ESPACIOS VECTORIALES SUBESPACIOS:
|
|
|
- José María Toledo Maidana
- hace 8 años
- Vistas:
Transcripción
1 SUBESPACIOS: Continuación EJEMPLOS: S 2 = {(x 1, x 2 ) / x 2 =x 12 } R 2 es subespacio del espacio vectorial? Interpretación geométrica: Representa una parábola de eje focal el eje de ordenadas, vértice en el origen y cóncava hacia arriba. Tomamos dos elementos en el conjunto, es decir dos vectores con origen en el (0,0), cuyo extremos son puntos de la parábola. Según las condiciones que debe cumplir para ser S 2 subespacio, vemos que 0 pertenece pues el vértice es el (0,0). Para la segunda, que hace referencia a la ley de composición interna (+), verifica el vector suma que pertenece al conjunto? Justifique algebraicamente. 1
2 SUBESPACIOS: Analizar si los siguientes subconjuntos de R 3 son subespacios de dicho espacio vectorial. S 3 = {(x 1, x 2, x 3 ) / x 2 =0 x 3 =0} R 3 eje x S 4 = {(x 1, x 2, x 3 ) / x 3 =0} R 3 2
3 OPERACIONES CON SUBESPACIOS: Intersección de subespacios: Es la primera operación que vamos a considerar con un número finito de estos conjuntos. Ejemplos: 1.- S 1 = { (x 1, x 2 ) / x 2 = 3 x 1 } R 2 y S 2 = {(x 1, x 2 ) / x 1 + x 2 = 0} R 2 Entonces S 1 S 2 = { (x 1, x 2 ) / x 2 = 3 x 1 x 1 + x 2 = 0} ={ (0;0) } R S 1 = {(x 1, x 2, x 3 )/ -x 1 =x 3 } R 3 y S 2 = {(x 1, x 2, x 3 )/ x 3 = 0 } R 3 Entonces S 1 S 2 = {(x 1, x 2, x 3 )/ -x 1 =x 3 x 3 = 0 } R 3 Siendo S 1 un plano y S 2 también, luego la intersección de ambos en R 3 es una recta (eje y). 3
4 OPERACIONES CON SUBESPACIOS: Proposición: Dados S 1, S 2,..., S n, subespacios de un K espacio vectorial V, su intersección n = S = S 1 S 2. S n ={v V : v S 1 v S 2... v S n } I j= 1 S j también es subespacio de V. Demostración: Debemos probar que S verifica las tres condiciones de subespacios, es decir: S 1 ) o S. S 2 ) Si u S y v S u+v S S 3 ) Si k K y v S k.v S 4
5 OPERACIONES CON SUBESPACIOS: Unión de subespacios Siendo A y B dos conjuntos cualesquiera se define la unión como A B = { x / x A x B }, apliquémoslo a los subespacios de R 2 : S 1 = { (x 1, x 2 ) / x 2 = x 1 } R 2 y S 2 = {(x 1, x 2 ) / x 1 +x 2 = 0} R 2 entonces S 1 S 2 = { (x 1, x 2 ) / x 2 = x 1 x 1 +x 2 = 0 } R 2 Geométricamente es la unión de las dos rectas, y es evidente que tomando dos vectores, uno en cada subespacios, la suma no pertenece. Concluimos que no siempre la unión de subespacios de un mismo espacio vectorial, es un subespacio. Cuándo la unión de subespacios de un mismo espacio vectorial es un subespacio? 5
6 OPERACIONES CON SUBESPACIOS: Suma de subespacios: Sea V un K-EV con S 1 y S 2 subespacios de V, llamaremos suma de S 1 y S 2 al siguiente subespacio: S 1 + S 2 = {u V / u = v 1 + v 2, v 1 S 1 v 2 S 2 } V Apliquemos esta operación en los siguientes casos: 1) S 1 = { (x 1,x 2 ) / x 1 = 0 } R 2 y S 2 = {(x 1,x 2 ) / x 1 = x 2 } R 2 Los vectores de S 1 son (0, x 2 ) y los de S 2 son (x 1, x 1 ) Su suma (0,x 2 ) + (x 1,x 1 ) = ( x 1, x 2 + x 1 ) representa a todo el plano o sea: S 1 + S 2 = R 2. Cuál es la intersección de S 1 y S 2? Si además S 1 S 2 ={0}, S 1 S 2 se llama SUMA DIRECTA. En R 2, la suma de dos rectas distintas S 1 y S 2 que pasan por el origen es R 2. Esto puede comprobarse gráficamente viendo que todo vector del plano puede expresarse como suma de un vector de S 1 y otro de S 2. 6
7 OPERACIONES CON SUBESPACIOS: 2) Dados los siguientes subespacios de R 3 : S 1 ={(x 1, x 2, x 3 ) / x 3 =0} R 3 un plano (pl xy) y S 2 = {(x 1, x 2, x 3 ) / x 1 =-x 2 x 3 =0} R 3 una recta. Gráficamente se observa que la recta está incluida en el plano coordenado, es decir que S 2 S 1. Analíticamente se toma un vector en cada subespacio, siendo su suma un vector de S 1. Luego si S 2 S 1 S 1 +S 2 = S 1 Cuál es el subespacio intersección de S 1 y S 2? 7
8 COMBINACIÓN LINEAL: Trabajemos en R 2. Nos planteamos el problema de escribir el vector w=(2;0) como resultado de operaciones entre los vectores u=(1;1) y v=(0;-1). Siendo R 2 un R- espacio vectorial (Suma de vectores y multiplicación por un escalar) deberá ser w = α.u + β.v es decir (2;0) = α (1;1) + β (0;-1) (a). Bastará determinar si existen α, β R. Esto dependerá que el sistema asociado (a) tenga solución, es decir COMPATIBLE. En este caso es DETERMINADO y los coeficientes de dicha combinación lineal son α=2 y β=2. Gráficamente se observa que u y v son linealmente independientes. w= 8
9 COMBINACIÓN LINEAL: Analicemos otro caso de R 2 Si w = (2;2) y u = (1;-1) y t = (-3;3), es posible obtener w como resultado de operaciones entre u y t? (2;2) = α(1;-1) + β(-3;3) 2 = α 3β 2 = α + 3β Se llega a un ABSURDO pues el sistema no tiene solución. ES INCOMPATIBLE. En este caso no es posible obtener w como combinación lineal de los vectores u y t. Gráficamente u y t pertenecen a la misma recta. Luego todos sus múltiplos y su suma están en la misma recta y w no está sobre la recta. 9
10 COMBINACIÓN LINEAL: Obtener, si es posible, a r=(2;-1) como combinación lineal de los vectores s=(-4;2) y t=(6;-3) r = α.s + β.t (2;-1) = α.(-4;2) + β.(6;-3) Se obtiene el sistema 4α + 6β 2α 3β = = β α = 4 1 = 1 COMPATIBLE INDETERMINADO Infinitas soluciones de α en función de β ( β R) Geométricamente se interpreta que todos los vectores pertenecen a la misma recta de R 2, que no es otra cosa que el subespacio definido por uno de estos vectores S= { (x 1,x 2 ) / x 1 = -2x 2 } R 2. Concluimos que los vectores son linealmente dependientes. 10
Algebra lineal y conjuntos convexos
Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar
LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.
LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de
Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21
Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)
Espacios vectoriales reales.
Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre
Problemas de Espacios Vectoriales
Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial
MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES
MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA. TEMA 1: VECTORES 1.1 VECTORES DEL ESPACIO. VECTORES LIBRES DEL ESPACIO Sean y dos puntos del espacio. Llamaremos vector (fijo) a un segmento orientado
y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy).
UNIDAD II: VECTORES EN DOS Y TRES DIMENSIONES Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra lineal. A los elementos de los espacios
Sistemas de dos ecuaciones lineales de primer grado con dos incógnitas
Un sistema de dos ecuaciones lineales de primer grado con dos incógnitas tiene la siguiente forma Ax + By + C = 0 A x + B y + C (1) = 0 Ya sabemos que una ecuación lineal de primer grado con dos incógnitas
Álgebra Lineal VII: Independencia Lineal.
Álgebra Lineal VII: Independencia Lineal José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email: jrico@salamancaugtomx
I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1
PRODUCTO ESCALAR INTRODUCCIÓN El espacio vectorial de los vectores libres del plano se caracteriza por tener definidas dos operaciones: una interna, suma de vectores, y otra externa, producto de un número
TEMA 11. VECTORES EN EL ESPACIO
TEMA 11. VECTORES EN EL ESPACIO Dados dos puntos y, se define el vector como el segmento orientado caracterizado por su módulo, su dirección y su sentido. Dos vectores son equipolentes si tienen el mismo
Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática.
Álgebra Geometría Analítica Prof. Gisela Saslavsk Vectores en R en R 3. Rectas planos en el espacio Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática..
Espacios Vectoriales www.math.com.mx
Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel [email protected] MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................
ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano
ELEMENTOS DE GEOMETRÍA Eduardo P. Serrano Este Apunte de Clase está dirigido a los alumnos de la materia Elementos de Cálculo Numérico para Biólogos. Tiene por objeto exponer algunos conceptos básicos
Unidad 1: SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS
Unidad 1: SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS 1.1.- SISTEMAS DE ECUACIONES LINEALES Ecuación lineal Las ecuaciones siguientes son lineales: 2x 3 = 0; 5x + 4y = 20; 3x + 2y + 6z = 6; 5x 3y + z 5t =
SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS.
SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. Sistemas de ecuaciones lineales DEFINICIÓN SISTEMAS DE ECUACIONES Un sistema de m ecuaciones lineales con n incógnitas,,,, n es un conjunto de m igualdades
Espacios vectoriales
Espacios vectoriales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza 1 Concepto de espacio vectorial y propiedades 1.1 Definición Se llama espacio vectorial sobre K (IR o C a toda terna
Veamos sus vectores de posición: que es la ecuación vectorial de la recta:
T.5: ECUACIONES DE LA RECTA 5.1 Ecuación vectorial de la recta Una recta queda determinada si se conoce un vector que lleve su dirección (de entre todos los vectores proporcionales), llamado vector director,
Ecuaciones de la recta en el espacio
Ecuaciones de la recta en el espacio Ecuación vectorial de la recta Sea P(x 1, y 1 ) es un punto de la recta r y uu su vector director, el vector PPXX tiene igual dirección que uu, luego es igual a uu
1. Coordenadas en el plano. (Sistema de coordenadas, ejes de coordenadas, abcisas, ordenadas, cuadrantes)
Bloque 7. VECTORES. ECUACIONES DE LA RECTA. (En el libro Tema 9, página 159) 1. Coordenadas en el plano. 2. Definiciones: vector libre, módulo, dirección, sentido, vectores equipolentes, vector fijo, coordenadas
UNPSJB - Facultad Ciencias Naturales - Asignatura: Matemática 1 Ciclo Lectivo: 2014 CONICAS
Asignatura: Matemática 1 Ciclo Lectivo: 014 CONICAS La superficie que se muestra en la figura se llama doble cono circular recto, o simplemente cono. Es la superficie tridimensional generada por una recta
Tema 4: Sistemas de ecuaciones e inecuaciones
Tema 4: Sistemas de ecuaciones e inecuaciones Sistemas Lineales pueden ser de No lineales Gráficamente Ecuaciones se clasifican se resuelven Algebraicamente Compatible determinado Compatible indeterminado
En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253
Eje temático: Álgebra y funciones Contenidos: Operatoria con expresiones algebraicas Nivel: 2 Medio Funciones 1. Funciones En la vida diaria encontramos situaciones en las que aparecen valores que varían
SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES
SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la
Tema 7: Geometría Analítica. Rectas.
Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos
Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x
Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que
No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.
FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números
Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc.
Tema 1 Espacios Vectoriales 1.1 Introducción Estas notas están elaboradas pensando simplemente en facilitar al estudiante una guía para el estudio de la asignatura, y en consecuencia se caracterizan por
7.FUNCIÓN REAL DE VARIABLE REAL
7.FUNCIÓN REAL DE VARIABLE REAL 7.1 CONCEPTOS PREVIOS Dados dos conjuntos A={ 1,, 3,...} y B={y 1, y, y 3,...}, el par ordenado ( m, y n ) indica que el elemento m del conjunto A está relacionado con el
2. El conjunto de los números complejos
Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más
Apéndice sobre ecuaciones diferenciales lineales
Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.
NOCIONES PRELIMINARES (*) 1
CONJUNTOS NOCIONES PRELIMINARES (*) 1 Conjunto no es un término definible, pero da idea de una reunión de cosas ( elementos ) que tienen algo en común. En matemática los conjuntos se designan con letras
1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano.
CAPÍTULO El plano vectorial Consideremos P como el plano intuitivo de puntos: A,,C..... El espacio vectorial de los vectores Definición. Vectores fijos Dado dos puntos cualesquiera A e del espacio nos
GEOMETRÍA ANALÍTICA EJERCITARIO DE FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) UNIVERSIDAD NACIONAL DE ASUNCIÓN
UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO DE GEOMETRÍA ANALÍTICA (ÁLGEBRA VECTORIAL - PRÁCTICA) AÑO 2014 ÁLGEBRA VECTORIAL - EJERCICIOS
TRA NSFORMACIO N ES LIN EA LES
TRA NSFORMACIO N ES LIN EA LES C o m p uta c i ó n G r á fica Tipos de Datos Geométricos T Un punto se puede representar con tres números reales [x,y,z] que llamaremos vector coordenado. Los números especifican
3.1 El espacio afín R n
3. Geometría analítica 3.1 El espacio afín R n Consideremos el conjunto R n, formado por las listas ordenadas (x 1,...,x n ) de números reales. Convengamos en llamar puntos a los elementos de R n. Pero
IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]
GEOMETRÍA EN EL ESPACIO.
GEOMETRÍA EN EL ESPACIO. Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas
TEMA 7: CÓNICAS CIRCUNFERENCIA. A partir de esta ecuación podemos hallar el centro y el radio sin más que deshacer los cambios:
TEMA 7: CÓNICAS CIRCUNFERENCIA Se define la circunferencia como el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. A dicha distancia se le llama radio de la circunferencia.
SESIÓN 4: ESPACIOS VECTORIALES
SESIÓN 4: ESPACIOS VECTORIALES Un espacio vectorial sobre un campo (como el cuerpo de los números reales o los números complejos) es un conjunto no vacío, dotado de dos operaciones para las cuales será
MATEMÁTICAS I TEMA 1: Espacios Vectoriales. 1 Definición de espacio vectorial. Subespacios
Sonia L. Rueda ETS Arquitectura. UPM Curso 2007-2008. 1 MATEMÁTICAS I TEMA 1: Espacios Vectoriales 1 Definición de espacio vectorial. Subespacios Dados dos conjuntos V y K se llama ley de composición externa
Conjunto R 3 y operaciones lineales en R 3
Conjunto R 3 y operaciones lineales en R 3 Objetivos. Definir el conjunto R 3 y operaciones lineales en R 3. Requisitos. Conjunto de los números reales R, propiedades de las operaciones aritméticas en
Espacios topológicos. 3.1 Espacio topológico
Capítulo 3 Espacios topológicos 3.1 Espacio topológico Definición 3.1.1. Un espacio topológico es un par (X, τ), donde X es un conjunto, y τ es una familia de subconjuntos de X que verifica las siguientes
Sistemas de Ecuaciones Lineales y Matrices
Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una
Teoría Tema 9 Ecuaciones del plano
página 1/11 Teoría Tema 9 Ecuaciones del plano Índice de contenido Determinación lineal de un plano. Ecuación vectorial y paramétrica...2 Ecuación general o implícita del plano...6 Ecuación segmentaria
Capítulo 1 Vectores. 26 Problemas de selección - página 13 (soluciones en la página 99)
Capítulo 1 Vectores 26 Problemas de selección - página 13 (soluciones en la página 99) 21 Problemas de desarrollo - página 22 (soluciones en la página 100) 11 1.A PROBLEMAS DE SELECCIÓN Sección 1.A Problemas
TEMA 12. RECTAS Y PLANOS. INCIDENCIA.
TEMA 12. RECTAS Y PLANOS. INCIDENCIA. Un sistema de referencia en el espacio está formado por un punto y tres vectores linealmente independientes. A partir de ahora consideraremos el sistema de referencia
Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA
Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una
EJERCICIOS PROPUESTOS
EJERCICIOS PROPUESTOS ) Se dan los siguientes puntos por sus coordenadas: A(3, 0), B(, 0), C(0, ) y sea P un punto variable sobre el eje. i) Hallar la ecuación de la recta (AC) y de la recta (r) perpendicular
UNIDAD 6.- PROGRAMACIÓN LINEAL
UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:
3. La circunferencia.
UNIDAD 8: RESOLVAMOS CON GEOMETRÍA ANALITICA. 3. La circunferencia. Objetivos conceptuales. Definir el concepto de circunferencia. Objetivos procedimentales. Calular el radio, el centro, algunos puntos
Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos
Lección 2: Funciones vectoriales: límite y continuidad. Diferenciabilidad de campos vectoriales 1.1 Introducción En economía, frecuentemente, nos interesa explicar la variación de unas magnitudes respecto
GEOMETRÍA: ESPACIO AFÍN
GEOMETRÍA: ESPACIO AFÍN.- ECUACIONES DE LA RECTA EN EL PLANO..- Ecuación vectorial Sea Pab (, ) un punto de la recta r, v = ( v, v) dirección que r, y, sea (, ) en el siguiente dibujo: un vector, no nulo,
ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3
ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2. Transformaciones ortogonales (Curso 2010 2011) 1. Se considera el espacio vectorial euclídeo IR referido a una base ortonormal. Obtener la expresión
Colegio Universitario Boston. Funciones
70 Concepto de Función Una función es una correspondencia entre dos conjuntos, tal que relaciona, a cada elemento del conjunto A con un único elemento del conjunto Para indicar que se ha establecido una
Tema 3: Sistemas de ecuaciones lineales
Tema 3: Sistemas de ecuaciones lineales 1. Introducción Los sistemas de ecuaciones resuelven problemas relacionados con situaciones de la vida cotidiana que tiene que ver con las Ciencias Sociales. Nos
GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π
GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a
Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )
Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x
CBC. Matemática (51) universoexacto.com 1
CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS CC SOCIALES CAPÍTULO 2 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
TEMA 8.- NORMAS DE MATRICES Y
Álgebra II: Tema 8. TEMA 8.- NORMAS DE MATRICES Y NúMERO DE CONDICIóN Índice. Introducción 2. Norma vectorial y norma matricial. 2 2.. Norma matricial inducida por normas vectoriales......... 4 2.2. Algunos
GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES
UNIDAD I FUNCIONES Una función es una correspondencia entre dos conjuntos, que asocia a cada elemento del primer conjunto exactamente un elemento del otro conjunto. Una función f definida entre dos conjuntos
APUNTES DE GEOMETRÍA ANALÍTICA
CAPÍTULO 1: LA RECTA EN EL PLANO Conceptos Primitivos: Punto, recta, plano. APUNTES DE GEOMETRÍA ANALÍTICA Definición 1 (Segmento) Llamaremos segmento a la porción de una línea recta comprendida entre
REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS)
1 REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1. EN LA REGIÓN DE DRAKUL DE LA REPÚBLICA DE NECROLANDIA, LAS AUTORIDADES ECONÓMICAS HAN REALIZADO UNA REVISIÓN
(L. S. I. P. I.) Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO. Espacios Vectoriales
ÁLGEBRA II (L.S.I P.I.) Guía de Trabajos Prácticos Nº ÁLGEBRA II (L. S. I. P. I.) Guíía de Trabajjos Prácttiicos Nºº Espacios Vectoriales.- Dados los vectores u v w r = s = verifique gráficamente: u v
Teoría Tema 1 Sistema de inecuaciones - Programación lineal
página 1/6 Teoría Tema 1 Sistema de inecuaciones - Programación lineal Índice de contenido Cómo resolver sistemas de inecuaciones lineales con dos incógnitas?...2 Un ejemplo...4 página 2/6 Cómo resolver
SISTEMA DE NUMEROS REALES
SISTEMA DE NUMEROS REALES 1.1 Conjuntos Es una agrupación de objetos distintos (pero con algunas características en común), los que reciben el nombre de elementos. Generalmente se nombra a un conjunto
Parciales Matemática CBC Parciales Resueltos - Exapuni.
Parciales Matemática CBC 2012 Parciales Resueltos - Exapuni www.exapuni.com.ar Compilado de primeros parciales del 2012 Parcial 1 1) Sea. Hallar todos los puntos de la forma, tales que la distancia entre
Conjuntos, relaciones y funciones Susana Puddu
Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también
gráfica de una función afín dada en forma explícita
PARADA TeÓRICA 3 Función afín. Ecuación explícita de la recta A la función polinómica de primer grado f(x) = ax + b, siendo ay b números reales, se la denomina función afín. Los coeficientes principal
PUNTOS Y VECTORES EN EL PLANO
PUNTOS Y VECTORES EN EL PLANO PUNTOS EN EL PLANO Tomando como referencia los ejes cartesianos del plano, un punto se representa mediante un par ordenado (a, b) de números reales, es decir, mediante un
SISTEMAS DE ECUACIONES LINEALES. Método de reducción o de Gauss. 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González.
SISTEMAS DE ECUACIONES LINEALES Método de reducción o de Gauss 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González. SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS.
UNIDAD IV DISTANCIA ENTRE DOS PUNTOS
UNIDAD IV DISTANCIA ENTRE DOS PUNTOS Dados los puntos: P(x1, y1) y Q(x2, y2), del plano, hallemos la distancia entre P y Q. Sin pérdida de generalidad, tomemos los puntos P y Q, en el primer cuadrante
Lección 12: Sistemas de ecuaciones lineales
LECCIÓN 1 Lección 1: Sistemas de ecuaciones lineales Resolución gráfica Hemos visto que las ecuaciones lineales de dos incógnitas nos permiten describir las situaciones planteadas en distintos problemas.
IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 opción A, modelo 3 Septiembre
IES Fco Ayala de Granada Septiembre de 015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 3 Septiembre 015 ax + b [ 5 puntos] Halla los valores a, b y c sabiendo que
Límites de funciones de varias variables.
Límites continuidad de funciones de varias variables Límites de funciones de varias variables. En este apartado se estudia el concepto de límite de una función de varias variables algunas de las técnicas
Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación.
NÚMEROS REALES Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. Un conjunto es una colección bien definida
Vectores y rectas. 4º curso de E.S.O., opción B. Modelo de examen (ficticio)
demattematicaswordpresscom Vectores y rectas º curso de ESO, opción B Modelo de examen (ficticio) Sean los vectores u = (,5) y v = (, ) a) Analiza si tienen la misma dirección No tienen la misma dirección
Herramientas digitales de auto-aprendizaje para Matemáticas
real de con Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura real de con Índice real de con real de con.
Espacio afín. 1. Rectas en el espacio. Piensa y calcula. Aplica la teoría
6 Espacio afín 1. Rectas en el espacio Piensa y calcula Calcula las coordenadas de un vector que tenga la dirección de la recta que pasa por los puntos A2, 1, 5 y B3, 1, 4 AB 1, 2, 1 Aplica la teoría 1.
LUGARES GEOMÉTRICOS. CÓNICAS
9 LUGARES GEOMÉTRICOS. CÓNICAS Página PARA EMPEZAR, RELEXIONA Y RESUELVE Cónicas abiertas: parábolas e hipérbolas Completa la siguiente tabla, en la que α es el ángulo que forman las generatrices con el
REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x
1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.
Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos.
Capítulo 1 Preliminares Vamos a ver en este primer capítulo de preliminares algunos conceptos, ideas y propiedades que serán muy útiles para el desarrollo de la asignatura. Se trata de resultados sobre
IES Fco Ayala de Granada Modelos del 2010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A
Opción A Ejercicio opción A, modelo de año 200 [2 5 puntos] Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función a maximizar A (/2)(x)(y)
1 Curvas planas. Solución de los ejercicios propuestos.
1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)
Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta
Geometría Analítica Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas Isidro Huesca Zavaleta La Integración de dos Ciencias La Geometría Analítica nació de la integración de dos ciencias
Guía de Matemática Tercero Medio
Guía de Matemática Tercero Medio Aprendizaje Esperado: 1. Plantean y resuelven problemas que involucran ecuaciones de segundo grado; explicitan sus procedimientos de solución y analizan la existencia y
Subespacios Vectoriales
Subespacios Vectoriales Prof. Apuntes del Postgrado en Ingeniería 31 Mayo 2008 Subespacio Definición de Subespacio y Ejemplos. Definición Sea H un subconjunto no vacio de un espacio vectorial V(K). Si
Forma polar de números complejos (repaso breve)
Forma polar de números complejos (repaso breve) Objetivos. pasar la forma polar de números complejos. quisitos. Números complejos, funciones trigonométricas, valor absoluto de números complejos, circunferencia
Figura 3.1. Grafo orientado.
Leyes de Kirchhoff 46. ECUACIONES DE INTERCONEXION. Leyes de Kirchhoff..1. Definiciones. Una red está formada por la interconexión de componentes en sus terminales; y deben cumplirse simultáneamente las
Capítulo 2 Soluciones de ejercicios seleccionados
Capítulo Soluciones de ejercicios seleccionados Sección..4. (a) Sí. (b) No. (c) Sí.. (a) x = si α, pero si α = todo número real es solución de la ecuación. (b) (x, y) = (λ 7/, λ) para todo λ R.. Si k 6
Academia de Matemáticas T.M Geometría Analítica Página 1
INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos
Ecuaciones de rectas y planos. Un punto O y una base B B = { i, j,
Ecuaciones de rectas y planos. Coordenadas en el espacio. Planos coordenados. El vector OP tiene unas coordenadas( x, y, z ) respecto de la base B, que se pueden tomar como coordenadas del punto P respecto
como el número real que resulta del producto matricial y se nota por:
Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,
Álgebra Lineal Ma1010
Álgebra Ma1010 Departamento de Matemáticas ITESM Álgebra - p. 1/31 En este apartado se introduce uno de los conceptos más importantes del curso: el de combinación lineal entre vectores. Se establece la
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
TEMA 2. ESPACIOS VECTORIALES
TEMA 2. ESPACIOS VECTORIALES CÉSAR ROSALES GEOMETRÍA I En este tema comenzaremos el estudio de los objetos que nos interesarán en esta asignatura: los espacios vectoriales. Estos son estructuras básicas
MATEMÁTICAS 2º DE ESO
MATEMÁTICAS 2º DE ESO LOE TEMA VII: FUNCIONES Y GRÁFICAS Coordenadas cartesianas. Concepto de función. Tabla y ecuación. Representación gráfica de una función. Estudio gráfico de una función. o Continuidad
