Capítulo 2 Soluciones de ejercicios seleccionados
|
|
|
- Juan Francisco Alarcón del Río
- hace 9 años
- Vistas:
Transcripción
1 Capítulo Soluciones de ejercicios seleccionados Sección..4. (a) Sí. (b) No. (c) Sí.. (a) x = si α, pero si α = todo número real es solución de la ecuación. (b) (x, y) = (λ 7/, λ) para todo λ R.. Si k 6 las soluciones del sistema son la intersección de dos rectas paralelas (sistema incompatible); si k = 6 las soluciones del sistema son la intersección de dos rectas coincidentes (sistema compatible indeterminado). Sección..5 /8 /8. A 7/4, B 5/. /8. o sistema: (x, y, z, w) = (,,, ). 4 o sistema: (x, y, z, w) = ( y 9, y, 7, ). 5 o sistema: (x, y, z, w) = (,,, ). 4. er sistema: si a ±4, (x, y, z) = ( 8, +, 7 a+4 7 a+4 a+4) ; si a = 4, (x, y, z) = ( 8 z, + z, z) ; si a = 4, es incompatible. o sistema: si a y a 4, 7 7 (x, y) = (, ); si a =, (x, y) = (y, y); si a = 4, (x, y) = ( y, y). 5. Deben cumplir que c = 5a b. 6. Es compatible determinado con solución (x, y, z) = (,, 4) Sección..5. (a) Falsa, salvo en el caso de que AB = BA. (b) Falsa, salvo en el caso de que p = n. c + d c/ 4. Son todas las matrices de la forma B =, con c, d R. c d Sección.4.4. A = , B = ,
2 C = Es más fácil hacer las inversas de esas matrices por el método de los adjuntos. En cualquier caso, se obtiene que la matriz A es inversible para todo a, B es inversible para todo a y a ± y C lo es para todo a R, y las inversas son: A = 8( + a) cos a sen a C = sen a cos a. Sección a 6 4a 6, B = 9 a a 5 a+ a (a )( a ) a a a a (a )( a ) a a a a a a 4 a a a a 4 a a a a 4 = a a a a 44 + a a a 4 a 4 + a a 4 a a 4 + a a a 4 a 4 + a 4 a 4 a 4 a 44 a a a a 44 + a a 4 a a 4 + a a a a 44 + a a a 4 a 4 + a a 4 a a 4 + a 4 a a a 4 + a 4 a a a 4 + a 4 a a a 4 a a a 4 a 4 a a a a 44 a a 4 a a 4 a a a a 44 a a a 4 a 4 a a 4 a a 4 a a a 4 a 4 a a a a 44 a a 4 a a 4 a 4 a a a 4 a 4 a a a 4 a 4 a a a El valor del determinante es (x ) 6. Luego la solución de la ecuación es x =., Sección (a) El sistema es siempre compatible indeterminado: si a = / y b = 5/4, la solución depende de dos parámetros; en cualquier otro caso depende de un solo parámetro. Sección.8. (a) Cuando las tres rectas coinciden. (b) Cuando las tres rectas se cortan en un punto (bien siendo distintas las tres rectas o bien siendo dos iguales y la otra las corta). (c) Hay cuatro casos posibles: que las tres rectas sean distintas y paralelas; que dos rectas coincidan y la tercera sea paralela; que dos rectas sean paralelas y la tercera corte a ambas; que las tres rectas se corten dos a dos (formando un triángulo).
3 En el caso homogéneo, las tres rectas pasan por el origen, manteniéndose los casos considerados en las respuestas (a) y (b) y siendo imposible cualquiera de los casos contemplados en (c). La solución es: (x, y, z) = (az + p, bz + q, z) (una recta, intersección de los dos planos definidos por las ecuaciones). Observe que (x, y, z) = (az + p, bz + q, z) = (p, q, ) + (a, b, )z, y que por tanto las soluciones forma la recta que pasa por el punto (p, q, con vector director (a, b, ) ( ) n 6. Se responde aquí a la solución de este ejercicio según la modificación indicada en la sección de erratas. Si el número de horas diarias que trabajan las cuatro hormigoneras se denota respectivamente por x, y, z, w, entonces la respuesta a la primera pregunta es: (x, y, z, w) = ( w, 5 5w, 4 w, w). Y los números de 4 horas máximo y mínimo que puede trabajar la cuarta hormigonera es de y, respectivamente. 7. (a) Incompatible. (b) Incompatible. (c) (x, y) = (y +, y). (d) (x, y, z, s, t) = (7 y s, y,, s, ). (e) (x, y, z) = (,, ). (f) (x, y, z, w) = (, 5,, 8). (g) (x, y, z) = ( 4,, 7). (h) (x, y, z, w) = (w, z, z, w). (i) (x, y, z, w) = ( z/4, z/4 w, z, w). (j) (x, y, z) = (z/8, 5z/6, z). (k) (x, y, z) = ( z/7, 4z/7, z). (l) (x, y, z) = (,, ). 8. (a) Si a b, (x, y, z) = (, b, ) a b a b a ; si a = b, es incompatible; si = a b, (x, y, z) = ( y, y, ); si = a = b, (x, y, z) = ( y z, y, z). (c) Si a y b, (x, y, z) = ( b (, b, ) ; si a y b =, (x, y, z) = a a z, z, z) ; si a = y b, es incompatible; si a = y b =, (x, y, z) = a a (x, y, ). (d) (x, y) = ((6a b)/9, ( a + b)/9). (e) (x, y, z) = (a c/, a b/, a + b/ + c/). ( (g) Si a,,, (x, y, z) =, a 9, a+ (a )(a+) 4a (a )(a+) ) ; si a =, es incompatible; si a =, (x, y, z) = ( z, + z, z); si a =, es incompatible.. (a, b, c) = (π/, π, ).. (a) El sistema es compatible (indeterminado dependiendo de dos parámetros) si y solo si b = b = b /. (b) El sistema es compatible (indeterminado dependiendo de un parámetro) si y solo si b = b + b. (c) El sistema es compatible (determinado) para cualesquiera b, b, b R.. (a) (x, y, z) = (6/, 4/, /). (b) (x, y, z) = ( 5/, 5/, /). (c) (x, y, z) = (,, 4). (d) (x, y, z) = (4/4, 5/6, 5/).
4 . k = y k = /. b 8. Las matrices pueden ser de las tres formas siguientes:, y c a b a, donde a, b y c son distintos de cero. /b a a 9. (a) M n = n M y B n n na = a n para todo n N. (b) Nunca ocurrirá que B = B ni que B = I ; y B = si y solo si a =. a. (a) M n n na = b a n para todo n N.. (a) Ejemplos de matriz simétrica: 4 5, Ejemplos de matriz antisimétrica: 5,. 5 (d) A = (A + At ) + (A At ). / 5/. 4 5 = / 4 + 5/. 4 a b a b. (a) Se llega a que A = (a, b, d R) o A = + (a, b R). b d a b (b). 4. M =, N = A =, A =, A, B = C = D =,5,,,5,7,4,5, B, B =, C =, E = 8,, D =,
5 6. A a =, si a a 5a + a 5± 7; A si a = 5± 7. b b C = b 4, si a y b ; C si a = o b =. a(b ) a a a a D = a a a 4 a a a, si a ; D si a =. a a a 7. (a) (con la corrección indicada en las erratas de sustituir el que aparece en la matriz por. (b) (a). (b). 9. det(a ) =, det(a ) =, det(a ) =, det(b ) =, det(b ) =, det(b ) =, det(c ) =, det(c ) =, det(c ) = 6, det(d ) = /, det(d ) =, det(e ) = 64, det(e ) =, det(a) = a 5a +, det(b) = b, det(c) = a (b ), det(d) = a 4.. (a) 8. (b) x(x a)(x d)(x f). (c) abc(b a)(c a)(c b). (d) (b a ) 4.. (a) x = ±4. (b) x = y x =.. (a) 5. (b) 8/5. (c) /4. (d) 5. (e) 5. (f) 5. (g) 5. (h).. Otra matriz que tiene esa propiedad es la matriz identidad. 7. (a) y. 9. (a) Basta fijarse en los resultados del ejercicio 9. (b) Los resultados son obviamente los mismos que los dados para los ejercicios 5 y 6. n n(n ) n(n )(n ) 6 4. (a) (I A) =. (b) (I n(n ) A)n = n n. (c) (I + A) =. (d) (I + A)(I A) =. 4. (a) El rango es si α y α ; el rango es si α = o α =. (b) El rango es 4 si α ; el rango es si α =. 4. A = (a) Si a b, es compatible determinado; si a = b, es incompatible. (b) Véase el apartado (g) del ejercicio 8 de esta sección. (c) Si a, es compatible determinado; si a =, es incompatible. (d) Si a y a, es compatible determinado; si a =, es incompatible; si 5
6 a =, es compatible indeterminado (dependiendo la solución de dos parámetros). (e) Véase el apartado (a) del ejercicio 8 de esta sección. (h) Si a, es incompatible; si a =, es compatible indeterminado (dependiendo la solución de un parámetro). (k) El sistema coincide con el del apartado (h) del ejercicio 8 de esta sección; si a 4 y a, es compatible determinado; si a = 4, es incompatible; si a =, es compatible indeterminado (dependiendo la solución de un parámetro). (n) Si a b+ b+, es incompatible; si a = y b 8, es compatible determinado; 5 5 si b = 8 y a = b+ = 5, es incompatible. 5 (o) Si a, es compatible indeterminado (dependiendo la solución de un parámetro); si a =, es compatible indeterminado (dependiendo la solución de dos parámetros). 46. (x, y, z, u) = (u/8, u/4, 7u/8, u). 6
Colegio Internacional Torrequebrada. Departamento de Matemáticas
Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene
IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A
Opción A Ejercicio 1 opción A, modelo 6 del 010 [ 5 puntos] Dada la función f : R R definida como f(x)= a.sen(x)+ bx + cx + d, determina los valores de las constantes a, b, c y d sabiendo que la gráfica
Espacio afín. 1. Rectas en el espacio. Piensa y calcula. Aplica la teoría
6 Espacio afín 1. Rectas en el espacio Piensa y calcula Calcula las coordenadas de un vector que tenga la dirección de la recta que pasa por los puntos A2, 1, 5 y B3, 1, 4 AB 1, 2, 1 Aplica la teoría 1.
Matrices y determinantes. Sistemas de ecuaciones lineales
Tema 0 Matrices y determinantes Sistemas de ecuaciones lineales 01 Introducción Definición 011 Se llama matriz a un conjunto ordenado de números, dispuestos en filas y columnas, formando un rectángulo
3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE
3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE ECUACIONES LINEALES Y MATRICES COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 3.1.1. Resolución de sistemas de ecuaciones lineales. Método
IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Sobrantes de 011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 del 011 [ 5 puntos] Queremos hacer junto a la carretera un cercado rectangular
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x
EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA
EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean linealmente
Ejercicios de Rectas y planos.
Matemáticas 2ºBach CNyT. Ejercicios Rectas, planos. Pág 1/9 Ejercicios de Rectas y planos. 1. Las coordenadas de los vértices consecutivos de un paralelogramo son A(1, 0, 0) y B(0, 1, 0). Las coordenadas
EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES
EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES DETERMINANTES Y SISTEMAS DE ECUACIONES JUNIO 06/07. a) Calcula el rango de la matriz A según los valores del parámetro a 3 a A = 4 6 8 3 6 9 b)
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en
a) La ecuación del plano que pasa por el punto ( 1, 1, 0 ). (3 puntos) b) La ecuación del plano que es paralelo a la recta r.
PROBLEMAS DE SELECTIVIDAD. BLOQUE GEOMETRÍA 1. En el espacio se dan las rectas Obtener a) El valor de para el que las rectas r y s están contenidas en un plano. (4 puntos) b) La ecuación del plano que
Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3
1.- DETERMINANTE DE UNA MATRIZ CUADRADA Determinante de una matriz cuadrada de orden 1 Dada una matriz cuadrada de orden 1, A = (a), se define det A = det (a) = a Determinante de una matriz cuadrada de
EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA
EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean
Matrices, determinantes y sistemas lineales
UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Relación de Problemas n o 5 Curso 006-007 Matrices, determinantes y sistemas lineales 8. Dadas las matrices A y B siguientes, calcule
IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]
GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π
GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a
A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas.
A1.- Determina a y b sabiendo que el sistema de ecuaciones x + 3y +z = 1 -x + y +z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas. Para que el sistema tenga, al menos, dos soluciones distintas
IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 opción A, modelo 3 Septiembre
IES Fco Ayala de Granada Septiembre de 015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 3 Septiembre 015 ax + b [ 5 puntos] Halla los valores a, b y c sabiendo que
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
IES Fco Ayala de Granada Modelos del 2010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A
Opción A Ejercicio opción A, modelo de año 200 [2 5 puntos] Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función a maximizar A (/2)(x)(y)
ACTIVIDADES SELECTIVIDAD MATRICES
ACTIVIDADES SELECTIVIDAD MATRICES Ejercicio 1 Para qué valores de m tiene solución la ecuación matricial? (b) Resuelve la ecuación matricial dada para. Ejercicio 2 Siendo I la matriz identidad de orden
Conjuntos y matrices. Sistemas de ecuaciones lineales
1 Conjuntos y matrices Sistemas de ecuaciones lineales 11 Matrices Nuestro objetivo consiste en estudiar sistemas de ecuaciones del tipo: a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n Una solución
IES EL PILES SELECTIVIDAD OVIEDO DPTO. MATEMÁTICAS Geometría
P.A.U. de. (Oviedo). (junio 994) Dados los puntos A (,0, ), B (,, ), C (,6, a), se pide: i) hallar para qué valores del parámetro a están alineados, ii) hallar si existen valores de a para los cuales A,
PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.
PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia
EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES
EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que
EJERCICIOS DE GEOMETRÍA
EJERCICIOS DE GEOMETRÍA 1. Se consideran las rectas r x 2 = 0 x 2z = 1, s y + 3 = 0 y + z = 3 a) Estudiar la posición relativa de r y s. b) Hallar la mínima distancia entre ambas. Se pide: Sol: Se cruzan
Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008
Ejercicios de Matrices, determinantes sistemas de ecuaciones lineales. Álgebra 8 - Dado el sistema de ecuaciones lineales 5 (a) ['5 puntos] Clasifícalo según los valores del parámetro λ. (b) [ punto] Resuélvelo
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Página 74 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes:
Sistemas lineales con parámetros
4 Sistemas lineales con parámetros. Teorema de Rouché Piensa y calcula Dado el siguiente sistema en forma matricial, escribe sus ecuaciones: 3 0 y = 0 z + y 3z = 0 y = Aplica la teoría. Escribe los siguientes
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 0 REFLEXION Y RESUELVE Resolución de sistemas Ò mediante determinantes y Resuelve, aplicando x x e y, los siguientes sistemas de ecuaciones: 3x 5y 73 a
IES Fco Ayala de Granada Septiembre de 2013 (Modelo 4 Especifico 2) Solución Germán-Jesús Rubio Luna. Opción A
IES Fco Ayala de Granada Septiembre de 013 (Modelo 4 Especifico ) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 Septiembre 013 específico [ 5 puntos] Un rectángulo está inscrito en un
GEOMETRÍA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014
GEOMETRÍA (Selectividad 014) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 014 1 Aragón, junio 014 Dados el punto P (1, 1, 0), y la recta: x+ z 1= 0 s : 3x y 3= 0 Ax + By
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales 1. Estudiar el sistema de ecuaciones según los valores del parámetro a. ax + y + z = a x y + z = a 1 x + (a 1)y + az = a + 3 Resolverlo (si es posible) para a = 1. (Junio
SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS.
SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. Sistemas de ecuaciones lineales DEFINICIÓN SISTEMAS DE ECUACIONES Un sistema de m ecuaciones lineales con n incógnitas,,,, n es un conjunto de m igualdades
Problemas de exámenes de Geometría
1 Problemas de exámenes de Geometría 1. Consideramos los planos π 1 : X = P+λ 1 u 1 +λ 2 u 2 y π 2 : X = Q+µ 1 v 1 +µ 2 v 2. Cuál de las siguientes afirmaciones es incorrecta? a) Si π 1 π 2 Ø, entonces
MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias
Geometría del espacio: problemas de ángulos y distancias; simetrías MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Ángulos
EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector
EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es
1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS
1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1.1 SISTEMAS DE ECUACIONES LINEALES Una ecuación lineal es una ecuación polinómica de grado 1, con una o varias incógnitas. Dos ecuaciones son equivalentes
DETERMINANTES UNIDAD 3. Página 76
UNIDAD 3 DETERMINANTE Página 76 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes: 2x + 3y 29 5x 3y 8 4x + y
Sistemas de Ecuaciones Lineales y Matrices
Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una
IES Fco Ayala de Granada (Modelo 2 del 2012) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada (Modelo del 01) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 011-01 Opción A Ejercicio 1, Opción A, Modelo de 01 Sea la
Matrices, determinantes, sistemas de ecuaciones lineales.
UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Resúmenes Curso 2007-2008 Matrices, determinantes, sistemas de ecuaciones lineales. Una matriz A de orden m n es una colección de m
Matrices, Determinantes y Sistemas Lineales.
12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión
520142: ALGEBRA y ALGEBRA LINEAL
520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición
TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO
Temas 6 y 7 Rectas y planos en el espacio Matemáticas II - 2º Bachillerato 1 TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO RECTAS Y PLANOS EJERCICIO 1 : Halla el volumen del tetraedro determinado por los ejes
Problemas métricos. 1. Problemas afines y problemas métricos
. Problemas afines y problemas métricos Al trabajar en el espacio (o análogamente en el plano) se nos pueden presentar dos tipos de problemas con los elementos habituales (puntos, rectas y planos): Problemas
IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A
IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 2011 específico1 [2'5 puntos] Un alambre de 100 m de longitud se divide
ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3
ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 2011 2012) 2. Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí.
Ecuaciones de la recta en el espacio
Ecuaciones de la recta en el espacio Ecuación vectorial de la recta Sea P(x 1, y 1 ) es un punto de la recta r y uu su vector director, el vector PPXX tiene igual dirección que uu, luego es igual a uu
IES Fco Ayala de Granada Septiembre de 2011 (Septiembre Modelo 2) Solución Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Septiembre de 0 (Septiembre Modelo ) Germán-Jesús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 00-0. MATEMÁTICAS II Opción A Ejercicio opción A,
de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).
INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.
Ejercicios tipo final
Ejercicios tipo final En la primera parte pondremos los enunciados de los ejercicios, en la segunda algunas sugerencias y en la tercera se encuentran las resoluciones 1 Ejercicios 1 Si A R 3x2, B R 2x1
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares
TEMA 8. GEOMETRÍA ANALÍTICA.
TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos
Un subconjunto no vacío H de un espacio vectorial V es un subespacio de V si se cumplen las dos reglas de cerradura:
4 Subespacios 29 b) x 5 [25;5], 5 [;24], z 5 [4;4] Use a 5 2, a 5 / a 5 2 / 2 c) Su propia elección de x,, z /o a 2 a) Elija algunos valores para n m genere tres matrices aleatorias de n m, llamadas X,
Matemáticas II PRUEBA DE ACCESO A LA UNIVERSIDAD 2012 BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR.
PRUEBA DE ACCESO A LA UNIVERSIDAD 2012 Matemáticas II BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR Examen Criterios de Corrección y Calificación UNIBERTSITATERA SARTZEKO PROBAK
IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A
Opción A Ejercicio opción A, modelo 3 Septiembre 03 específico x Sea f la función definida por f(x) = para x > 0, x (donde ln denota el logaritmo neperiano) ln(x) [ 5 puntos] Estudia y determina las asíntotas
Matrices. José Vicente Romero Bauset. ETSIT-curso 2009/2010. José Vicente Romero Bauset Tema 1.- Matrices. 1
Matrices José Vicente Romero Bauset ETSIT-curso 2009/2010 José Vicente Romero Bauset Tema 1- Matrices 1 Introducción Por qué estudiar las matrices? Son muchas las situaciones de la vida real en las que
EJERCICIOS DE DETERMINANTES
EJERCICIOS DE 1) Si m n = 5, cuál es el valor de cada uno de estos determinantes? Justifica las p q respuestas: 2) Resuelve las siguientes ecuaciones: 3) Calcula el valor de estos determinantes: 4) Halla
. Probar que las matrices de la forma B = k A + r I, donde k y r son números. 2x + az = 0. ax + y = n. Calcular: 0 1
ÁLGEBRA 1 (Junio, 1994) Comprueba que el determinante 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 es nulo sin desarrollarlo Explica el proceso que sigues (Junio, 1994) Considerar la matriz A = 1 1 1 reales e I la
Rectas y Planos en el Espacio
Rectas y Planos en el Espacio Rectas y Planos en el Espacio Verónica Briceño V. septiembre 2012 Verónica Briceño V. () Rectas y Planos en el Espacio septiembre 2012 1 / 20 En esta Presentación... En esta
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 3, Opción B Junio, Ejercicio 4, Opción A Reserva 1, Ejercicio 4, Opción B Reserva, Ejercicio
4.1. Determinante de una matriz cuadrada de orden 2. , entonces el determinante de A es a 21 a 22 a 11 a 12 = a 11a 22 a 12 a 21
Capítulo 4 Determinante Los determinantes se calculan para matrices cuadradas. Se usan para saber cuando una matriz tiene inversa, en el cálculo de autovalores y también para resolver sistemas de ecuaciones
1. Un sistema lineal de dos ecuaciones con cuatro incógnitas puede ser compatible e indeterminado? Razonar la respuesta con algún ejemplo.
Matemáticas Selectividad Sistemas de Ecuaciones 1. Un sistema lineal de dos ecuaciones con cuatro incógnitas puede ser compatible e indeterminado? Razonar la respuesta con algún ejemplo. (Prueba previa
Sistemas de ecuaciones lineales dependientes de un parámetro
Vamos a hacer uso del Teorema de Rouché-Frobenius para resolver sistemas de ecuaciones lineales de primer grado. En particular, dedicaremos este artículo a resolver sistemas de ecuaciones lineales que
Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.
Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:
Menor, cofactor y comatriz
Menor, cofactor y comatriz Sea A una matriz cuadrada de orden n. Al quitarle la línea i y la columna j se obtiene una submatriz de orden n-1, que se denota habitualmente A i,j. Por ejemplo, con n = 4,
Resumen 3: Matrices, determinantes y sistemas de ecuaciones
Resumen 3: Matrices, determinantes y sistemas de ecuaciones lineales 1 Matrices Una matriz con coeficientes sobre un cuerpo K (normalmente K R) consiste en una colección de números (o escalares) del cuerpo
Problemas de Geometría Analítica del Espacio
1) Dados los vectores u(4, 4, 8), v( 2,, 5), w(3, 5, 8) y a(22,, 11). Hallar los valores de x, y, z que verifican la combinación lineal a = x u + y v + z w. 2) Dados los vectores a( 5, 19, n) y b( h, 3,
Examen de Junio de 2011 (Común) con soluciones (Modelo )
Opción A Junio 011 común ejercicio 1 opción A ['5 puntos] Se desea construir un depósito cilíndrico cerrado de área total igual a 54 m. Determina el radio de la base y la altura del cilindro para que éste
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales ALBERTO VIGNERON TENORIO Dpto. de Matemáticas Universidad de Cádiz Índice general 1. Sistemas de ecuaciones lineales 1 1.1. Sistemas de ecuaciones lineales. Definiciones..........
Sistemas de dos ecuaciones lineales de primer grado con dos incógnitas
Un sistema de dos ecuaciones lineales de primer grado con dos incógnitas tiene la siguiente forma Ax + By + C = 0 A x + B y + C (1) = 0 Ya sabemos que una ecuación lineal de primer grado con dos incógnitas
1. Operaciones con vectores
1. OPERACIONES CON VECTORES Academia Nakis (Lugones)684-61-61-03. 1 Resumen Geometría en 3D 1. Operaciones con vectores Sean los vectores W 1 = (a 1, b 1, c 1 ),W 2 = (a 2, b 2, c 2 ),W 3 = (a 3, b 3,
TEMA 6. Ángulos, distancias, simetrías Problemas Resueltos
Matemáticas II (Bachillerato de Ciencias) Soluciones de los problemas propuestos Tema 6 88 Ángulos entre rectas y planos TEMA 6 Ángulos, distancias, simetrías Problemas Resueltos Dadas las rectas r y s
EJERCICIOS DE PUNTOS EN EL ESPACIO
EJERCICIOS DE PUNTOS EN EL ESPACIO 1.- Las coordenadas de los vértices consecutivos de un paralelogramo son A (1, 0, 0) y B(0, 1, 0). Las coordenadas del centro M son M(0, 0, 1). Hallar las coordenadas
Métodos directos para resolver sistemas de ecuaciones lineales
Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el
Sistem as de ecuaciones lineales
Sistem as de ecuaciones lineales. Concepto, clasificación y notación Un sistema de m ecuaciones lineales con n incógnitas se puede escribir del siguiente modo: a x + a 2 x 2 + a 3 x 3 + + a n x n = b a
RECTAS EN EL ESPACIO. P y un vector v se llama recta al conjunto de. Q del espacio para los cuales se cumple que el vector PQ es paralelo
Dado un punto en el espacio ( x, y, z) puntos ( x, y, z) RECTAS EN E ESPACIO P y un vector v se llama recta al conjunto de Q del espacio para los cuales se cumple que el vector PQ es paralelo al vector
Superficies cuádricas
Superficies cuádricas Jana Rodriguez Hertz GAL2 IMERL 9 de noviembre de 2010 definición superficie cuádrica definición (forma cuadrática) una superficie cuádrica está dada por la ecuación: definición superficie
Trabajo Práctico N 5: ESPACIOS VECTORIALES
Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique
Capítulo 1 DETERMINANTES
Capítulo 1 DETERMINANTES 1 Matemáticas II 2 1.1. DETERMINANTES DE 2 o ORDEN a11 a Sea A una matriz cuadrada de segundo orden A = 12. Se define el determi- a 21 a 22 nante det(a) = A = a 11 a 12 a 21 a
Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A
Eámenes de Matemáticas de Selectividad ndalucía resueltos http://qui-mi.com/ Eamen de Selectividad Matemáticas JUNIO 5 - ndalucía OPCIÓN.- [,5 puntos] Se quiere construir un depósito abierto de base cuadrada
Matriz sobre K = R o C de dimensión m n
2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0
UNIDAD 8 Geometría analítica
Pág. 1 de 5 I. Sabes hallar puntos medios de segmentos, puntos simétricos de otros y ver si varios puntos están alineados? 1 Los puntos A( 1, 3), B(2, 6), C (7, 2) y D( 5, 3) son vértices de un cuadrilátero.
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS CC SOCIALES CAPÍTULO 2 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
Trabajo Práctico N 5: ESPACIOS VECTORIALES. Ejercicio 1:
6 Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio : Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique
, siendo A t la matriz traspuesta de A. 5. [2013] [EXT-A] a) Discutir el sistema de ecuaciones lineales según los valores del parámetro m: 1 2.
MasMatescom [4] [EXT-A] a) Resolver la siguiente ecuación matricial X A = B-C, siendo A = 5, B = - y C = - b) Sean F, F y F las filas de una matriz cuadrada de orden cuyo detereminante vale 5 Calcular
UNIDAD I: SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS
UNIDAD I: SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS Sistemas de dos ecuaciones con dos incógnitas. Método de igualación. Método de reducción. Método de sustitución Método de eliminación Gaussiana.
95 EJERCICIOS de RECTAS
9 EJERCICIOS de RECTAS Forma paramétrica: 1. Dado el punto A(,3) y el vector director ur = (1, ), se pide: a) Hallar las ecuaciones paramétricas de la recta r que determinan. b) Obtener otros tres puntos
TEMA 12. RECTAS Y PLANOS. INCIDENCIA.
TEMA 12. RECTAS Y PLANOS. INCIDENCIA. Un sistema de referencia en el espacio está formado por un punto y tres vectores linealmente independientes. A partir de ahora consideraremos el sistema de referencia
Tema 6. Planos y rectas en el espacio. Problemas métricos (Ángulos, paralelismo y perpendicularidad, simetrías, distancias )
Matemáticas II (Bachillerato de Ciencias) Geometría del espacio: Problemas métricos 7 Tema 6 Planos rectas en el espacio Problemas métricos (Ángulos, paralelismo perpendicularidad, simetrías, distancias
IES Fco Ayala de Granada Junio específico de 2010 (Modelo 4) Solución Germán-Jesús Rubio Luna. Opción A
IES Fco Ayala de Granada Junio específico de 010 (Modelo 4) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 Junio Específico 010 [ 5 puntos] La hipotenusa de un triángulo rectángulo mide
Profesor: Fernando Ureña Portero
Curso 13-14 1.-Los puntos A(1,3,1) y B(2,1,3) son vértices consecutivos de un cuadrado. Los otros dos vértices pertenecen a una recta r que pasa por el punto P(2,7,0). a) (3p) Hallar la ecuación de la
1 ÁLGEBRA DE MATRICES
1 ÁLGEBRA DE MATRICES 1.1 DEFINICIONES Las matrices son tablas numéricas rectangulares. Se dice que una matriz es de dimensión m n si tiene m filas y n columnas. Cada elemento de una matriz se designa
Lo rojo sería la diagonal principal.
MATRICES. Son listas o tablas de elementos y que tienen m filas y n columnas. La dimensión de la matriz es el número se filas y de columnas y se escribe así: mxn (siendo m el nº de filas y n el de columnas).
