Matriz asociada a una transformación lineal respecto a un par de bases

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Matriz asociada a una transformación lineal respecto a un par de bases"

Transcripción

1 Matriz asociada a una transformación lineal respecto a un par de bases Objetivos Definir la matriz asociada a una transformación lineal respecto a un par de bases y estudiar la representación matricial de transformaciones lineales que actúan en espacios vectoriales de dimensión finita Requisitos Transformación lineal, vector columna de coordenadas de un vector respecto a una base, multiplicación de matrices, multiplicación de una matriz por un vector 1 Definición (matriz asociada a una transformación lineal respecto a un par de bases Sean V, W espacios vectoriales de dimensiones finitas sobre un campo F, sea A (a 1,, a n una base de V, sea B (b 1,, b m una base de W, y sea T L(V, W La matriz de T en bases B y A (o matriz asociada con T respecto a las bases B y A, denotada por T B,A, se define como la matriz cuyas columnas son columnas de coordenadas de los vectores T (a 1,, T (a n en base B: En otras palabras, si entonces T B,A [ (T (a 1 B (T (a n B T (a j t i,j b i, T B,A [ t i,j m,n i,j1 Por definición T B,A M m,n (F, donde m dim(w, n dim(v Así que el número de renglones de la matriz T B,A es igual a la dimensión del contradominio de T, y el número de columnas es igual a la dimensión del dominio de T 2 Nota En el caso si W V y B A, en vez de T B,A se escribe T A 3 Ejemplo Sea A (a 1, a 2, a 3 una base de V y sea F (b 1, b 2 una base de W Supongamos que T (a 1 2b 1 3b 2, T (a 2 5b 2, T (a 3 b 1 + 4b 2 Entonces [ T B,A Matriz asociada a una transformación lineal, página 1 de 5

2 4 Teorema (representación matricial de una transformación lineal Sean V, W espacios vectoriales de dimensiones finitas sobre un campo F, sea A una base de V, sea B una base de W, sea T L(V, W Entonces para todo v V se tiene: (T v B T B,A v A Demostración Usemos las siguientes notaciones para las entradas de la matriz T B,A y para las coordenadas de v respecto a la base A: Esto es, T B,A [ t i,j m,n i,j1, v A [ x j n j1 T a j t i,j b i, v Calculemos T (v: ( T (v T x j a j (ii j1 (i ( t i,j x j j1 x j a j j1 x j T (a j j1 b i (iii j1 x j m (T B,A v A i b i En la igualdad (i usamos que T es lineal, en (ii usamos las propiedades de las operaciones en el campo F, en (iii usamos la definición del producto de una matriz por un vector Al fin tenemos que T (v (T B,A v A i b i, esto es, la i-ésima coordenada del vector T (v en base B es igual a la i-ésima componente del producto T B,A v A Por consecuencia, (T v B T B,A v A 5 Teorema (unicidad de la matriz que representa una transformación lineal respecto a un par de bases Sean V, W espacios vectoriales de dimensiones finitas sobre un campo F, sea A una base de V, sea B una base de W y sea T L(V, W Sea M M m,n (F tal que para todo v V se cumple la siguiente igualdad: Entonces T B,A M (T v B Mv A Demostración Aplicando la hipótesis del teorema y el resultado del teorema anterior (sobre la representación matricial de una transformación lineal, obtenemos que T B,A v A Mv A para todo v V Poniendo v a j con un j {1,, n} arbitrario, obtenemos que la j-ésima columna de T B,A es igual a la j-ésima columna de M Como j es arbitrario, de aquí sigue que T B,A M t i,j b i Matriz asociada a una transformación lineal, página 2 de 5

3 Ejemplos 6 Ejemplo (matriz de una transformación lineal en un espacio de polinomios Consideremos la transformación lineal T : P 2 (R P 2 (R definida por la siguiente regla de correspondencia: (T f(x (x 2 3x + 5f (x + (x 1f (x + 4f(x Construyamos la matriz de T en la base canónica E (e 0, e 1, e 2, donde e 0 (x 1, e 1 (x x, e 2 (x x 2 Primero calculamos los polinomios T (e j, j 0, 1, 2, y sus coordenadas en E: T (e e 0 + 0e 1 + 0e 2 ; T (e (x 1 + 4x 1 + 5x 1e 0 + 5e 1 + 0e 2 ; T (e 2 2(x 2 3x x(x 1 + 4x x + 8x 2 10e 0 8e 1 + 8e 2 Formamos la matriz T E de los vectores de coordenadas (T (e 0 E, (T (e 1 E, (T (e 2 E Respuesta: T E Para la comprobación, elijamos un polinomio g P 2 (R, g(x 3 4x+5x 2, y calculemos (T (g E de dos maneras diferentes Por un lado, (T (g(x (x 2 3x (x 1(10x 4 + 4(3 4x + 5x x + 40x 2, de allí (T (g E Por otro lado, podemos calculas (T (g E usando la fórmula de la representación matricial de T : (T (g E T E g E Matriz asociada a una transformación lineal, página 3 de 5

4 7 Ejemplo (matriz asociada a una transformación lineal que actúa en un espacio de matrices Consideremos el mapeo T : M 2 (R M 2 (R definido por la siguiente regla de correspondencia: T (X X [ Como el producto de matrices es aditivo y homogéneo respecto al primer argumento, T es una transformación lineal Hallemos la matriz asociada a T respecto a la base F (F 1, F 2, F 3, F 4 de M 2 (R, donde [ 1 0 F 1 E 1,1 0 0 [ 0 1 F 3 E 1,2 0 0 [ 0 0, F 2 E 2,1 1 0, F 4 E 2,2 [ Primero calculamos las imágenes de las matrices básicas F 1, F 2, F 3, F 4 bajo la transformación T y sus coordenadas respecto a la base F: [ [ [ T (F 1 3F F 2 5F 3 + 0F 4, [ [ [ T (F 2 0F F 2 + 0F 3 5F 4, [ [ [ T (F 3 4F F 2 + 7F 3 + 0F 4, [ [ [ T (F 4 0F F 2 + 0F 3 + 7F 4 De allí por definición, T F Para hacer la comprobación, elijamos una matriz [ 3 8 Y M (R y calculemos (T Y F de dos maneras diferentes Primero, aplicamos la definición de T : [ [ [ [ T (Y , Matriz asociada a una transformación lineal, página 4 de 5

5 Así que ( T (Y F Por otro lado, usemos la representación matricial de T : (T (Y F T F Y F Ejemplo (derivada de polinomios Matriz de la transformación D : P d (F P d 1 (F, Df : f 9 Ejemplo (operador de multiplicación por x en el espacio de polinomios Matriz del operador de multiplicación por x, T : P d (F P d+1 (F, (T f(x : xf(x 10 Ejemplo Matriz de rotación del plano por un ángulo α 11 Ejemplo (proyección del plano sobre una recta En el espacio V 2 (O se considera una base ( OA, OB y se define P como la proyección sobre la recta OA paralelamente a la recta OB Hay que calcular la matriz asociada a P respecto a la base ( OA, OB B A O M En el dibujo P ( OM OM M Matriz asociada a una transformación lineal, página 5 de 5

Cálculo de la matriz asociada a una transformación lineal (ejemplos)

Cálculo de la matriz asociada a una transformación lineal (ejemplos) Cálculo de la matriz asociada a una transformación lineal ejemplos Objetivos Estudiar con ejemplos cómo se calcula la matriz asociada a una transformación lineal Requisitos Transformación lineal, definición

Más detalles

Matriz asociada a una transformación lineal respecto a un par de bases

Matriz asociada a una transformación lineal respecto a un par de bases Matriz asociada a una transformación lineal respecto a un par de bases Ejercicios Objetivos Comprender cómo se describe una transformación lineal (que actúa en espacios vectoriales de dimensiones finitas)

Más detalles

Cambio de base. Objetivos. Estudiar la relación entre las coordenadas de un vector en dos bases.

Cambio de base. Objetivos. Estudiar la relación entre las coordenadas de un vector en dos bases. Cambio de base Objetivos Estudiar la relación entre las coordenadas de un vector en dos bases Requisitos Definición de una base, multiplicación de una matriz por un vector, delta de Kronecker Definición

Más detalles

Transformaciones lineales autoadjuntas (hermíticas)

Transformaciones lineales autoadjuntas (hermíticas) Transformaciones lineales autoadjuntas (hermíticas) Objetivos. Estudiar propiedades elementales de transformaciones lineales autoadjuntas. Demostrar que para toda transformación lineal autoadjunta en un

Más detalles

Definición de la matriz inversa

Definición de la matriz inversa Definición de la matriz inversa Ejercicios Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, matriz identidad, habilidades básicas de resolver sistemas de ecuaciones

Más detalles

Transformaciones lineales

Transformaciones lineales Transformaciones lineales Problemas teóricos En los problemas de esta lista se supone que V y W son espacios vectoriales sobre un campo F. Linealidad de una función 1. Varias maneras de escribir la propiedad

Más detalles

Algebra Lineal XI: Funciones y Transformaciones Lineales

Algebra Lineal XI: Funciones y Transformaciones Lineales Algebra Lineal XI: Funciones y Transformaciones Lineales José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email:

Más detalles

Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa

Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa Ecuaciones matriciales AX = B y XA = B Cálculo de la matriz inversa Objetivos Aprender a resolver ecuaciones matriciales de la forma AX = B y XA = B Aprender a calcular la matriz inversa con la eliminación

Más detalles

Transformaciones Lineales

Transformaciones Lineales Capítulo 10 Transformaciones Lineales EL tema central de este capítulo es el estudio de una clase de funciones especiales, llamadas transformaciones lineales Una de las características importantes de las

Más detalles

Subespacios de espacios vectoriales

Subespacios de espacios vectoriales Subespacios de espacios vectoriales Objetivos. Estudiar la definición, el criterio y algunos ejemplos de subespacios vectoriales. Muchos espacios vectoriales importantes (por ejemplo, espacio de soluciones

Más detalles

Transformación adjunta a una transformación lineal

Transformación adjunta a una transformación lineal Transformación adjunta a una transformación lineal Objetivos. Estudiar la construcción y las propiedades básicas de la transformación lineal adjunta. Requisitos. Transformación lineal, producto interno,

Más detalles

Subespacio generado por un conjunto finito de vectores (envoltura lineal de un conjunto finito de vectores)

Subespacio generado por un conjunto finito de vectores (envoltura lineal de un conjunto finito de vectores) Subespacio generado por un conjunto finito de vectores (envoltura lineal de un conjunto finito de vectores). Listas de vectores. Listas de vectores son personajes típicos de Álgebra Lineal. Una lista de

Más detalles

Operaciones con matrices

Operaciones con matrices Operaciones con matrices Problemas teóricos En todos los problemas de esta lista se supone que F es un campo (cuerpo). Si no conoce bien el concepto de campo, entonces puede pensar que F = R. Operaciones

Más detalles

Matrices triangulares y matrices ortogonales

Matrices triangulares y matrices ortogonales Matrices triangulares y matrices ortogonales Problemas para examen Matrices diagonales 1. Sea a R n. Se denota por diag(a) la matriz diagonal con entradas a 1,..., a n : diag(a) = [ a j δ j,k ] n j,k=1.

Más detalles

Coordenadas de funcionales lineales respecto la base dual (ejemplos)

Coordenadas de funcionales lineales respecto la base dual (ejemplos) Coordenadas de funcionales lineales respecto la base dual (ejemplos) Objetivos. Por medio de ejemplos aprender a calcular las coordenadas de funciones lineales respecto la base dual y acostumbrarse a la

Más detalles

Tema II: Aplicaciones lineales

Tema II: Aplicaciones lineales Definiciones y ejemplos. Matriz asociada a una aplicación lineal. Núcleo e imagen. Cambios de base. Espacio vectorial cociente.teoremas de isomorfía. El espacio de las aplicaciones lineales. Ejemplos de

Más detalles

Minimización de una forma cuadrática sobre una recta (ejercicios)

Minimización de una forma cuadrática sobre una recta (ejercicios) Minimización de una forma cuadrática sobre una recta (ejercicios) Objetivos. Dada una forma cuadrática positiva definida, encontrar su mínimo sobre una recta dada. Mostrar que en el punto mínimo el gradiente

Más detalles

Espacios vectoriales

Espacios vectoriales CAPíTULO 2 Espacios vectoriales 1. Definición de espacio vectorial Es frecuente representar ciertas magnitudes físicas (velocidad, fuerza,...) mediante segmentos orientados o vectores. Dados dos de tales

Más detalles

Transformaciones Lineales (MAT023)

Transformaciones Lineales (MAT023) Transformaciones Lineales (MAT03 Primer semestre de 01 1 Verónica Gruenberg Stern DEFINICION Sean U, V dos espacios vectoriales sobre un cuerpo K y sea T : U V una función. Diremos que T es una transformación

Más detalles

Matrices y sistemas de ecuaciones lineales

Matrices y sistemas de ecuaciones lineales Matrices y sistemas de ecuaciones lineales Problemas para examen Antes de resolver un problema en el caso general, se recomienda considerar casos particulares (por ejemplo, n = 4 y n = 50). En el caso

Más detalles

la matriz de cambio de base de B 1 en B 2. = M 1 B 2,B 1 [1 + x + x 2 ] B1 = M B2.

la matriz de cambio de base de B 1 en B 2. = M 1 B 2,B 1 [1 + x + x 2 ] B1 = M B2. Práctica 2. Álgebra Lineal. Cambio de Base.Transformaciones Lineales. Matrices asociadas a una transformación lineal. 2do año: Lic. en Matemática y Profesorado. 1. (a) Sean B 1 = {(1, 0), (1, 1)} y B 2

Más detalles

10. 1 Definición de espacio euclídeo.

10. 1 Definición de espacio euclídeo. ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA MATEMATICAS 10. ESPACIOS EUCLÍDEOS 10. 1 Definición de espacio euclídeo. Producto escalar

Más detalles

Bases y dimensión. Problemas teóricos. En todos los problemas se supone que V es un espacio vectorial sobre un campo F. p=1

Bases y dimensión. Problemas teóricos. En todos los problemas se supone que V es un espacio vectorial sobre un campo F. p=1 Bases y dimensión Problemas teóricos Bases de un espacio vectorial En todos los problemas se supone que V es un espacio vectorial sobre un campo F. Definición de base. Sean b 1,..., b n V. Se dice que

Más detalles

TRA NSFORMACIO N ES LIN EA LES

TRA NSFORMACIO N ES LIN EA LES TRA NSFORMACIO N ES LIN EA LES C o m p uta c i ó n G r á fica Tipos de Datos Geométricos T Un punto se puede representar con tres números reales [x,y,z] que llamaremos vector coordenado. Los números especifican

Más detalles

Mat r i z in v e r s a

Mat r i z in v e r s a Unidad 2 Método de GaUss Mat r i z in v e r s a M U lt i pli cat i va Objetivos: Al inalizar la unidad, el alumno: Representará un sistema de m ecuaciones lineales con n incógnitas mediante una matriz

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

40 Matemáticas I. Parte II. Álgebra Lineal. I.T.I. en Electricidad. Prof: José Antonio Abia Vian

40 Matemáticas I. Parte II. Álgebra Lineal. I.T.I. en Electricidad. Prof: José Antonio Abia Vian 40 Matemáticas I Parte II Álgebra Lineal 41 Matemáticas I : Álgebra Lineal Tema 4 Espacios vectoriales reales 4.1 Espacios vectoriales Definición 88.- Un espacio vectorial real V es un conjunto de elementos

Más detalles

58 7. ESPACIOS COCIENTE

58 7. ESPACIOS COCIENTE CAPíULO 7 Espacios cociente En esta sección estudiamos el cociente de un espacio vectorial por un subespacio W. Este cociente se define como el conjunto cociente de por una relación de equivalencia conveniente.

Más detalles

Ortogonalización de Gram Schmidt

Ortogonalización de Gram Schmidt Ortogonalización de Gram Schmidt Objetivos. Estudiar el proceso de ortogonalización de Gram Schmidt que permite construir de una lista arbitraria de vectores a,..., a m una lista ortogonal b,..., b m que

Más detalles

V 2 : vectores libres en el plano

V 2 : vectores libres en el plano V 2 : vectores libres en el plano Egor Maximenko ESFM del IPN 8 de agosto de 2009 Egor Maximenko (ESFM del IPN) V 2 : Vectores libres en el plano 8 de agosto de 2009 1 / 13 Contenido 1 Conjunto V 2 2 Operaciones

Más detalles

Algebra Lineal XVI: La matriz de una transformación lineal.

Algebra Lineal XVI: La matriz de una transformación lineal. Algebra Lineal XVI: La matriz de una transformación lineal José María Rico Martínez Departamento de Ingeniería Mecánica Divisi on de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email:

Más detalles

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250)

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico Departamento de Matemática Aplicada ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Semestre 1-2011 Mayo 2011 Álgebra Lineal y Geometría

Más detalles

Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen

Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen 1. Teorema de la representación matricial de una transformación

Más detalles

Tema 5: Sistemas de Ecuaciones Lineales

Tema 5: Sistemas de Ecuaciones Lineales Tema 5: Sistemas de Ecuaciones Lineales Eva Ascarza-Mondragón Helio Catalán-Mogorrón Manuel Vega-Gordillo Índice 1 Definición 3 2 Solución de un sistema de ecuaciones lineales 4 21 Tipos de sistemas ecuaciones

Más detalles

Álgebra lineal II Examen Parcial 1

Álgebra lineal II Examen Parcial 1 UNIVERSIDAD DE COSTA RICA ESCUELA DE MATEMATICA Álgebra lineal II Examen Parcial II Semestre 204 Nick Gill Instrucciones: Puede usar cualquier proposición de las lecciones, inclusive los ejercicios. Si

Más detalles

Definición y propiedades del determinante (repaso breve)

Definición y propiedades del determinante (repaso breve) Definición y propiedades del determinante (repaso breve Objetivos Repasar la definición del determinante (a través de permutaciones y sus propiedades básicas: determinante de la matriz transpuesta, determinante

Más detalles

Dependencia e independencia lineal

Dependencia e independencia lineal CAPíTULO 3 Dependencia e independencia lineal En este capítulo estudiaremos tres conceptos de gran importancia para el desarrollo del álgebra lineal: el concepto de conjunto generador, el concepto de conjunto

Más detalles

Operaciones lógicas principales: Negación, Conjunción y Disyunción

Operaciones lógicas principales: Negación, Conjunción y Disyunción Operaciones lógicas principales: Negación, Conjunción y Disyunción Definiciones informales. A es verdadera A es falsa A B es verdadera A es verdadera y B es verdadera A B es verdadera A es verdadera o

Más detalles

Determinantes. Problemas teóricos. i=1. 2. De la fórmula general (1) deduzca la fórmula para el determinante de orden 3.

Determinantes. Problemas teóricos. i=1. 2. De la fórmula general (1) deduzca la fórmula para el determinante de orden 3. Determinantes Problemas teóricos Adradezco por varios problemas e ideas a los profesores de la ESFM Myriam Rosalía Maldonado Ramírez y Eliseo Sarmiento Rosales y al estudiante de servicio social Sadi Manuel

Más detalles

Tema 3: Aplicaciones Lineales

Tema 3: Aplicaciones Lineales Tema 3: Aplicaciones Lineales José M. Salazar Noviembre de 2016 Tema 3: Aplicaciones Lineales Lección 4. Aplicaciones lineales. Índice 1 Aplicaciones lineales: definiciones y resultados principales Primeras

Más detalles

Derivadas Parciales y Derivadas Direccionales

Derivadas Parciales y Derivadas Direccionales Tema 3 Derivadas Parciales y Derivadas Direccionales En este tema y en el siguiente presentaremos los conceptos fundamentales del Cálculo Diferencial para funciones de varias variables. Comenzaremos con

Más detalles

Aplicaciones lineales

Aplicaciones lineales Aplicaciones lineales María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I M. Muñoz (U.P.C.T.) Aplicaciones lineales Matemáticas I 1 / 32 Contenidos 1 Definición y propiedades Definición de aplicación

Más detalles

Conjunto R n y operaciones lineales en R n

Conjunto R n y operaciones lineales en R n Conjunto R n y operaciones lineales en R n Objetivos. Definir el conjunto R n y operaciones lineales en R n, estudiar propiedades de las últimas. Requisitos. Conjunto de los números reales R, propiedades

Más detalles

Primer conocimiento con transformaciones lineales

Primer conocimiento con transformaciones lineales Primer conocimiento con transformaciones lineales Autores: scar García Hernández, Román Higuera García y Egor Maximenko La materia Álgebra II que empezamos a estudiar se podría llamar Álgebra Lineal, nivel

Más detalles

Sistemas de Ecuaciones y Matrices

Sistemas de Ecuaciones y Matrices Sistemas de Ecuaciones y Matrices 0.1 Sistemas de ecuaciones Consideremos las gráficas de dos funciones f y g como en la figura siguiente: P Q y = fx y = gx En la práctica, en ocasiones hay que encontrar

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

Tema 2: Espacios Vectoriales

Tema 2: Espacios Vectoriales Tema 2: Espacios Vectoriales José M. Salazar Octubre de 2016 Tema 2: Espacios Vectoriales Lección 2. Espacios vectoriales. Subespacios vectoriales. Bases. Lección 3. Coordenadas respecto de una base. Ecuaciones.

Más detalles

como el número real que resulta del producto matricial y se nota por:

como el número real que resulta del producto matricial y se nota por: Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,

Más detalles

No hay que romperse los cuernos, hay una columna de ceros, por lo tanto.. NO tiene rango 3.

No hay que romperse los cuernos, hay una columna de ceros, por lo tanto.. NO tiene rango 3. Problema 1. (4 puntos) Sea f: R R la aplicación lineal de R en R definida por: f(1,1,0) = (,, 0) f(1,0,1) = ( 3,0, 3) f(,,1) = (0,0,0) a) Demostrar que (1,1,0), (1,0,1), (,,1) son una base de R. b) Calcular

Más detalles

ALGEBRA LINEAL. 1. Sea V un espacio vectorial sobre F. Sean S, T y U subespacios de V tal que. { 0 i = 1,..., k si i > k. v i

ALGEBRA LINEAL. 1. Sea V un espacio vectorial sobre F. Sean S, T y U subespacios de V tal que. { 0 i = 1,..., k si i > k. v i ALGEBRA LINEAL 1 Sea V un espacio vectorial sobre F Sean S, T y U subespacios de V tal que i) S T = S U ii) S + T = S + U iii) T U Demuestre que T = U 2 Sea F = C y sea n un entero positivo Demuestre que

Más detalles

Álgebra Lineal. Tema 7. Forma normal de una transformación

Álgebra Lineal. Tema 7. Forma normal de una transformación Álgebra Lineal Tema 7. Forma normal de una transformación Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V

Más detalles

Aplicaciones Lineales. S1

Aplicaciones Lineales. S1 Aplicaciones Lineales. S1 Leandro Marín 6 de Noviembre de 2009 Definición Definición Sea K un cuerpo y sean V y W dos espacios vectoriales sobre K. Una aplicación lineal f : V W es una aplicación entre

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles

Transformaciones lineales Definición Ejemplos Propiedades

Transformaciones lineales Definición Ejemplos Propiedades Transformaciones lineales Definición Ejemplos Propiedades c Jana Rodriguez Hertz p. 1/1 transformaciones lineales Dados V y W e.v. sobre K, c Jana Rodriguez Hertz p. 2/1 transformaciones lineales Dados

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a

Más detalles

Intersección y suma de subespacios

Intersección y suma de subespacios Intersección y suma de subespacios Objetivos Demostrar que la intersección y la suma de dos subespacios de un espacio vectorial también son sus subespaicios Requisitos Espacio vectorial, subespacio vectorial

Más detalles

Matemática 2. Clase práctica de coordenadas y cambio de base

Matemática 2. Clase práctica de coordenadas y cambio de base atemática Clase práctica de coordenadas y cambio de base Nota iren este apunte por su cuenta y consulten las dudas que les surjan Ya pueden terminar la práctica Coordenadas en espacios vectoriales de dimensión

Más detalles

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II COLEGIO UNIVERSITARIO CARDENAL CISNEROS Libro de Ejercicios de Matemáticas Empresariales II Manuel León Navarro 2 Capítulo 1 Ejercicios lección 1 1. Sea el conjunto de las matrices cuadradas de orden 2

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales CAPíTULO 6 Sistemas de ecuaciones lineales 1 Rango de una matriz a 11 a 1n Sea A = M m n (K) El rango por filas de la matriz A es la dimensión del a m1 a mn subespacio vectorial de K n generado por sus

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291)

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) I. Combinación Lineal Definición: Sean v 1, v 2, v 3,, v n vectores en el espacio vectorial V. Entonces cualquier

Más detalles

Correspondencia entre vectores y columnas de sus coordenadas respecto a una base fija

Correspondencia entre vectores y columnas de sus coordenadas respecto a una base fija Correspondencia entre vectores y columnas de sus coordenadas respecto a una base fija Objetivos. Mostrar que la correspondencia entre vectores y columnas de sus coordenadas (respecto a una base fija) preserva

Más detalles

23/10/14. Algebra Matricial $ $ ' ' ' $ & & & # # I 3 I 2 = 1 0 $ DEFINICION DE MATRIZ 2.1 CONCEPTOS DE MATRICES CONCEPTOS DE MATRICES. $ n. ! a.

23/10/14. Algebra Matricial $ $ ' ' ' $ & & & # # I 3 I 2 = 1 0 $ DEFINICION DE MATRIZ 2.1 CONCEPTOS DE MATRICES CONCEPTOS DE MATRICES. $ n. ! a. /0/ Algebra Matricial. OPERACIONES DE DEFINICION DE MATRIZ Si A es una matriz de m x n (esto es una matriz con m filas y n columnas) la entrada escalar en la i-ésima fila y la j-ésima columna de A se denota

Más detalles

Álgebra Lineal. Departamento de Matemáticas Universidad de Los Andes. Primer Semestre de 2007

Álgebra Lineal. Departamento de Matemáticas Universidad de Los Andes. Primer Semestre de 2007 Álgebra Lineal Departamento de Matemáticas Universidad de Los Andes Primer Semestre de 2007 Universidad de Los Andes () Álgebra Lineal Primer Semestre de 2007 1 / 50 Texto guía: Universidad de Los Andes

Más detalles

Proyección ortogonal sobre un vector normalizado (ejercicios teóricos simples)

Proyección ortogonal sobre un vector normalizado (ejercicios teóricos simples) Proyección ortogonal sobre un vector normalizado (ejercicios teóricos simples) Objetivos Deducir fórmulas para la proyección ortogonal de un vector sobre el subespacio generado por un vector normalizado;

Más detalles

Algebra Lineal XI: Funciones y Transformaciones Lineales

Algebra Lineal XI: Funciones y Transformaciones Lineales Algebra Lineal XI: Funciones y Transformaciones Lineales José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email:

Más detalles

Anuladores. Objetivos. Definir el concepto de anuladores y estudiar sus propiedades principales.

Anuladores. Objetivos. Definir el concepto de anuladores y estudiar sus propiedades principales. Anuladores Objetivos. Definir el concepto de anuladores y estudiar sus propiedades principales. Requisitos. Espacio dual, espacio bidual, base dual.. Definición (anulador de un subconjunto de un espacio

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas real de con Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura real de con Índice real de con real de con.

Más detalles

Geometría afín y proyectiva, 2016 SEMANA 3

Geometría afín y proyectiva, 2016 SEMANA 3 Geometría afín y proyectiva, 2016 SEMANA 3 Sonia L. Rueda ETS Arquitectura. UPM September 20, 2016 Geometría afín y proyectiva 1. Álgebra Lineal 2. Geometría afín y eucĺıdea 3. Cónicas y cuádricas Álgebra

Más detalles

TEMA 4: Espacios y subespacios vectoriales

TEMA 4: Espacios y subespacios vectoriales TEMA 4: Espacios y subespacios vectoriales 1. Espacios vectoriales Sea K un cuerpo. Denominaremos a los elementos de K escalares. Definición 1. Un espacio vectorial sobre K es un conjunto V cuyos elementos

Más detalles

Definición de la matriz inversa

Definición de la matriz inversa Definición de la matriz inversa Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, habilidades básicas de resolver sistemas de ecuaciones Ejemplo El número real

Más detalles

a) Lo primero que hacemos es buscar las imágenes de los vectores de la base canónica: f(1,0,0) = (3, 5, 6) f(0,1,0) = ( 2, 3, 4) f(0,0,1) = (1, 2, 3)

a) Lo primero que hacemos es buscar las imágenes de los vectores de la base canónica: f(1,0,0) = (3, 5, 6) f(0,1,0) = ( 2, 3, 4) f(0,0,1) = (1, 2, 3) . Sea f: R 3 R 3 la aplicación lineal definida por las ecuaciones: f(x, y, z) = (3x y + z, 5x 3y + z, 6x 4y + 3z) a) Encontrar la matriz A de f en las bases canónicas. b) Es f biyectiva? Si lo es, encontrar

Más detalles

Topología de R n. Beatriz Porras

Topología de R n. Beatriz Porras Producto escalar, métrica y norma asociada. Topología de R n Beatriz Porras 1 Producto escalar, métrica y norma asociada Consideramos el espacio vectorial R n sobre el cuerpo R; escribimos los vectores

Más detalles

Composición de Aplicaciones. (c) 2012 Leandro Marin

Composición de Aplicaciones. (c) 2012 Leandro Marin 067.00 3 Composición de Aplicaciones 3 48700 670009 (c) 0 Leandro Marin . Aplicaciones Lineales y Matrices Una aplicación lineal f entre dos espacios vectoriales V y W es una forma de asignar a cada vector

Más detalles

Curso de Álgebra Lineal

Curso de Álgebra Lineal Curso de Álgebra Lineal 1. NÚMEROS COMPLEJOS 1.1 Definición, origen y operaciones fundamentales con números complejos Definición. Un número complejo, z, es una pareja ordenada (a, b) de números reales

Más detalles

ENDOMORFISMOS Y DIAGONALIZACIÓN.

ENDOMORFISMOS Y DIAGONALIZACIÓN. ENDOMORFISMOS Y DIAGONALIZACIÓN. En lo que resta de este tema, nos centraremos en un tipo especial de aplicaciones lineales: los endomorfismos. Definición: Endomorfismo. Se llama endomorfismo a una aplicación

Más detalles

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano.

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano. CAPÍTULO El plano vectorial Consideremos P como el plano intuitivo de puntos: A,,C..... El espacio vectorial de los vectores Definición. Vectores fijos Dado dos puntos cualesquiera A e del espacio nos

Más detalles

Algebra Lineal XVI: La matriz de una transformación lineal.

Algebra Lineal XVI: La matriz de una transformación lineal. Algebra Lineal XVI: La matriz de una transformación lineal José María Rico Martínez Departamento de Ingeniería Mecánica Divisi on de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email:

Más detalles

Espacios vectoriales con producto interior

Espacios vectoriales con producto interior Espacios vectoriales con producto interior Longitud, norma o módulo de vectores y distancias entre puntos Generalizando la fórmula pitagórica de la longitud de un vector de R 2 o de R 3, definimos la norma,

Más detalles

Aplicaciones lineales.

Aplicaciones lineales. Tema 4 Aplicaciones lineales. Definición 4. Sea f: V W una aplicación entre los espacios vectoriales reales V y W. Se dice que f es una aplicación lineal si: a f(u + v = f(u + f(v; u, v V, b f(ku = kf(u;

Más detalles

Sistemas de Ecuaciones Diferenciales

Sistemas de Ecuaciones Diferenciales Lección 8 Sistemas de ecuaciones diferenciales lineales 1 Sistemas de Ecuaciones Diferenciales Consideremos el sistema A + S X + S k 1 k 2 Inicialmente se añaden 2 moles de S y 1 mol de A d[a] dt = k 1

Más detalles

Diagonalización de matrices

Diagonalización de matrices Diagonalización de matrices María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I M. Muñoz (U.P.C.T.) Diagonalización de matrices Matemáticas I 1 / 22 Valores y vectores propios de una matriz Definición

Más detalles

Capítulo 7. Espacios vectoriales. 7.1 Definición y ejemplos

Capítulo 7. Espacios vectoriales. 7.1 Definición y ejemplos Capítulo Espacios vectoriales.1 Definición y ejemplos Un espacio vectorial sobre un cuerpo K (que supondremos conmutativo es un conjunto no vacío junto con 1. una operación interna, +, a la que llamaremos

Más detalles

Valores y Vectores Propios

Valores y Vectores Propios Valores y Vectores Propios Departamento de Matemáticas, CSI/ITESM de abril de 9 Índice 9.. Definiciones............................................... 9.. Determinación de los valores propios.................................

Más detalles

Determinantes. Profesores Omar Darío Saldarriaga Ortíz. Hernán Giraldo

Determinantes. Profesores Omar Darío Saldarriaga Ortíz. Hernán Giraldo Determinantes Profesores Omar Darío Saldarriaga Ortíz Iván Dario Gómez Hernán Giraldo 2009 Definición Sea A una matriz de tamaño m n, para 1 i m y 1 j n, definimos el ij-ésimo menor de A, al cual denotaremos

Más detalles

4. Aplicaciones: rango de una matriz y ecuaciones de un subespacio

4. Aplicaciones: rango de una matriz y ecuaciones de un subespacio TEMA 2 ESPACIOS VECTORIALES 35 4 Aplicaciones: rango de una matriz y ecuaciones de un subespacio Terminaremos este tema aprovechando la teoría de espacios vectoriales que hemos estudiado para obtener algunas

Más detalles

VECTORES vector Vector posición par ordenado A(a, b) representa geométricamente segmento de recta dirigido componentes del vector

VECTORES vector Vector posición par ordenado A(a, b) representa geométricamente segmento de recta dirigido componentes del vector VECTORES Un vector (Vector posición) en el plano es un par ordenado de números reales A(a, b). Se representa geométricamente por un segmento de recta dirigido, cuyo punto inicial es el origen del sistema

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 08-2 SEMANA 7: ESPACIOS VECTORIALES 3.5. Generadores de un espacio vectorial Sea V un espacio vectorial

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

TEMA 4 ESPACIOS VECTORIALES

TEMA 4 ESPACIOS VECTORIALES TEMA 4 ESPACIOS VECTORIALES Índice 4.1. Definición y propiedades.................. 101 4.1.1. Dependencia e independencia lineal....... 103 4.2. Subespacios vectoriales................... 105 4.2.1. Ecuaciones

Más detalles

Proyecciones. Producto escalar de vectores. Aplicaciones

Proyecciones. Producto escalar de vectores. Aplicaciones Proyecciones La proyección de un punto A sobre una recta r es el punto B donde la recta perpendicular a r que pasa por A corta a la recta r. Con un dibujo se entiende muy bien. La proyección de un segmento

Más detalles

Álgebra lineal II Examen Parcial 3

Álgebra lineal II Examen Parcial 3 UNIVERSIDAD DE COSTA RICA ESCUELA DE MATEMATICA Álgebra lineal II Examen Parcial II Semestre 04 Nick Gill Instrucciones: Puede usar cualesquiera de las proposiciones vistas en las lecciones incluidos los

Más detalles

Transformaciones lineales invertibles (no singulares)

Transformaciones lineales invertibles (no singulares) Transformaciones lineales invertibles (no singulares) Objetivos. Estudiar la definición y los criterios de invertibilidad de una transformación lineal. Requisitos. Funciones inyectivas, suprayectivas e

Más detalles

Matrices escalonadas y escalonadas reducidas

Matrices escalonadas y escalonadas reducidas Matrices escalonadas y escalonadas reducidas Objetivos. Estudiar las definiciones formales de matrices escalonadas y escalonadas reducidas. Comprender qué importancia tienen estas matrices para resolver

Más detalles

Sea V un conjunto no vacío (cuyos elementos se llamarán vectores) y sea K un cuerpo (cuyos elementos se llamarán escalares).

Sea V un conjunto no vacío (cuyos elementos se llamarán vectores) y sea K un cuerpo (cuyos elementos se llamarán escalares). Capítulo 6 Espacios Vectoriales 6.1 Definiciones Sea V un conjunto no vacío (cuyos elementos se llamarán vectores) y sea K un cuerpo (cuyos elementos se llamarán escalares). Definición 6.1.1 Se dice que

Más detalles

Transformaciones lineales y matrices

Transformaciones lineales y matrices CAPíTULO 5 Transformaciones lineales y matrices 1 Matriz asociada a una transformación lineal Supongamos que V y W son espacios vectoriales de dimensión finita y que T : V W es una transformación lineal

Más detalles

Transformaciones lineales

Transformaciones lineales CAPíTULO 4 Transformaciones lineales En este capítulo estudiamos las primeras propiedades de las transformaciones lineales entre espacios vectoriales. 1. Construcciones de transformaciones lineales Lema

Más detalles

Ba s e, d i M e n s i ó n y Mat r i z

Ba s e, d i M e n s i ó n y Mat r i z Unidad 4 Ba s e, d i M e n s i ó n y Mat r i z de transición Objetivos: Al inalizar la unidad, el alumno: Conocerá la deinición de base de un espacio vectorial Identiicará bases canónicas para algunos

Más detalles