Algebra Lineal y Geometría.
|
|
|
- Alicia Araya Jiménez
- hace 9 años
- Vistas:
Transcripción
1 Algebra Lineal y Geometría. Unidad n 6: Subespacios Vectoriales. Algebra Lineal y Geometría Esp. Liliana Eva Mata 1
2 Contenidos. Subespacios Vectoriales. Operaciones con Subespacios: Intersección, unión, suma y suma directa. Subespacio Generado. Teorema de Extensión de una base. Teorema de la dimensión de la suma de dos subespacios. Complemento Ortogonal de un Subespacio. Algebra Lineal y Geometría Esp. Liliana Eva Mata 2
3 Subespacios Vectoriales. Sea ( V ; +; R;. ) Espacio Vectorial Real. S V S es un subespacio de (V, +, R,.) si y sólo si (S, +, R,. ) es un Espacio Vectorial con las operaciones suma y producto escalar-vector definidas en V. Subespacios Triviales: V espacio vectorial: V y { V } Algebra Lineal y Geometría Esp. Liliana Eva Mata 3
4 Condición Suficiente. Sea ( V, +, R,. ) un espacio vectorial real, y S un subconjunto no vacío de V. S es un subespacio de V si y sólo si se satisfacen las siguientes condiciones: x: x S y S (x + y ) S R x S (. x ) S Algebra Lineal y Geometría Esp. Liliana Eva Mata 4
5 Determinar si los siguientes subconjuntos de R 3 son subespacios. 3 Sea S {( x; y; z)/ y x 2; z 0}; S R a) Determinar si S es Subespacio Vectorial de R 3 con las operaciones usuales de adición y multiplicación por un escalar. b) Representar gráficamente S. a)determinar si a b S a b 2a ; a, b b R es Subespacio Vectorial de R 2x2 con las operaciones usuales de adición y multiplicación por un escalar en R 2x2. b)las matrices son vectores de S? y Algebra Lineal y Geometría Esp. Liliana Eva Mata 5
6 Sea S={(x;y)/ (x;y)r 2 x y } a)determinar si S es Subespacio Vectorial de R 2 con las operaciones usuales de adición y multiplicación por un escalar. b) Representar gráficamente S. Algebra Lineal y Geometría Esp. Liliana Eva Mata 6
7 OPERACIONES CON SUBESPACIOS. INTERSECCIÓN DE SUBESPACIOS. Sea V espacio vectorial, S 1 y S 2 subespacios de V. Entonces S= S 1 S 2 es un subespacio de V. La intersección de toda familia de subespacios de V, es un subespacio de V Unión de subespacios: no es un subespacio. Algebra Lineal y Geometría Esp. Liliana Eva Mata 7
8 SUMA DE SUBESPACIOS. Sean S 1 y S 2 dos subespacios de ( V, +, R,. ) S= S 1 +S 2 ={xv/ x = x 1 +x 2 x 1 S 1 x 2S 2 }. La suma de dos subespacios de V es un subespacio de V Caso Particular: SUMA DIRECTA Sea V espacio vectorial, S 1 y S 2 subespacios de V. Si S= S 1 + S 2 y si S 1 S 2 ={ V }, entonces, S= S 1 S 2 se denomina suma directa. Algebra Lineal y Geometría Esp. Liliana Eva Mata 8
9 SUBESPACIO GENERADO. Sea A = { v 1, v 2,..., v n } V, A = { ivi con i R vi A } n i 1 PROPIEDADES: Propiedad 1: A es un subespacio de V Propiedad 2: A A Propiedad 3: A = A A es subespacio. Propiedad 4: El subespacio generado por un conjunto no vacío de un espacio vectorial es la intersección de todos los subespacios que contiene a dicha familia. Algebra Lineal y Geometría Esp. Liliana Eva Mata 9
10 Ejemplo Sean los subespacios S y W del Espacio Vectorial Real (R 3 ;+;R;.) tales que S es generado por los vectores u= (2;1;4) y v = ( 3; -1; 0); y W={(x;y;z)/x-3y-z=0} a) Expresar S por comprensión. b) Hallar una base de W. c) Escribir un elemento de W, y hallar sus coordenadas en la base obtenida en b) d) Representar gráficamente. Algebra Lineal y Geometría Esp. Liliana Eva Mata 10
11 Ejemplo Sea S generado por los vectores u= ( 2 ; 1 ; 4 ) y v = ( 3 ; 1; 0 ), a) Expresar S por comprensión. b)hallar una base de S y su dimensión. c) Determinar una terna que pertenezca S, y hallar sus coordenadas en la basa hallada en el ítem b. Sea W generado por el vector (4 ; 1 ; 1 ). a) Expresar W por comprensión. b)hallar: base de W y su dimensión Determinar una ternas v W, y hallar las coordenadas de la terna v en la base obtenida en el ítem b) Algebra Lineal y Geometría Esp. Liliana Eva Mata 11
12 TEOREMA DE EXTENSIÓN DE UNA BASE. Si V= {v 1, v 2,..., v n } es una base del espacio vectorial V, y W={ w 1, w 2,..., w m } es un conjunto linealmente independiente, pero no de generadores de V, entonces existes vectores w m+1, w m+2,..., w m+p, tales que { w 1, w 2,..., w m,w m+1, w m+2,...,w m+p } es una base de V. Algebra Lineal y Geometría Esp. Liliana Eva Mata 12
13 Ejemplo Modificar los siguientes conjuntos para que sean base de R 3: a) {(2 ; 1 ; 4 ), ( 3 ; 1; 0 )} b) {(4 ; 1 ; 1 ) }. c) {(2;1; -3); ( 1; 2-1); (0; 0; 0)} d) {1;2;3);( 4; -1;0);(2; 0; -1); (1; -1; 2)} Algebra Lineal y Geometría Esp. Liliana Eva Mata 13
14 COROLARIOS. Todo conjunto de más de n vectores de un espacio vectorial n-dimensional es linealmente dependiente. Todo subconjunto de V que contenga menos de n vectores no es sistema generador de V. n vectores linealmente independientes de un espacio vectorial de dimensión n constituye una base del mismo. Todo sistema de generadores de n vectores de un espacio vectorial n- dimensional es una base del mismo. Algebra Lineal y Geometría Esp. Liliana Eva Mata 14
Algebra Lineal y Geometría.
Algebra Lineal y Geometría. Unidad n 4: Dimensión de un Espacio Esp. Liliana Eva Mata Contenidos. Combinación lineal de vectores. Dependencia e Independencia Lineal. Sistema de Generadores. Base de un
TEMA V. Espacios vectoriales
TEMA V. Espacios vectoriales 1 1. Demostrar que cada uno de los siguientes conjuntos tiene estructura de espacio vectorial sobre el cuerpo de los reales: a El conjunto (R 2, +,, R. b El conjunto (R 3,
Álgebra Lineal Ivan D. Molina N. Universidad del Norte Enero del 2016 Ivan D. Molina N. (Universidad del Norte) Álgebra Lineal Enero del / 26
Álgebra Lineal Ivan D. Molina N. Universidad del Norte Enero del 2016 Ivan D. Molina N. (Universidad del Norte) Álgebra Lineal Enero del 2016 1 / 26 1 Subespacios y combinaciones lineales 2 Dependencia
Ejercicio 1: Proponga al menos 3 conjuntos y las operaciones adecuadas de modo que sean espacios vectoriales.
Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Proponga al menos 3 conjuntos y las operaciones adecuadas de modo que sean espacios vectoriales. Ejercicio 2: Determine si los siguientes conjuntos
Espacios Vectoriales
Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios
Bloque 3. Geometría y Trigonometría Tema 2 Vectores Ejercicios resueltos
Bloque 3. Geometría y Trigonometría Tema Vectores Ejercicios resueltos 3.- Obtener el vector PQ, donde los puntos P y Q son los dados 4 5 b) P00,, Q90, a) P,, Q, 83 83 d) P4,, Q3, 7 c) P,, Q, 4 5 PQ 5,
Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21
Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)
Álgebra Lineal Grupo A Curso 2011/12. Espacios vectoriales. Bases...
Álgebra Lineal Grupo A Curso 2011/12 Espacios vectoriales. Bases 61) Dados los vectores v 1,v 2,...,v n linealmente independientes, probar que también lo son los vectores u 1 = v 1 u 2 = v 1 + v 2... u
BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN
1 BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN BANCO DE PREGUNTAS CURSO: ALGEBRA LINEAL LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN MC Fco. Javier Robles Mendoza Otoño
Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales
Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales (1) Sea n N. Mostrar que el conjunto de polinomios sobre R de grado menor que n es un subespacio vectorial de R[x]. Este
Espacios Vectoriales. Matemáticas. Espacios Vectoriales CARACTERIZACION COMBINACIONES LINEALES REDUCCION DE GAUSS SISTEMA GENERADOR, BASES
Espacios Vectoriales Matemáticas Espacios Vectoriales CARACTERIZACION COMBINACIONES LINEALES REDUCCION DE GAUSS SISTEMA GENERADOR, BASES 5 ESPACIO VECTORIAL Dados: (E,+) Grupo Abeliano (K,+, ) Cuerpo :
Espacios vectoriales reales.
Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre
1. Espacios Vectoriales Reales.
. Espacios Vectoriales Reales. El Álgebra Lineal es una rama de la Matemática que trata las propiedades comunes de todos los sistemas algebráicos donde tiene sentido las combinaciones lineales y sus consecuencias.
Clase de Álgebra Lineal
Clase de Álgebra Lineal M.Sc. Carlos Mario De Oro Facultad de Ciencias Básicas Departamento de matemáticas 04.2017 Page 1 Espacios vectoriales Definicion. Espacio Vectorial (E.V.) Un V espacio vectorial
Tema 1. Espacios Vectoriales Definición de Espacio Vectorial
Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.
Trabajo Práctico N 5: ESPACIOS VECTORIALES
Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique
Álgebra Lineal VII: Independencia Lineal.
Álgebra Lineal VII: Independencia Lineal José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email: jrico@salamancaugtomx
EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES
EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que
Trabajo Práctico N 5: ESPACIOS VECTORIALES. Ejercicio 1:
6 Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio : Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique
Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.
Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)
Trabajo Práctico N 5: ESPACIOS VECTORIALES
Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique
ESPACIOS VECTORIALES
MATEMÁTICA I - - Capítulo 8 ------------------------------------------------------------------------------------ ESPACIOS VECTORIALES.. Espacios Vectoriales y Subespacios... Definición. Un espacio vectorial
4. Espacios vectoriales
Contents 4 Espacios vectoriales 2 4.1 Dependencia e independencia lineal.................................. 4 4.2 Subespacios vectoriales.............................................. 7 4.3 Bases y dimensión..................................................
520142: ALGEBRA y ALGEBRA LINEAL
520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición
ALGEBRA LINEAL - 2do Cuatrimestre 2014 Práctica 2 - Espacios vectoriales
Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA 1 ALGEBRA LINEAL - 2do Cuatrimestre 2014 Práctica 2 - Espacios vectoriales Espacios vectoriales 1. Sea V un espacio vectorial
ÁLGEBRA LINEAL Y GEOMETRÍA
ÁLGEBRA LINEAL Y GEOMETRÍA Laureano González Vega y Cecilia Valero Revenga Departamento de Matemáticas, Estadística y Computación Universidad de Cantabria Curso 2017 2018 Índice I Lecciones 1 1 Espacios
1. Espacio vectorial. Subespacios vectoriales
Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Sea k un cuerpo. 1. Espacio vectorial. Subespacios vectoriales Definición 1.1. Un k-espacio vectorial o espacio vectorial
3. que satisfacen los axiomas anteriores.
UVG-MM2002: Álgebra Lineal 1 Instructor: Héctor Villafuerte Espacios Vectoriales 26 de Enero, 2010 1 Espacios Vectoriales Denición 1 (Espacio Vectorial). Un espacio vectorial V es un conjunto de objetos
Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.
Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)
Tema 2: Espacios Vectoriales
Tema 2: Espacios Vectoriales José M. Salazar Octubre de 2016 Tema 2: Espacios Vectoriales Lección 2. Espacios vectoriales. Subespacios vectoriales. Bases. Lección 3. Coordenadas respecto de una base. Ecuaciones.
ESPACIOS VECTORIALES
ESPACIOS VECTORIALES Luisa Martín Horcajo U.P.M. Definición: Vector libre. Operaciones Un vector fijo es una segmento orientado, que queda caracterizado por su origen A y su extremo B y se representa por
2 Espacios vectoriales
Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 2 Espacios vectoriales 2.1 Espacio vectorial Un espacio vectorial sobre un cuerpo K (en general R o C) es un conjunto V sobre el que hay
ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales
Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Sea (K, +,.) un cuerpo con característica 0. Podemos pensar K = Q, R o C. Si V es un conjunto cualquiera en el que
EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES
EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES MATRICES. SISTEMAS DE ECUACIONES LINEALES Matrices ) Dada la matriz M=, prueba que n n M M, n. ) Demuestra la siguiente implicación: Si I A I AA A
6 Vectores. Dependencia e independencia lineal.
6 Vectores. Dependencia e independencia lineal. Introducción Hay fenómenos reales que se pueden representar adecuadamente mediante un número con su adecuada unidad de medida. Sin embargo para representar
Problemas de Espacios Vectoriales
Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial
ESPACIOS VECTORIALES SUBESPACIOS:
SUBESPACIOS: Continuación EJEMPLOS: S 2 = {(x 1, x 2 ) / x 2 =x 12 } R 2 es subespacio del espacio vectorial? Interpretación geométrica: Representa una parábola de eje focal el eje de ordenadas, vértice
Álgebra Lineal V: Subespacios Vectoriales.
Álgebra Lineal V: Subespacios Vectoriales. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: [email protected]
Espacios Vectoriales
Espacios y subespacios vectoriales Espacios Vectoriales 1. Demuestre que con la suma y multiplicación habituales es un espacio vectorial real.. Considere el conjunto C de los números complejos con la suma
Problemas de Espacios Vectoriales
Problemas de Espacios Vectoriales Natalia Boal Francisco José Gaspar María Luisa Sein-Echaluce Universidad de Zaragoza 1 En IR 2 se definen las siguientes operaciones + : x, y + x, y = x + x, y + y, IR
Introducción a los espacios vectoriales
1 / 64 Introducción a los espacios vectoriales Pablo Olaso Redondo Informática Universidad Francisco de Vitoria November 19, 2015 2 / 64 Espacios vectoriales 1 Las 10 propiedades de un espacio vectorial
Tema 2: Espacios vectoriales
Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 Tema 2: Espacios vectoriales Ejercicios 1. En R 2 se definen las siguientes operaciones: (x 1, y 1 ) + (x 2, y 2 ) = (x 1 + x 2, y 1 +
ÁLGEBRA LINEAL I Práctica 5
ÁLGEBRA LINEAL I Práctica 5 Espacios vectoriales (Curso 2014 2015) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2
ESPACIOS VECTORIALES Y APLICACIONES LINEALES
Departamento de Matemática Aplicada II E.E.I. ÁLGEBRA Y ESTADÍSTICA Boletín n o (010-011 ESPACIOS VECTORIALES Y APLICACIONES LINEALES 1. En el espacio vectorial ordinario R 4 estudiar cuáles de los siguientes
MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES
MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA. TEMA 1: VECTORES 1.1 VECTORES DEL ESPACIO. VECTORES LIBRES DEL ESPACIO Sean y dos puntos del espacio. Llamaremos vector (fijo) a un segmento orientado
ESPACIOS Y SUBESPACIOS VECTORIALES
ESPACIOS Y SUBESPACIOS VECTORIALES. ESPACIO VECTORIAL REAL Un espacio vectorial real V es un conjunto de objetos llamados vectores, junto con dos operaciones, llamadas suma y multiplicación por un escalar
Temas 4 y 5: El espacio afín. Variedades lineales. Paralelismo.
ALGEBRA II: Temas 4-5 DIPLOMATURA DE ESTADÍSTICA 1 Temas 4 y 5: El espacio afín Variedades lineales Paralelismo 1 Introducción La Geometría afín sobre R tiene como objetos básicos los siguientes: un conjunto
Algebra lineal y conjuntos convexos
Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar
Espacios vectoriales
Espacios vectoriales [Versión preliminar] Prof. Isabel Arratia Z. Algebra Lineal 1 En el estudio de las matrices y, en particular, de los sistemas de ecuaciones lineales realizamos sumas y multiplicación
102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D.
102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. Tema 1. Espacios Vectoriales. 1. Dar la definición de cuerpo. Dar tres ejemplos de cuerpos. Dar un ejemplo de un cuerpo finito 2. Defina
Espacios vectoriales.
Unidad docente de Matemáticas Matemáticas (CC. Químicas) Espacios vectoriales. Si detectas cualquier error o errata por favor, comunicaselo al profesor de la asignatura. El subíndice can significa canónica/o..
Algebra Lineal y Geometría.
Algebra Lineal y Geometría. Unidad nº7: Transformaciones Lineales. Algebra Lineal y Geometría Esp. Liliana Eva Mata 1 Contenidos. Transformación lineal entre dos espacios vectoriales. Teorema fundamental
CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero
Fundamento Científico del Currículum de Matemáticas en Enseñanza Secundaria CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero ESPACIOS VECTORIALES DEFINICIÓN... 1 PROPIEDADES DE
Algebra lineal y conjuntos convexos 1
Algebra lineal y conjuntos convexos Solución de sistemas. Espacios vectoriales. 3 Conjuntos convexos. 4 Soluciones básicas puntos extremos. Rango de una matriz A R m n. Reducir A a una matriz escalonada
PAIEP. Complemento Ortogonal
Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Complemento Ortogonal Veamos ahora una aplicación de los vectores ortogonales a la caracterización de subespacios
Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291)
Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) I. Combinación Lineal Definición: Sean v 1, v 2, v 3,, v n vectores en el espacio vectorial V. Entonces cualquier
En el caso en que el conjunto sea linealmente dependiente, exprese uno de los vectores como combinación lineal de los demás.
Depto. de Álgebra curso 7-8 4. Espacio vectorial Estructura Ejercicio 4.. Demuestre que el conjunto M ( R) con la suma de matrices y el producto de matrices por números reales es un R espacio vectorial.
Tema 1: ESPACIOS VECTORIALES
Tema 1: ESPACIOS VECTORIALES Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría I. Curso 2003/04 Licenciatura:
UNIDAD 1: ELEMENTOS ALGEBRAICOS 1B : VECTORES
UNIDAD 1: ELEMENTOS ALGEBRAICOS 1B : VECTORES Conceptos A partir de la identificación de puntos de la recta con números reales, se puede avanzar relacionando puntos del plano y del espacio con pares o
Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y
Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Ejercicios tipo test de las lecciones 1 y 2. 1. El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1,
Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21
Espacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Objetivos Al finalizar este tema tendrás que: Saber si unos vectores son independientes.
Tema 2 ESPACIOS VECTORIALES
Tema 2 ESPACIOS VECTORIALES Prof. Rafael López Camino Universidad de Granada 1 Espacio vectorial Definición 1.1 Un espacio vectorial es una terna (V, +, ), donde V es un conjunto no vacío y +, son dos
6.14 Descomposición ortogonal y proyección ortogonal
CAPÍTULO. ESPACIO EUCLÍDEO CANÓNICO IR N 282.14 Descomposición ortogonal y proyección ortogonal El resultado W W = IR n, significa que cada y IR n se puede escribir de forma única como suma de un vector
Tema 4: ESPACIOS VECTORIALES
Álgebra I - Curso 2005/06 - Grupos M1 y M2 Tema 4: ESPACIOS VECTORIALES por Mario López Gómez 1. Definición, propiedades y ejemplos. El concepto de espacio vectorial es sin duda uno de los más importantes
Subspacios Vectoriales
Subspacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Subspacios Vectoriales 1 / 25 Objetivos Al finalizar este tema tendrás que: Saber si un subconjunto es
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICAS
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICAS 7. ESPACIOS VECTORIALES 7.1 Estructura de Espacio Vectorial. Sea
Tema 3: Espacios vectoriales
Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación
Espacios vectoriales con producto interno
Espacios vectoriales con producto interno Problemas teóricos En todos los problemas relacionados con el caso complejo se supone que el producto interno es lineal con respecto al segundo argumento. Definición
Unidad 5: Geometría analítica del plano.
Geometría analítica del plano 1 Unidad 5: Geometría analítica del plano. 1.- Vectores. Operaciones con vectores. Un vector fijo es un segmento entre dos puntos, A y B del plano, al que se le da una orientación
como el número real que resulta del producto matricial y se nota por:
Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,
Gènius, a good idea in Maths Ximo Beneyto. Tema : Pàgina 1
Gènius, a good idea in Maths Ximo Beneyto Tema : Pàgina 1 ESPACIOS VECTORIALES. Indice DEFINICION.... 2 Suma de Vectores... 2 Prod. por un escalar... 2 SISTEMA DE VECTORES... 5 COMBINACION LINEAL... 5
Espacios Vectoriales www.math.com.mx
Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel [email protected] MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................
ALGEBRA LINEAL Y GEOMETRÍA. REPASO DE ÁLGEBRA LINEAL-2: CAMBIOS DE BASE GRADO DE MATEMÁTICAS. CURSO
ALGEBRA LINEAL Y GEOMETRÍA. REPASO DE ÁLGEBRA LINEAL-2: CAMBIOS DE BASE GRADO DE MATEMÁTICAS. CURSO 2012-2013 José García-Cuerva Universidad Autónoma de Madrid 11 de febrero de 2013 JOSÉ GARCÍA-CUERVA
Construcción de bases en la suma y la intersección de subespacios (ejemplo)
Construcción de bases en la suma y la intersección de subespacios (ejemplo) Objetivos Aprender a construir bases en S + S y S S, donde S y S están dados como subespacios generados por ciertos vectores
EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS
EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS ESPACIOS EUCLÍDEOS ) a) Decir cuál de las siguientes aplicaciones de x de no definir un producto escalar comprobar el axioma que falla: a ) x' x,y,
Espacios vectoriales
Espacios vectoriales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza 1 Concepto de espacio vectorial y propiedades 1.1 Definición Se llama espacio vectorial sobre K (IR o C a toda terna
1. ESPACIOS DE HILBERT Y OPERADORES
1. ESPACIOS DE HILBERT Y OPERADORES 1. DEFINICIÓN, PROPIEDADES Y EJEMPLOS Definición. Sea H un espacio vectorial sobre el cuerpo C de los números complejos, un producto escalar sobre H es una aplicación
R 3 = { ( x, y, z ) / x R, y R, z R }
El conjunto R 3 Es un conjunto de ternas ordenadas de números reales R 3 = { ( x, y, z ) / x R, y R, z R } Primera componente Segunda componente Tercera componente Igualdad de ternas: (x, y, z) = (x',
Algebra vectorial y matricial
Capítulo Algebra vectorial y matricial.. Espacio vectorial Los conjuntos de vectores en el plano R yenelespacior cuentan con muchas propiedades interesantes. Es posible sumar un vector en R y obtener un
Tema 5: Sistemas de Ecuaciones Lineales
Tema 5: Sistemas de Ecuaciones Lineales Eva Ascarza-Mondragón Helio Catalán-Mogorrón Manuel Vega-Gordillo Índice 1 Definición 3 2 Solución de un sistema de ecuaciones lineales 4 21 Tipos de sistemas ecuaciones
José Humberto Serrano Devia Página 1
Similitudes entre el espacio y las series de Fourier Funciones Ortogonales En esta sección se muestra la forma en que los conceptos vectoriales de producto interno, o producto escalar, y el de ortogonalidad
FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R.
FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. PROGRAMA ANALÍTICO DE LA ASIGNATURA: ALGEBRA LINEAL Código L2.07.1 PLAN DE ESTUDIOS: 2002 CARRERA: Licenciatura en Matemática DEPARTAMENTO:
UNIDAD 3 : ELEMENTOS GEOMÉTRICOS
UNIDAD 3 : ELEMENTOS GEOMÉTRICOS 3.A.1 Características de un lugar geométrico 3.A ELEMENTOS DE GEOMETRÍA PLANA Se denomina lugar geométrico a todo conjunto de puntos que cumplen una misma propiedad o que
Clase 15 Espacios vectoriales Álgebra Lineal
Espacios vectoriales Clase 5 Espacios vectoriales Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia En esta sección estudiaremos uno de los conceptos
Optimización lineal. Diego A. Patino. 2 de septiembre de Pontificia Universidad Javeriana 1/ 29
Optimización lineal Diego A. Patino Pontificia Universidad Javeriana 2 de septiembre de 2016 1/ 29 Introducción Formulación del problema Herramientes del análisis convexo Formas de las restricciones 2/
Algebra Lineal: Bases y Dimensión. Departamento de Matemáticas. Intro. Espacio Lineal. Base. Tma clave. Regla 1. Regla 2 MA1019
Algebra MA119 ducción Uno los conceptos más importantes en Espacios Vectores es el concepto. Este concepto se relaciona con el número elementos mínimo que se requieren para representar a los elementos
ÍNDICE. Capítulo 1. ESPACIOS VECTORIALES Conceptos Teóricos Ejercicios y Problemas resueltos... 13
00_Principios 10/8/10 09:47 Página 7 ÍNDICE Prólogo... 9 Capítulo 1. ESPACIOS VECTORIALES... 11 Conceptos Teóricos... 11 Ejercicios y Problemas resueltos... 13 Capítulo 2. MATRICES Y DETERMINANTES... 21
UNIDAD 2: ESPACIOS VECTORIALES
UNIDAD 2: ESPACIOS VECTORIALES Introducción. Vectores. Adición de vectores. Propiedades. Multiplicación de un vector por un escalar. Propiedades. Módulo o norma de un vector. Vector unitario o versor.
