figura representa la sección transversal de una barra de 50 cm de largo, fabricada con aluminio (1) acero (2) cuos pesos específicos son g/cm 2, respectivamente. Determine la posición del centro de gravedad de la barra. 30 mm (2) (1) 60 mm 20 mm 20 mm Como el plano paralelo al que pasa a 25 cm del origen es plano de simetría,. Para hallar las otras dos coordenadas, emplearemos los momentos estáticos de área, dándoles cierto peso. Descompondremos en tres partes: un área semielíptica de aluminio, una rectangular negativa de aluminio, más otra rectangular de acero. 50 cm Aunque podríamos recurrir a las tablas de los tetos para conocer la posición del centroide de un área semielíptica, la buscaremos mediante integración. *Además, el plano también es de simetría; o sea que =0. da De la ecuación de la elipse 60 d Y el momento estático será 116
10 Entonces Parte A i i ia i i i i A i Por lo tanto, las coordenadas del centro de gravedad son Teorema de Pappus-Guldinus Una aplicación interesante práctica de los momentos estáticos se presenta con el teorema de Papo, un griego del siglo tercero de nuestra era, que formalió Guldin en el s. XVI. Como este último latinió ambos nombre, los teoremas siguen conociéndose como de Pappus-Guldinus ( 2 ). Así como el volumen de un cilindro de un prima, o de cualquier cuerpo de sección transversal constante, puede obtenerse multiplicando el área de la base por la longitud del cuerpo, el teorema de Pappus-Guldinus demuestra que el volumen de un cuerpo engendrado al hacer girar una superficie alrededor de un eje se puede calcular mediante el producto del área generatri multiplicada por la longitud que recorre su centroide. Tomemos una superficie cualquiera de tamaño A, cuo centroide es el punto G, como se muestra en la figura. Escogeremos un área diferencial separada una distancia del eje de las equis. Al girar dicha superficie alrededor del eje equis, el área diferencial da generará un volumen igual a dicha área multiplicada por la longitud que recorre: dv = l da, pero tal longitud en 2. El volumen del cuerpo engendrado lo podemos obtener integrando: G da en donde la última integral es el momento estático del área generatri con respecto al eje de las equis. Por tanto 117
11 pero es la longitud que recorre el centroide del área al girar una revolución. Por tanto, QED El teorema se puede epresar como sigue: el volumen de un sólido de revolución es igual al producto del área generatri por la distancia que recorre su centroide. Ejemplo. Encuentre la fórmula del volumen del cono, empleando el teorema de Pappus- Guldinus. G h /3 Ejemplo. La figura representa la sección transversal de un anillo de 4 in de diámetro. Calcule su volumen
12 Corte A A Ejemplo. Se desea calcular el volumen de concreto que se necesita para la construcción de la cortina de la presa cuas planta sección transversal se muestran en las figuras. Cuál es ese volumen? C 60 A A 200 m 70 m 80 m 80 m Investigaremos la posición del centroide de la sección transversal. Calcularemos solo la abscisa, pues nos interesa su distancia al centro C. Parte A i i i A i m O El radio de la traectoria del centroide es la longitud que recorre es la seta parte de la circunferencia NOTAS DEL CAPÍTULO VIII ( 1 ) ( 2 ) En realidad son dos los teoremas que llevan este nombre. El primero, que no se estudiará aquí, desmuestra que el áre de una superficie de revolución es igual al producto de la longitud de la línea generatri por la distancia que recorre su centroide. 119
VII. MOMENTOS ESTÁTICOS
VII. MOMENTOS ESTÁTICOS El momento estático es la suma de los productos de cada elemento de un cuerpo por su distancia a un eje. Ha momentos estáticos del peso, de la masa, del volumen de los cuerpos,
VIII. MOMENTOS DE INERCIA
VIII. MOMENTOS DE INERCIA Recordemos que el momento estático es la suma de los productos de cada elemento de un cuerpo por su distancia a un eje. El momento de inercia, es cambio es la suma de los productos
INTEGRALES TRIPLES. 46. Dada la integral la integral de todas las formas posibles. f(x, y, z) dzdydx, dibujar la región de integración y escribir
INTEGALES TIPLES. 46. Dada la integral la integral de todas las formas posibles. f(,, ) ddd, dibujar la región de integración escribir Teniendo en cuenta la gráfica adjunta, si D 1, D 2 D 3 son las proecciones
Aplicaciones de las integrales dobles
Aplicaciones de las integrales dobles Las integrales dobles tienen multiples aplicaciones en física en geometría. A continuación damos una relación de alguna de ellas.. El área de una región plana R en
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 25
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 5 La Trigonometría es el estudio de la relación entre las medidas de los lados y los ángulos del triángulo. Ángulos En este
SÓLIDOS Y RAZONES DE SEMEJANZA 11.1.1 11.1.3
Capítulo 11 SÓLIDOS Y RAZONES DE SEMEJANZA 11.1.1 11.1. En este capítulo, los alumnos analizarán las figuras tridimensionales, que se conocen como sólidos. Revisarán cómo calcular el área de superficie
Ix ʹ = 8 mb 2, I. c) El momento de inercia respecto de un eje perpendicular al plano de la figura y que pase por una de las masas (eje z ʹ ) será:
CALCULO DE MOMENTOS DE INECIA Se unen cuatro partículas de masa m mediante varillas sin masa, formando un rectángulo de lados a b. El sistema gira alrededor de un eje en el plano de la figura que pasa
[email protected]
Titulo: CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE. Año escolar: Estática - Ingeniería Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo
Ángulos. Semejanza. ABE ˆ, ACE ˆ o ADE ˆ son ángulos inscritos en la. n 2 180º. En la circunferencia:
GEOMETRÍA Ángulos En la circunferencia: ABE ˆ, ACE ˆ o ADE ˆ son ángulos inscritos en la circunferencia y son todos iguales. AOE ˆ es el ángulo central correspondiente y su medida es dos veces la medida
VIII. MOMENTOS DE INERCIA
VIII. MOMENTOS DE INECIA ecordemos que el momento estático es la suma de los productos de cada elemento de un cuerpo por su distancia a un eje. El momento de inercia, en cambio es la suma de los productos
1 Calcula en la siguiente figura el elemento que falta: 2 Calcula en la siguiente figura el elemento que falta:
1 Calcula en la siguiente figura el elemento que falta: Calcula en la siguiente figura el elemento que falta: Calcula el valor de la diagonal de un ortoedro de aristas cm, 4 cm y 5 cm. 4 Comprueba la fórmula
Trigonometría y problemas métricos
Trigonometría y problemas métricos 1) En un triángulo rectángulo, los catetos miden 6 y 8 centímetros. Calcula la medida de la altura sobre la hipotenusa y la distancia desde su pie hasta los extremos.
CAPÍTULO III MOMENTO DE INERCIA EN ÁREAS PLANAS. Este capítulo comprende diversas propiedades geométricas de secciones (para casos
CAPÍTULO III MOMENTO DE INERCIA EN ÁREAS PLANAS Este capítulo comprende diversas propiedades geométricas de secciones (para casos prácticos, secciones de vigas) siendo la más importante el momento de inercia.
GEOMETRÍA ANALÍTICA EN EL PLANO
GEOMETRÍA ANALÍTICA EN EL PLANO Coordenadas cartesianas Sistema de ejes Cartesianos: Dicho nombre se debe a Descartes, el cual tuvo la idea de expresar un objeto geométrico como un punto o una recta, mediante
LA RECTA. Ax By C 0. y y m x x. y mx b. Geometría Analítica 2 ECUACIÓN GENERAL. Teorema: ECUACIÓN PUNTO - PENDIENTE .
LA RECTA En geometría definimos a la recta como la sucesión infinita de puntos uno a continuación de otro en la misma dirección. En el plano cartesiano, la recta es el lugar geométrico de todos los puntos
Clasificación de triángulos: Un triángulo es un polígono de tres lados. Un triángulo está determinado por:
Un triángulo es un polígono de tres lados. Un triángulo está determinado por: 1. Tres segmentos de recta que se denominan lados. 2. Tres puntos no alineados que se llaman vértices. Los vértices se escriben
LA FUNCIÓN LINEAL: Ecuaciones y aplicaciones de la línea recta.
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: GEOMETRÍA DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA
Decimos que la superficie esférica es el conjunto de los puntos del espacio tridimensional que equidistan de un punto fijo llamado centro.
8 LAS SUPERFICES COMO LUGARES GEOMÉTRICOS Como hemos dicho en la página del presente capítulo, los planos, la superficie esférica, los cilindros los conos pueden tratarse con relativa facilidad en el espacio
Universidad Icesi Departamento de Matemáticas y Estadística
Universidad Icesi Departamento de Matemáticas y Estadística Solución del examen final del curso Cálculo de una variable Grupo: Once Período: Inicial del año Prof: Rubén D. Nieto C. PUNTO. (x ) sen(x )
Unidad didáctica 3. Cálculo de superficies y volúmenes
Unidad didáctica. Cálculo de superficies y volúmenes.1 Cálculo de superficies. En el presente apartado se estudiarán las superficies, perímetros y relaciones geométricas más importantes de las principales
Trigonometría, figuras planas
El polígono Un polígono es una figura plana limitada por tres o más segmentos. El perímetro de un polígono es igual a la suma de las longitudes de sus lados. El perímetro de una circunferencia se llama
VOLUMENES DE SÓLIDOS DE REVOLUCION
OLUMENES DE SÓLIDOS DE REOLUCION Los sólidos de revolución son sólidos que se generan al girar una región plana alrededor de un eje. Por ejemplo: el cono es un sólido que resulta al girar un triángulo
1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto).
1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto). 6.- Espacio: Conjunto de puntos con tres dimensiones: largo, ancho y alto. Es infinito, sin límites. 2.- Recta:
Desarrollo de Poliedros Regulares: Generalidades. Ejercicios Resueltos. Ejercicio 1 Ejercicio 2 Ejercicio 3 Ejercicio 4 Ejercicio 5
DESARROLLO DE POLIEDROS REGULARES UNIDAD IV: DESARROLLO DE SÓLIDOS En esta unidad se dibujarán las superficies de poliedros y cuerpos redondos modelos. Los temas de esta unidad son: sobre un plano para
rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:
Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián
Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas II.- Factorización y Operaciones con las Fracciones III.- Funciones y Relaciones
Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas 1.- Adición y sustracción 2.- Multiplicación 3.- División 4.- Productos especiales 5.- Triángulo de Pascal II.- Factorización y Operaciones
rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:
Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián
Conceptos básicos de Geometría
Conceptos básicos de geometría La geometría trata de la medición y de las propiedades de puntos, líneas, ángulos, planos y sólidos, así como de las relaciones que guardan entre sí. A continuación veremos
O -2-1 1 2 X -1- -2- de coordenadas, y representamos los números sobre cada eje, eligiendo en ambos ejes la misma unidad, como muestra la figura.
MATEMÁTICA I Capítulo 1 GEOMETRÍA Plano coordenado Para identificar cada punto del plano con un par ordenado de números, trazamos dos rectas perpendiculares que llamaremos eje y eje y, que se cortan en
11 Cuerpos geométricos
89485 _ 0369-0418.qxd 1/9/07 15:06 Página 369 Cuerpos geométricos INTRODUCCIÓN Los poliedros, sus elementos y tipos ya son conocidos por los alumnos del curso anterior. Descubrimos y reconocemos de nuevo
EJERCICIOS Nº 10: GEOMETRIA ANALITICA. se extiende hacia cada extremo en una longitud igual a su longitud original. Halle las coordenadas de
EJERCICIOS Nº 1: GEOMETRIA ANALITICA 1) Determine x si el punto A (x,3) equidista de B ( 3, ) y de C (7,4) Respuesta ) Determine los puntos de trisección del segmento de recta AB donde A( 6, 9), B(6,9)
ÁREAS DE CUERPOS GEOMÉTRICOS Poliedros. Para calcular el área de un poliedro calculamos el área de cada una de sus caras y las sumamos.
TEMA 9: ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS POLIEDROS REGULARES Un poliedro se llama regular cunado cumple las dos condiciones siguientes: Sus caras son polígonos regulares idénticos. En cada vértice
SUBRAYE LA RESPUESTA CORRECTA EN CADA PREGUNTA.
CUADERNILLO DE GEOMETRIA I.- SUBRAYE LA RESPUESTA CORRECTA EN CADA PREGUNTA. 1.- SON LOS TRIÁNGULOS QUE TIENEN TODOS LOS ÁNGULOS IGUALES. A) EQUILÁTERO B) ACUTÁNGULO C) ISÓSCELES D) ESCALENO E) RECTÁNGULO
UNIDAD 10. FIGURAS PLANAS: POLÍGONOS CIRCUNFERENCIA Y CÍRCULO
UNIDAD 10. FIGURAS PLANAS: POLÍGONOS CIRCUNFERENCIA Y CÍRCULO 1. POLÍGONOS: DEFINÍCIÓN, ELEMENTOS Y CLASIFICACIÓN. 2. POLÍGONOS REGULARES E IRREGULARES. 3. TRIÁNGULOS Y CUADRILÁTEROS: CLASIFICACIÓN. 4.
Área de paralelogramos, triángulos y trapecios (páginas 314 318)
NOMRE FECHA PERÍODO Área de paralelogramos, triángulos y trapecios (páginas 34 38) Cualquier lado de un paralelogramo o triángulo puede usarse como base. La altitud de un paralelogramo es un segmento de
COLEGIO TIRSO DE MOLINA DEPARTAMENTO DE DIBUJO TÉCNICO CURSO 2010-11 DIBUJO TÉCNICO II
DIBUJO TÉCNICO II TEMA 2: PROPORCIONALIDAD Y SEMEJANZA Media proporcional Teoremas del Cateto y la Altura Figuras equivalentes Figuras semejantes y sus diferencias con las homotéticas Razón de semejanza
7.1 RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO
Tema 7: Trigonometría Matemáticas B 4º ESO TEMA 7 TRIGONOMETRÍA 7.0 UNIDADES DE MEDIDAS DE ÁNGULOS 4º 7.0. GRADOS SEXAGESIMALES Grados, minutos y segundos : grado 60 minutos, minuto 60 segundos 4º 7.0.
UNIDAD I. ÁNGULOS, TRIÁNGILOS, POLÍGONOS Y CIRCUNFERENCIA. Tema. Triángulos
UNIDAD I. ÁNGULOS, TRIÁNGILOS, POLÍGONOS Y CIRCUNFERENCIA Tema. Triángulos TRIÁNGULOS Así como nuestro alrededor está lleno de objetos que nos ejemplifican claramente el concepto de ángulo, también existen
Unidad 2: Resolución de triángulos
Ejercicio 1 Unidad : Resolución de triángulos En las siguientes figuras, calcula las medidas de los segmentos desconocidos indicados por letras (ambos triángulos son rectángulos en A): cm 16'5 7'5 cm a
Perímetro de un polígono regular: Si la longitud de un lado es y hay cantidad de lados en un polígono regular entonces el perímetro es.
Materia: Matemática de Séptimo Tema: Área de Polígonos Qué pasa si te piden que encuentres la distancia del Pentágono en Arlington, VA? El Pentágono, que también alberga el Departamento de Defensa de EE.UU.,
RAZONES TRIGONOMÉTRICAS
RAZONES TRIGONOMÉTRICAS.- PRIMERAS DEFINICIONES Se denomina ángulo en el plano a la porción de plano comprendida entre dos semirrectas con un origen común denominado vértice. Ángulo central es el ángulo
f (x) (1+[f (x)] 2 ) 3 2 κ(x) =
MATEMÁTICAS II - EXAMEN PRIMER PARCIAL - 4/11/11 Grado: Ing. Electrónica Rob. y Mec. Ing. Energía Ing. Organización Ind. Nombre y Apellidos: Ejercicio 1. La curvatura de una función f en un punto x viene
Apuntes Trigonometría. 4º ESO.
Apuntes Trigonometría. 4º ESO. Conceptos previos: Notación: En un triángulo, los vértices se denotan con letras mayúsculas (A, B y C). Los lados se denotan con la letra minúscula del vértice opuesto al
AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS
AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS Figura geométrica Consiste de una línea o de un conjunto de líneas que representarán un objeto dado. Polígono Es una poligonal cerrada (el origen del primer
Nº caras. Nº vértices
Tipo De Caras (Ángulo Interior) Triángulo Equilátero (60º) Cuadrado (90º) Pentágono (108º) Hexágono (10º) Nº caras por vértice Suma de los ángulos de cada vértice Nº caras Nº vértices Nº aristas C + V
Las Figuras Planas. Vértice. Ángulo. Diagonal. Lado. Los polígonos. El Polígono. CEPA Carmen Conde Abellán Matemáticas II
Las Figuras Planas Melilla Los polígonos Te has fijado alguna vez en el metro que usan los carpinteros? Está formado por segmentos de madera que se pliegan con facilidad. Este instrumento tiene forma de
Aplicaciones de la integral
CAPÍTULO 1 Aplicaciones de la integral 3.6 uerza y presión de un fluido Cuando en un fluido contenido por un recipiente se encuentra un cuerpo sumergido, este experimenta una fuerza, perpendicular a cualquiera
13 LONGITUDES Y ÁREAS
EJERCICIOS PROPUESTOS 1.1 Calcula el perímetro de las siguientes figuras., cm cm cm a) p,5 8 5 1 b) p 9 cm 1. Halla el perímetro de estas figuras. a) Un cuadrado de 6 centímetros de lado. b) Un triángulo
Tema 10. Geometría plana
Tema 10. Geometría plana Contenido 1. Relaciones angulares... 2 1.1. Ángulos en una circunferencia... 2 1.2. Ángulos opuestos por el vértice... 3 1.3. Ángulos formados por lados paralelos y perpendiculares...
MATEMÁTICAS 1º DE ESO
MATEMÁTICAS 1º DE ESO LOE TEMA XII: POLIEDROS Y CUERPOS DE REDONDOS Poliedros. o Elementos de un poliedro y desarrollo plano. Prismas. o Elementos y tipos de prismas. Pirámides. o Elementos y tipos de
Hoja de problemas nº 7. Introducción a la Geometría
Hoja de problemas nº 7 Introducción a la Geometría 1. Un rectángulo tiene de área 135 u 2 a. Si sus lados miden números enteros, averigua cuáles pueden ser sus dimensiones. b. Cortamos los vértices como
8.- GEOMETRÍA ANÁLITICA
8.- GEOMETRÍA ANÁLITICA 1.- PROBLEMAS EN EL PLANO 1. Dados los puntos A = (1, 2), B = (-1, 3), C = (3, 4) y D = (1, 0) halla las coordenadas de los vectores AB, BC, CD, DA y AC. Solución: AB = (-2, 1),
UNIDAD X - GEOMETRIA. Ejercitación
UNIDAD X - GEOMETRIA Programa Analítico Segmentos. Operaciones con segmentos. Ángulos. Clasificación de los ángulos: Complementarios, suplementarios, adyacentes, alternos-internos, opuestos por el vértice.
Al representar estos datos obtenemos una curva:
Pág. 1 18 Cuando de una goma de 10 cm se cuelgan pesos de 1, 2, 3, 4 y 5, esta se estira hasta 15, 21, 28, 36 y 45 cm, respectivamente. Representa la gráfica F-Dl y explica si la goma serviría para hacer
4. GEOMETRÍA // 4.4. ÁREAS Y VOLÚMENES.
4. GEOMETRÍA // 4.4. ÁREAS Y VOLÚMENES. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS. 4.4.1. Áreas de polígonos. El área de un triángulo es Área(ABC) = 1 2 ch = 1 cb sin α 2 Si el triángulo
MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares.
ESTUDIO ANALÍTICO DE LA LÍNEA RECTA Y APLICACIONES SEMESTRE II VERSIÓN 03 FECHA: Septiembre 29 de 2011 MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA LOGROS: 1. Hallar la dirección, la
PERÍMETROS Y ÁREAS DE FIGURAS PLANAS UNIDADE 13 1º ESO Halla la superficie y el perímetro del recinto marrón:
PERÍMETROS Y ÁREAS DE FIGURAS PLANAS UNIDADE 13 1º ESO Halla la superficie y el perímetro del recinto marrón: Calcula el perímetro y el área de esta figura: Calcula el perímetro y el área de esta figura:
CAPÍTULO. 1 Conceptos básicos
CAPÍTULO 1 Conceptos básicos 1.4.2 Curva solución de un PVI Como comentamos al hablar sobre las soluciones generales particulares de una ED, ocurre que las soluciones generales contienen una o más constantes
3. Funciones y gráficas
Componente: Procesos físicos. Funciones gráficas.1 Sistemas coordenados En la maoría de estudios es necesario efectuar medidas relacionadas con los factores que intervienen en un fenómeno. Los datos que
ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250)
Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico Departamento de Matemática Aplicada ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Semestre 1-2011 Mayo 2011 Álgebra Lineal y Geometría
EJERCICIOS PROPUESTOS
EJERCICIOS PROPUESTOS 1) En cada ejercicio hallar la ecuación de la circunferencia que cumple: 1) El radio es igual a 6 y las coordenadas de su centro son ( 1, 2). 2) Su centro es el origen de coordenadas
Figuras Planas. 100 Ejercicios para practicar con soluciones. 1 Comprueba si los siguientes ángulos son complementarios: a) 72 + 35.
Figuras Planas. 100 Ejercicios para practicar con soluciones 1 Comprueba si los siguientes ángulos son complementarios: a) 7º y 35 b) 6º y 64º a) 7 + 35 = 107 90 No son complementarios. b) 6 + 64 = 90
CALCULO DIFERENCIAL E INTEGRAL II. dy 2
CALCULO DIFERENCIAL E INTEGRAL II TEMA Nº 10 (Última modificación 8-7-015) ECUACIONES DIFERENCIALES En muchos problemas físicos, geométricos o puramente matemáticos, se trata de hallar una función = F()
UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA
UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA AÑO 014 CURSO PREPARATORIO DE INGENIERÍA CPI-014 TRASLACIÓN Y/O
Facultad de Ciencias Curso 2010-2011 Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO
SOLUCIONES PROLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO. Dos conductores rectilíneos, paralelos mu largos transportan corrientes de sentidos contrarios e iguales a,5 A. Los conductores son perpendiculares
RAZONES TRIGONOMÉTRICAS
RAZONES TRIGONOMÉTRICAS Razones trigonométricas de los ángulos de un triángulo rectángulo eran esas relaciones entre los lados de dicho triángulo rectángulo. Seno: Se define el seno del ángulo como el
Definición de vectores
Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen O también denominado Punto de aplicación. Es el punto exacto sobre
LA ECUACIÓN DE UN CÍRCULO 10.1.1 10.1.2
Capítulo 10 L ECUCIÓN DE UN CÍRCUL 10.1.1 10.1.2 Los alumnos han calculado las circunferencias áreas de círculos, de partes de los círculos, han usado las propiedades de los círculos en problemas de aplicación
APUNTES DE MATEMÁTICAS 1º BACHILLERATO TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS
APUNTES DE MATEMÁTICAS TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS º BACHILLERATO ÍNDICE. ECUACIONES DE LA RECTA EN EL PLANO.... 4.. SISTEMAS DE REFERENCIA... 4.. COORDENADAS DE UN PUNTO... 4.3. COORDENADAS
Rotaciones alrededor de los ejes cartesianos
Sólido de revolución Un sólido de revolución es un cuerpo que puede obtenerse mediante una operación geométrica de rotación de una superficie plana alrededor de una recta que se contenida en su mismo plano.
VECTORES EN EL ESPACIO
VECTORES EN EL ESPACIO Página 133 REFLEXIONA Y RESUELVE Relaciones trigonométricas en el triángulo Halla el área de este paralelogramo en función del ángulo a: cm a cm Área = sen a = 40 sen a cm Halla
ÁNGULOS EN POLÍGONOS. Ejercicio nº 1.- En los siguientes polígonos, halla la media del ángulo : a b c. Ejercicio nº 2.-
ÁNGULOS EN POLÍGONOS Ejercicio nº 1.- En los siguientes polígonos, halla la media del ángulo : a b c Ejercicio nº.- Halla el valor del ángulo en cada uno de estos casos: a b c Ejercicio nº 3.- Halla el
PROBLEMAS METRICOS. r 3
PROBLEMAS METRICOS 1. Hallar el área del triángulo de vértices A(1,1), B(2,3) y C(5,2). 2. Halla las ecuaciones de las bisectrices determinadas por las rectas y=3x e y=1/3 x. Comprueba que ambas bisectrices
Unidad didáctica sobre lugares geométricos y figuras planas
Marzo de 2008, Número 13, páginas 129-143 ISSN: 1815-0640 Coordinado por Agustín Carrillo de Albornoz Unidad didáctica sobre lugares geométricos y figuras planas Introducción En esta unidad didáctica se
SOLUCIONES MINIMOS 2º ESO TEMA 7 TEOREMA DE PITÁGORAS.SEMEJANZA
SOLUCIONES MINIMOS º ESO TEMA 7 TEOREMA DE PITÁGORAS.SEMEJANZA Ejercicio nº 1.- Los lados de un triángulo miden, respectivamente, 9 cm, 1 cm y 15 cm. Averigua si el triángulo es rectángulo. Según el teorema
1. Sea f una función definida en I = [1, 2] [1, 4] del siguiente modo: (x + y) 2, x y 2x, 0, en el resto.
La integral múltiple Problemas resueltos. Sea f una función definida en I [, ] [, 4] del siguiente modo: { (x + y), x y x, f(x, y), en el resto. Indique, mediante un dibujo, la porción A del rectángulo
A = 180-90 - 62 = 28. 8 GEOMETRíA DEL PLA 8 = 720-145 - 125-105 - 130-160 = 55. b) 720 = 90: ~ B- 110 + 8+ 150 + 90 = 440 + 28 ==> B = 140 C
8 GEOMETRíA DEL PLA EJERCCOS PROPUESTOS Calcula la medida del ángulo que falta en cada figura. a) b) a) En un triángulo, la suma de las medidas de sus ángulos es 180, A = 180-90 - 6 = 8 El ángulo mide
GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE
Ejercicios resueltos de la Recta 1. Hallar la ecuación de la recta que pasa por el punto (4. - 1) y tiene un ángulo de inclinación de 135º. SOLUCION: Graficamos La ecuación de la recta se busca por medio
Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA
Fuente: PreUniversitario Pedro de Valdivia Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación susceptible de llevar a la forma a + b + c = 0,
PROBLEMAS RESUELTOS GEOMETRÍA
PROBLEMAS RESUELTOS GEOMETRÍA ) Uno de los vértices de un paralelogramo ABCD es el punto A(, ) y dos de los lados están sobre las rectas r : 3x -y- =, s : 6x -7y- =. Calcula los demás vértices. Como el
PRUEBA GEOMETRÍA CDI 2015
Portal Fuenterrebollo PRUEBA GEOMETRÍA CDI 015 1. Una cruz compuesta por cinco cuadrados iguales está inscrita en un cuadrado. Si el área de la cruz es de 5 cm. Cuál es, en cm, el área del cuadrado? 5
Campo Eléctrico. Fig. 1. Problema número 1.
Campo Eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica
La circunferencia y el círculo
La circunferencia y el círculo Contenidos 1. La circunferencia. La circunferencia Elementos de la circunferencia. 2. Posiciones relativas. Punto y circunferencia. Recta y circunferencia. Dos circunferencias.
3. 2. Pendiente de una recta. Definición 3. 3.
3.. Pendiente de una recta. Definición 3. 3. Se llama Angulo de Inclinación α de una recta L, al que se forma entre el eje en su dirección positiva y la recta L, cuando esta se considera dirigida hacia
Clase 9 Sistemas de ecuaciones no lineales
Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2013 Problemas resueltos Problema 4: Considere el sistema de ecuaciones x y = 3 (x 2) 2 +y = 1 Problemas resueltos
Polígonos y circunferencia
826464 _ 055-070.qxd 12/2/07 09:22 Página 55 Polígonos y circunferencia INTRODUCCIÓN RESUMEN DE LA UNIDAD Nos introducimos en el estudio de los polígonos, recordando contenidos trabajados por los alumnos
1 Indica cuál es el valor de los ángulo Â, Bˆ. en las siguientes figuras: a) b) 2 Calcula los ángulos dados por letras:
1 Indica cuál es el valor de los ángulo Â, Bˆ y Ĉ en las siguientes figuras: a) b) Calcula los ángulos dados por letras: 3 Calcula el valor del ángulo A. 4 Dados los ángulos los mismos. a 45 0 30.y b 6
Portal Fuenterrebollo Olimpiada Matemáticas Nivel III (3º 4º ESO) OLIMPIADA MATEMÁTICAS NIVEL III (3º - 4º ESO)
Portal Fuenterrebollo Olimpiada Matemáticas Nivel III (º º ESO) OLIMPIADA MATEMÁTICAS NIVEL III (º - º ESO) 6. Encima de un triángulo equilátero de lado cm, colocamos un círculo de cm de radio, haciendo
RESOLUCIÓN DE PROBLEMAS MEDIANTE ECUACIONES. 2.- La suma de dos números es 15 y su producto es 26. Cuáles son dichos números?
RESOLUCIÓN DE PROBLEMAS MEDIANTE ECUACIONES 1.- El perímetro de un rectángulo es 4 cm y su área es 0 cm. Cuáles son sus dimensiones? Sea = altura ; y = base Como perímetro es 4: + y = 1 y = 1 Como el área
16. exacto 17. 18. coordenadas geográficas
15. Historia muda: 16. En la siguiente figura aparece la mitad y un cuarto de esfera de radio 4 cm. Calcule el valor exacto en términos de π,de las áreas totales y los dos volúmenes. 17. Se coloca una
TEMA 5 FUNCIONES ELEMENTALES II
Tema Funciones elementales Ejercicios resueltos Matemáticas B º ESO TEMA FUNCIONES ELEMENTALES II Rectas EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas
Los números complejos
7 Los números complejos 1. Forma binómica del número complejo Piensa y calcula Halla mentalmente cuántas soluciones tienen las siguientes ecuaciones en el conjunto de los números reales. a) x 2 25 = 0
- Ángulos positivos. Los que tienen el sentido de giro en contra de la agujas del reloj.
Ángulos. TRIGONOMETRÍA - Ángulo en el plano. Dos semirrectas con un origen común dividen al plano, en dos regiones, cada una de las cuales determina un ángulo ( α, β ). Al origen común se le llama vértice.
Created with novapdf Printer (www.novapdf.com)
GEOMETRÍA LONGITUDES Longitud de la circunferencia Es una línea curva cerrada que equidistan todos sus puntos del centro. Radio Centro: punto situado a igual distancia de todos los puntos de la circunferencia.
TRANSFORMACIONES DEL PLANO
PROBLEMAS DE GEOMETRÍA. TRANSFORMACIONES DEL PLANO 1. Un producto de dos simetrías axiales de ejes perpendiculares A qué transformación corresponde? En qué se transforma un segmento vertical? ( ) 2. Cuál
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría
TRIGONOMETRÍA La trigonometría se inicia estudiando la relación entre los ángulos y los lados de un triángulo, surgiendo las razones trigonométricas de un ángulo y a partir de ellas las funciones trigonométricas.
LECCIÓN 9 5 PROBLEMAS RESUELTOS
LECCIÓN 9 PROBLEMAS RESUELTOS Problema. El largo de un rectángulo mide 8 m y su ancho mide 2 m. Cuál de las siguientes es la mayor longitud de una varilla que cabe exactamente tanto en el largo como en
Aplicaciones de la derivada.
Aplicaciones de la derivada. (Máimos y mínimos) MAXIMOS Y MINIMOS RELATIVOS Entre los valores q puede tener una unción ( ), puede haber uno que sea el más grande y otro que sea el más pequeño. A estos
VOLUMENES. Los cuerpos en el espacio (sólidos) poseen tres dimensiones: largo, ancho y profundidad
VOLUMENES Los cuerpos en el espacio (sólidos) poseen tres dimensiones: largo, ancho y profundidad POLIEDROS Un poliedro es un cuerpo limitado por polígonos Los polígonos que limiten el poliedro, se llaman
FUNCIONES CUADRÁTICAS. PARÁBOLAS
FUNCIONES CUADRÁTICAS. PARÁBOLAS 1. FUNCIONES CUADRÁTICAS Representemos, en función de la longitud de la base (x), el área (y) de todos los rectángulos de perímetro 1 metros. De ellos, cuáles son las medidas
