Intersección y suma de subespacios
|
|
|
- Consuelo Martínez Belmonte
- hace 9 años
- Vistas:
Transcripción
1 Intersección y suma de subespacios Objetivos Demostrar que la intersección y la suma de dos subespacios de un espacio vectorial también son sus subespaicios Requisitos Espacio vectorial, subespacio vectorial Estamos suponiendo que V es un espacio vectorial sobre un campo F 1 Proposición (intersección de dos subespacios es un subespacio) Sean S 1 y S 2 subespacios de V Entonces S 1 S 2 también es un subespacio de V 2 Definición (suma de subespacios) Sea V un espacio vectorial sobre un campo F y sean S 1 y S 2 subespacios de V Entonces la suma de S 1 y S 2 se define mediante la fórmula: S 1 + S 2 := { v V : a S 1 b S 2 v = a + b } (1) Lo mismo también se escribe de manera más breve: S 1 + S 2 := { a + b: a S 1, b S 2 } (2) Hay que comprender que (1) es la definición verdadera que se puede usar en demostraciones, y (2) es solamente una forma breve de escribir (1) 3 Proposición (suma de dos subespacios es un subespacio) Sean S 1 y S 2 subespacios de V Entonces S 1 + S 2 también es un subespacio de V 4 Conjunto generador de la suma Sean S 1 y S 2 subespacios de V, generados por conjuntos finitos A y B: S 1 = l(a), S 2 = l(b) Entonces S 1 + S 2 = l(a B) 5 Ejercicio De un ejemplo de conjuntos finitos de vectores A, B R 3 (o A, B V 3 (O)) tales que l(a) l(b) l(a B) 6 Ejemplo (dos planos en el espacio V 3 (O)) En el espacio V 3 (O) consideremos dos planos Π 1 y Π 2 tales que O Π 1, O Π 2 y la intersección Π 1 Π 2 es una recta l 1 Entonces Π 1 y Π 2 son subespacios de V 3 (O) Más adelante demostraremos que su suma coincide con todo el espacio V 3 (O) Intersección y suma de subespacios, página 1 de 5
2 Ejemplos 7 Calcule S 1 S 2, donde S 1 y S 2 son los siguientes subespacios del espacio P(R): S 1 := l(5 + 3x + 2x 2, 3 + 2x + x 2 ), S 2 := { f P(R): f( 2) = 0 } Solución La forma general de los elementos de S 1 es f(x) = α(5 + 3x + 2x 2 ) + β(3 + 2x + x 2 ), donde α, β R Calculemos f( 2): f( 2) = α( ) + β( ) = 7α + 3β Para que f pertenezca a S 2, se debe cumplir la igualdad 7α + 3β = 0, de la cual β = 7 3 α Denotando α 3 por γ obtenemos α = 3γ, β = 7γ, y finalmente f(x) = 3γ(5 + 3x + 2x 2 ) 7γ(3 + 2x + x 2 ) = γ( 6 5x x 2 ) = γ(6 + 5x + x 2 ) Aquí γ puede ser cualquier número real S 1 S 2 = l(g), donde g(x) = 6 + 5x + x 2 Probemos que g S 2 : g( 2) = = 0 Intersección y suma de subespacios, página 2 de 5
3 8 Calcule S 1 S 2, donde S 1 y S 2 son los siguientes subespacios del espacio P(R): S 1 := l(2 + 2x + x 2, 5 x + 2x 2 ), S 2 := { f P(R): f (3) = 0 } Solución Los elementos del subespacio S 1 son polinomios de la forma f(x) = λ(2 + 2x + x 2 ) + µ(5 x + 2x 2 ), donde λ, µ R Calculemos f (x) y luego f (3): f (x) = λ(2 + 2x) + µ( 1 + 4x), f (3) = 8λ + 11µ Vemos que f pertenece a S 2 si, y sólo si, los coeficientes λ y µ están relacionados por 8λ + 11µ = 0 De aquí µ = 8 11 λ La forma general de los elementos de S 1 S 2 es f(x) = λ(2 + 2x + x 2 ) 8 11 λ(5 x + 2x2 ) = λ 11 ( x 5x2 ) = λ 11 (18 30x + 5x2 ), donde λ es un coeficiente real arbitrario, y por lo tanto λ también es un coeficiente real 11 arbitrario S 1 S 2 = l(g), donde g(x) = 18 30x + 5x 2 Probemos que g S 2 : g (x) = x, g (3) = = 0 Intersección y suma de subespacios, página 3 de 5
4 9 Calcule S 1 S 2, donde S 1 y S 2 son los siguientes subespacios del espacio M 2 (R): S 1 := l(a, B), S 2 = { X M 2 (R): tr(x) = 0 } ; [ 4 2 A = 7 6 [ 5 1, B = 9 10 Solución La forma general de los elementos de S 1 es donde λ, µ R Calculemos la traza de X: De aquí vemos que X S 2 si, y sólo si, X = λa + µb, tr(x) = λ tr(a) + µ tr(b) = 10λ 15µ 10λ 15µ = 0 Tratamos µ como una variable libre y despejamos λ: λ = 3µ 2 La forma general de los elementos de S 1 S 2 es X = 3 2 µa + µb = µ ( [ [ ) = µ 2 [ Comprobamos que C S 2 : S 1 S 2 = l(c), donde C = tr(c) = 2 2 = 0 [ Intersección y suma de subespacios, página 4 de 5
5 Ejercicios En cada uno de los siguientes ejemplos muestre que S 1 y S 2 son subespacios de V, halle S 1 S 2 y S 1 + S 2 y determine si V es la suma directa de S 1 y S 2 o no 10 V = R 2, S 1 = l(e 1 ) = { x R 2 : x 2 = 0 }, S 2 = l(e 2 ) = { x R 2 : x 1 = 0 } donde e 1, e 2 es la base canónica de R 2 11 Matrices triangulares superiores y triangulares inferiores V = M n (F), S 1 = ut n (F), S 2 = lt n (F) 12 Funciones continuas pares e impares V = C(R, R), S 1 y S 2 son subespacios de funciones pares e impares respectivamente: S 1 = {g C(R, R): g( x) = g(x) x R}, S 2 = {h C(R, R): h( x) = h(x) x R} 13 V = R 3, S 1 = {x R 3 : x 1 = 0}, S 2 = {x R 3 : x 2 = 0} 14 Observación sobre la unión de dos subespacios Por lo común, la unión de dos subespacios de un espacio vectorial V no es subespacio de V Por ejemplo, en el espacio real R 2 consideremos dos subespacios: S 1 = l(e 1 ) = { x R 2 : x 2 = 0 }, S 2 = l(e 2 ) = { x R 2 : x 1 = 0 } Entonces el conjunto S 1 S 2 no es cerrado bajo la adición y por lo tanto no es subespacio de R 2 15 Problema sobre la unión de dos subespacios Sean S 1 y S 2 dos subespacios de V tales que S 1 S 2 también es un subespacio de V Demuestre que S 1 V o S 2 V Intersección y suma de subespacios, página 5 de 5
520142: ALGEBRA y ALGEBRA LINEAL
520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición
Espacios Vectoriales
Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios
Conjunto R 3 y operaciones lineales en R 3
Conjunto R 3 y operaciones lineales en R 3 Objetivos. Definir el conjunto R 3 y operaciones lineales en R 3. Requisitos. Conjunto de los números reales R, propiedades de las operaciones aritméticas en
Espacios vectoriales
Espacios vectoriales Problemas teóricos Muchos de estos problemas me los han enseñado mis colegas: profesores Flor de María Correa Romero, Carlos Domínguez Albino, Sergio González Govea, Myriam Rosalía
EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES
EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que
Espacios vectoriales
Espacios vectoriales [Versión preliminar] Prof. Isabel Arratia Z. Algebra Lineal 1 En el estudio de las matrices y, en particular, de los sistemas de ecuaciones lineales realizamos sumas y multiplicación
Práctica 1. Espacios vectoriales
Práctica 1. Espacios vectoriales 1. Demuestre que R n (C n ) es un espacio vectorial sobre R (C) con la suma y el producto por un escalar usuales. Es C n un R-espacio vectorial con la suma y el producto
Trabajo Práctico N 5: ESPACIOS VECTORIALES
Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique
Tema 4: Aplicaciones lineales
Águeda Mata y Miguel Reyes, Dpto de Matemática Aplicada, FI-UPM 1 Tema 4: Aplicaciones lineales Ejercicios 1 Estudia la linealidad de las siguientes aplicaciones: (a) f : R R 3, definida por f(x, y) =
Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen
Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen 1. Teorema de la representación matricial de una transformación
Problemas de Espacios Vectoriales
Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial
Capítulo 7. Espacios vectoriales. 7.1 Definición y ejemplos
Capítulo Espacios vectoriales.1 Definición y ejemplos Un espacio vectorial sobre un cuerpo K (que supondremos conmutativo es un conjunto no vacío junto con 1. una operación interna, +, a la que llamaremos
un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:
CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse
Espacios vectoriales reales.
Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre
Construcción de bases en la suma y la intersección de subespacios (ejemplo)
Construcción de bases en la suma y la intersección de subespacios (ejemplo) Objetivos Aprender a construir bases en S + S y S S, donde S y S están dados como subespacios generados por ciertos vectores
Tema 2: Espacios Vectoriales
Tema 2: Espacios Vectoriales José M. Salazar Octubre de 2016 Tema 2: Espacios Vectoriales Lección 2. Espacios vectoriales. Subespacios vectoriales. Bases. Lección 3. Coordenadas respecto de una base. Ecuaciones.
Espacios vectoriales. Capítulo Espacios vectoriales y subespacios Preliminares
Capítulo 1 Espacios vectoriales En diversos conjuntos conocidos, por ejemplo los de vectores en el plano o en el espacio (R 2 y R 3 ), o también el de los polinomios (R[X]), sabemos sumar sus elementos
Proceso Selectivo para la XXII IMC, Bulgaria
Proceso Selectivo para la XXII IMC, Bulgaria Facultad de Ciencias UNAM Instituto de Matemáticas UNAM SUMEM Indicaciones Espera la indicación para voltear esta hoja. Mientras tanto, lee estas instrucciones
Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1
Espacios Vectoriales 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Espacios Vectoriales... 4 1.1 Definición de espacio vectorial... 4 1.2 Definición de subespacio vectorial...
Base y Dimensión de un Espacio Vectorial
Base y Dimensión de un Espacio Vectorial 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un
2.1. Estructura algebraica de espacio vectorial
Tema 2 Espacios vectoriales de dimensión finita 21 Estructura algebraica de espacio vectorial Los vectores libres en el plano son el sustento geométrico del concepto de espacio vectorial Se trata de segmentos
Espacios Vectoriales
Leandro Marín Octubre 2010 Índice Definición y Ejemplos Paramétricas vs. Impĺıcitas Bases y Coordenadas Para definir un espacio vectorial tenemos que empezar determinando un cuerpo sobre el que esté definido
Espacios Vectoriales, Valores y Vectores Propios
, Valores y Vectores Propios José Juan Rincón Pasaye, División de Estudios de Postgrado FIE-UMSNH Curso Propedéutico de Matemáticas para la Maestría en Ciencias opciones: Sistemas de Control y Sistemas
Tema 1: Espacios vectoriales
PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina
ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales
Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Sea (K, +,.) un cuerpo con característica 0. Podemos pensar K = Q, R o C. Si V es un conjunto cualquiera en el que
Problemas y Ejercicios Resueltos. Tema 2: Espacios vectoriales.
Problemas y Ejercicios Resueltos. Tema : Espacios vectoriales. Ejercicios 1.- Determinar el valor de x para que el vector (1, x, 5) R 3 pertenezca al subespacio < (1,, 3), (1, 1, 1) >. Solución. (1, x,
TEMA 8.- NORMAS DE MATRICES Y
Álgebra II: Tema 8. TEMA 8.- NORMAS DE MATRICES Y NúMERO DE CONDICIóN Índice. Introducción 2. Norma vectorial y norma matricial. 2 2.. Norma matricial inducida por normas vectoriales......... 4 2.2. Algunos
Matriz asociada a una transformación lineal respecto a un par de bases
Matriz asociada a una transformación lineal respecto a un par de bases Objetivos Definir la matriz asociada a una transformación lineal respecto a un par de bases y estudiar la representación matricial
ESPACIOS VECTORIALES
1. Introducción: 1.1 Grupo Abeliano 1. Cuerpo. Estructura de espacio vectorial 3. Propiedades 4. Subespacio vectorial 5. Combinación lineal de vectores 5.1 Propiedades 6. Dependencia e independencia lineal
Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21
Espacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Objetivos Al finalizar este tema tendrás que: Saber si unos vectores son independientes.
Teoría de la Probabilidad Tema 2: Teorema de Extensión
Teoría de la Probabilidad Tema 2: Teorema de Extensión Alberto Rodríguez Casal 25 de septiembre de 2015 Definición Una clase (no vacía) A de subconjuntos de Ω se dice que es un álgebra si A es cerrada
Tema 3: Espacios vectoriales
Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación
Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21
Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)
Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc.
Tema 1 Espacios Vectoriales 1.1 Introducción Estas notas están elaboradas pensando simplemente en facilitar al estudiante una guía para el estudio de la asignatura, y en consecuencia se caracterizan por
CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero
Fundamento Científico del Currículum de Matemáticas en Enseñanza Secundaria CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero ESPACIOS VECTORIALES DEFINICIÓN... 1 PROPIEDADES DE
Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )
Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder
Teoría Tema 6 Ecuaciones de la recta
página 1/14 Teoría Tema 6 Ecuaciones de la recta Índice de contenido Base canónica en dos dimensiones como sistema referencial...2 Ecuación vectorial de la recta...4 Ecuación paramétrica de la recta...6
IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]
MMAF: Espacios normados y espacios de Banach
MMAF: Espacios normados y espacios de Banach Licenciatura en Estadística R. Álvarez-Nodarse Universidad de Sevilla Curso 2011/2012 Espacios vectoriales Definición Sea V un conjunto de elementos sobre el
1 Espacios y subespacios vectoriales.
UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Espacios vectoriales y sistemas de ecuaciones 1 Espacios y subespacios vectoriales Definición 1 Sea V un conjunto
Subespacio generado por un conjunto finito de vectores (envoltura lineal de un conjunto finito de vectores)
Subespacio generado por un conjunto finito de vectores (envoltura lineal de un conjunto finito de vectores). Listas de vectores. Listas de vectores son personajes típicos de Álgebra Lineal. Una lista de
Ecuaciones de la recta en el espacio
Ecuaciones de la recta en el espacio Ecuación vectorial de la recta Sea P(x 1, y 1 ) es un punto de la recta r y uu su vector director, el vector PPXX tiene igual dirección que uu, luego es igual a uu
Álgebra Lineal IV: Espacios Vectoriales.
Álgebra Lineal IV: Espacios Vectoriales José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamancaugtomx
Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión.
Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión. Algebra I I Relación de problemas 3. Espacios vectoriales. 1.-Estudiar si los siguientes conjuntos forman o
es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no
El Plano y la Recta en el Espacio Matemática 4º Año Cód. 145-15 P r o f. M a r í a d e l L u j á n M a r t í n e z P r o f. J u a n C a r l o s B u e P r o f. M i r t a R o s i t o P r o f. V e r ó n i
3.1 El espacio afín R n
3. Geometría analítica 3.1 El espacio afín R n Consideremos el conjunto R n, formado por las listas ordenadas (x 1,...,x n ) de números reales. Convengamos en llamar puntos a los elementos de R n. Pero
Apéndice sobre ecuaciones diferenciales lineales
Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.
Rectas y Planos en el Espacio
Rectas y Planos en el Espacio Rectas y Planos en el Espacio Verónica Briceño V. septiembre 2012 Verónica Briceño V. () Rectas y Planos en el Espacio septiembre 2012 1 / 20 En esta Presentación... En esta
Límite superior y límite inferior de una sucesión
Límite superior y límite inferior de una sucesión Objetivos. Definir las nociones de los límites superior e inferior de una sucesión y estudiar sus propiedades básicas. Requisitos. Supremo e ínfimo de
Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291)
Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) I. Combinación Lineal Definición: Sean v 1, v 2, v 3,, v n vectores en el espacio vectorial V. Entonces cualquier
Tema 4.- Espacios vectoriales. Transformaciones lineales.
Ingenierías: Aeroespacial, Civil y Química Matemáticas I - Departamento de Matemática Aplicada II Escuela Superior de Ingenieros Universidad de Sevilla Tema 4- Espacios vectoriales Transformaciones lineales
4. Complementos sobre Problemas de Contorno para S.D.O. Lineales. 4. Complementos sobre Problemas de Contorno
para S.D.O. Lineales 4.1. Problemas de contorno para s.d.o. lineales. Teorema de alternativa 4.1. Problemas de contorno. Teorema de alternativa Fijemos A C 0 ([α, β]; L(R N )) y b C 0 ([α, β]; R N ), dos
Trabajo Práctico N 5: ESPACIOS VECTORIALES. Ejercicio 1:
6 Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio : Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique
Algebra Lineal y Geometría.
Algebra Lineal y Geometría. Unidad n 6: Subespacios Vectoriales. Algebra Lineal y Geometría Esp. Liliana Eva Mata 1 Contenidos. Subespacios Vectoriales. Operaciones con Subespacios: Intersección, unión,
Producto de matrices triangulares superiores
Producto de matrices triangulares superiores Ejercicios Objetivos Demostrar que el producto de dos matrices triangulares superiores es una matriz triangular superior Deducir una fórmula para las entradas
Ángel Montesdeoca Delgado. Geometría Afín y Euclídea
Ángel Montesdeoca Delgado Geometría Afín y Euclídea Departamento de Matemática Fundamental Universidad de La Laguna 2012 Geometría Afín y Euclídea Ángel Montesdeoca Delgado (Versión 2.1604241121 ) [email protected]
IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 opción A, modelo 3 Septiembre
IES Fco Ayala de Granada Septiembre de 015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 3 Septiembre 015 ax + b [ 5 puntos] Halla los valores a, b y c sabiendo que
Espacios vectoriales y aplicaciones lineales.
Práctica 2 Espacios vectoriales y aplicaciones lineales. Contenido: Localizar bases de espacios vectoriales. Suma directa. Bases y dimensiones. Cambio de base. Aplicaciones lineales. Matriz asociada en
Tema 4. Vectores en el espacio (Productos escalar, vectorial y mixto)
Matemáticas II (Bachillerato de Ciencias) Geometría del espacio: Vectores 75 Espacios vectoriales Tema 4 Vectores en el espacio (Productos escalar, vectorial y mixto) Definición de espacio vectorial Un
Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple
Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Estos apuntes están redactados por Maria de los Angeles Isidro Pérez y Egor Maximenko.
Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.
ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con
Espacios Vectoriales www.math.com.mx
Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel [email protected] MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................
I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1
PRODUCTO ESCALAR INTRODUCCIÓN El espacio vectorial de los vectores libres del plano se caracteriza por tener definidas dos operaciones: una interna, suma de vectores, y otra externa, producto de un número
. Universidad Tecnológica Nacional - Facultad Regional Rosario. Álgebra y Geometría Analítica EL PLANO
. Universidad Tecnológica Nacional - Facultad Regional Rosario Álgebra y Geometría Analítica EL PLANO Autores: Lic. Martha Fascella Ing. Ricardo F. Sagristá 0 Contenido EL PLANO... 3.- Definición del plano
ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano
ELEMENTOS DE GEOMETRÍA Eduardo P. Serrano Este Apunte de Clase está dirigido a los alumnos de la materia Elementos de Cálculo Numérico para Biólogos. Tiene por objeto exponer algunos conceptos básicos
Algebra lineal y conjuntos convexos
Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar
Tema I 1. EL CUERPO DE LOS REALES, EL CUERPO DE LOS COMPLEJOS
1 Tema I 1. EL CUERPO DE LOS REALES, EL CUERPO DE LOS COMPLEJOS 1.1 Los Números Naturales. Los números naturales aparecen por la necesidad que tiene el hombre (primitivo) tanto de contar como de ordenar
Introducción a los espacios vectoriales
1 / 64 Introducción a los espacios vectoriales Pablo Olaso Redondo Informática Universidad Francisco de Vitoria November 19, 2015 2 / 64 Espacios vectoriales 1 Las 10 propiedades de un espacio vectorial
Colegio Internacional Torrequebrada. Departamento de Matemáticas
Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene
ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE.
ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K (Q,
Demostraciones a Teoremas de Límites
Demostraciones a Teoremas de Límites Programa de Bachillerato.Universidad de Chile. Otoño, 009 En esta sección solo daremos los fundamentos teóricos que nos permiten resolver los problemas que se nos plantean,
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x
Resumen de Análisis Matemático IV
Resumen de Análisis Matemático IV 1. Funciones inversas e implícitas y extremos condicionados 1.1. Teorema de la función inversa Teorema de la función inversa: Sea A abierto de R n, f : A R n tal que f
Subespacios Vectoriales
Subespacios Vectoriales Prof. Apuntes del Postgrado en Ingeniería 31 Mayo 2008 Subespacio Definición de Subespacio y Ejemplos. Definición Sea H un subconjunto no vacio de un espacio vectorial V(K). Si
Terminaremos el capítulo con una breve referencia a la teoría de cardinales.
TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto
ÁLGEBRA LINEAL I Soluciones a la Práctica 6
ÁLGEBRA LINEAL I Soluciones a la Práctica 6 Aplicaciones lineales (Curso 2009 2010) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales, determinar cuáles son homomorfismos, monomorfismos,
Problemas métricos. 1. Problemas afines y problemas métricos
. Problemas afines y problemas métricos Al trabajar en el espacio (o análogamente en el plano) se nos pueden presentar dos tipos de problemas con los elementos habituales (puntos, rectas y planos): Problemas
Problemas de exámenes de Aplicaciones Lineales y Matrices
1 Problemas de exámenes de Aplicaciones Lineales y Matrices 1. Consideramos f End(R n ), que tiene matriz A respecto la base canónica. Cuál de las siguientes afirmaciones es incorrecta? a) Si v es un vector
Capítulo 1 Vectores. 26 Problemas de selección - página 13 (soluciones en la página 99)
Capítulo 1 Vectores 26 Problemas de selección - página 13 (soluciones en la página 99) 21 Problemas de desarrollo - página 22 (soluciones en la página 100) 11 1.A PROBLEMAS DE SELECCIÓN Sección 1.A Problemas
Construcción de bases en el núcleo e imagen de una transformación lineal
Construcción de bases en el núcleo e imagen de una transformación lineal Objetivos. Estudiar el algoritmo para construir una base del núcleo y una base de la imagen de una transformación lineal. Requisitos.
Estructuras Algebraicas
Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos
Ortogonalidad y mínimos cuadrados
Capítulo 7 Ortogonalidad y mínimos cuadrados 7.. Producto interno, longitud y ortogonalidad Definición 7.. Un producto interno en un espacio vectorial V es una función que asocia a cada par de vectores
Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR}
Subespacios Capítulo 1 Definición 1.1 Subespacio Sea H un subconjunto no vacio de un espacio vectorial V K. Si H es un espacio vectorial sobre K bajo las operaciones de suma y multiplicación por escalar
1. NÚMEROS PRIMOS Y COMPUESTOS.
. NÚMEROS PRIMOS Y COMPUESTOS. De acuerdo a las propiedades ya vistas de los divisores, sabemos que: todo natural no nulo es divisor de sí mismo es divisor de todo número natural. Ahora: el natural tiene
Forma polar de números complejos (repaso breve)
Forma polar de números complejos (repaso breve) Objetivos. pasar la forma polar de números complejos. quisitos. Números complejos, funciones trigonométricas, valor absoluto de números complejos, circunferencia
Resumen de Teoría de Matrices
Resumen de Teoría de Matrices Rubén Alexis Sáez Morcillo Ana Isabel Martínez Domínguez 1 de Octubre de 2004 1. Matrices. Generalidades. Definición 1.1. Se llama matriz de orden m n sobre un cuerpo K a
Cálculo de la matriz asociada a una transformación lineal (ejemplos)
Cálculo de la matriz asociada a una transformación lineal ejemplos Objetivos Estudiar con ejemplos cómo se calcula la matriz asociada a una transformación lineal Requisitos Transformación lineal, definición
EJERCICIO. Dadas las rectas y
EJERCICIO Dadas las rectas x4 y1 z y z 8 r : y s: x1 1 3 se pide: a) Comprueba que las rectas r y s se cruzan. b) Determina la ecuación de la perpendicular común. c) Calcula la distancia entre ambas. Perpendicular
Definición de la matriz inversa
Definición de la matriz inversa Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, habilidades básicas de resolver sistemas de ecuaciones Ejemplo El número real
1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido
E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña
