Transformación adjunta a una transformación lineal
|
|
|
- José Miguel Olivares Franco
- hace 7 años
- Vistas:
Transcripción
1 Transformación adjunta a una transformación lineal Objetivos. Estudiar la construcción y las propiedades básicas de la transformación lineal adjunta. Requisitos. Transformación lineal, producto interno, representación de funcionales lineales en un espacio vectorial con producto interno. En estos apuntos se supone que el producto interno es lineal con respecto al segundo argumento. 1. Proposición (criterio del vector cero en un espacio con producto interno, repaso). Sea V un espacio vectorial complejo con producto interno y sea a V. Entonces las siguientes tres condiciones son equivalentes: a = 0 a a a V. Demostración. Si a = 0, entonces para todo b V tenemos que a, b = 0, lo que significa que a V. Si a V, entonces para todo b V tenemos que a, b = 0, en particular a a. Si a a, entonces por la definición del producto interno a = Proposición (criterio para que dos transformaciones lineales en espacios con productos internos sean iguales). Sean V, W espacios vectoriales con producto interno y sean T, U L(V, W ). Entonces las siguientes condiciones son equivalentes: (a) T = U. (b) v V w W T v, w W = Uv, w W. (c) v V w W w, T v W = w, Uv W. Demostración. Demostremos que (b) implica (a). Aplicando propiedades linales escribimos la condición (b) de la siguiente manera: v V w W (T U)v, w W = 0. Esto significa que (T U)v W y por lo tanto (T U)v = 0 W. Como v V es arbitrario, T U = 0. Transformación adjunta a una transformación lineal, página 1 de 6
2 3. Definición (transformación adjunta a una transformación lineal en espacios con producto interno). Sean V, W espacios vectoriales (ambos reales o ambos complejos) con producto interno y sea T L(V, W ). Una transformación lineal S L(W, V ) se le llama adjunta a T si v V w W w, T v W = Sw, v V. (1) 4. Ejercicio. Demuestre que la condición (1) es equivalente a la siguiente: v V w W T v, w W = v, Sw V. 5. Teorema (existencia y unicidad de la transformación adjunta). Sean V, W espacios vectoriales (ambos reales o ambos complejos) con producto interno, dim(v ) < + y sea T L(V, W ). Entonces existe una única transformación lineal S L(W, V ) tal que v V w W w, T v W = Sw, v V. (2) Esta transformación S se llama la transformación adjunta a T y se denota por T. Demostración. Unicidad. Supongamos que S y S ambas son transformaciones lineales adjuntas a T. Entonces v V w W Sw, v V = w, T v W = S w, v V, y por el criterio de igualdad de transformaciones lineales en espacios con productos internos concluimos que S = S. Existencia. Consideramos sólo el caso compelejo (el caso real es similar). Para todo vector fijo w W la función ϕ w : V C definida mediante la regla ϕ w (v) = w, T v es un funcional lineal en V, es decir, ϕ w V. Por el de la representación de funcionales lineales en espacios unitarios (teorema de Riesz-Fréchet para el caso de dimensión finita) existe un único vector u V tal que esto es, v V v V ϕ w (v) = u, v, w, T v = u, v. El vector u depende de w. Lo denotamos por S(w). Entonces S es una función de W en V y cumple con la propiedad (2). Falta probar que S es lineal. Sean b, c W y λ, µ C. Tenemos por demostrar que S(λb + µc) = λs(b) + µs(c), Transformación adjunta a una transformación lineal, página 2 de 6
3 esto es, S(λb + µc) λs(b) µs(c) = 0 V. Por el criterio del vector cero en un espacio con producto interno, será suficiente demostrar que S(λb + µc) λs(b) µs(c) es ortogonal a todo vector a V. Vamos a basarnos en la identidad (2) y en la propiedad lineal conjugada del producto interno con respecto al primer argumento. S(λb + µc) λs(b) µs(c), a = S(λb + µc), a λ S(b), a µ S(c), a = λb + µc, T (a) λ b, T (a) µ c, T (a) = λb + µc λb µc, T (a) = 0, T (a) = Nota. El teorema de Riesz-Fréchet de la representación de funcionales lineales es válido no sólo en espacios de dimensión finita, sino en todo espacio de Hilbert (este concepto generaliza espacios unitarios o euclidianos al caso de dimensión infinita; en pocas palabras, son los espacios con producto interno en los cuales toda sucesión de Cauchy converge). El teorema 5 que acabamos de demostrar también se puede generalizar al caso de espacios de Hilbert. Operador adjunto En el caso V = W es común usar el término operador lineal en vez de transformación lineal. El caso particular V = W es el más importante, por eso escribimos una versión del teorema 5 para este caso (por supuesto, ya no necesitamos demostrarlo). 7. Teorema (existencia y unicidad del operador adjunto a un operador lineal en un espacio unitario o euclidiano). Sea V un espacio unitario o euclidiano y sea T L(V ). Entonces existe un único operador lineal S L(V ) tal que u, v V u, T v = Su, v. (3) Este operador lineal S se llama el operador adjunto a T y se denota por T. Transformación adjunta a una transformación lineal, página 3 de 6
4 Ejemplos de operadores adjuntos 8. Ejemplo (el operador adjunto al operador del desplazamiento en C 4 ). Definimos el operador T : C n C n mediante la regla: { x j+1, j {1, 2, 3}; (T x) j := 0, j = 4. En otras palabras, T x = Es fácil ver que T L(C n ). Encuentre T. 9. Ejemplo (el operador adjunto al operador del desplazamiento cíclico en C 4 ). Haga la tarea del ejercicio anterior para el operador T : C n C n, { x j+1, j {1, 2, 3}; (T x) j := x 1, j = Ejemplo (el operador adjunto al operador de multiplicación en el espacio de las funciones continuas). Consideremos el espacio C([α, β]) = C([α, β], C) con el producto interno f, g := β α x 2 x 3 x 4 0. f(x) g(x) dx. Sea a C([α, β]) una función fija. La transformación de multiplicación por a se define por la siguiente regla de correspondencia: Es fácil ver que M a = Mā. f C([α, β]) x [α, β] (M a f)(x) := a(x)f(x). 11. Ejercicio (la multiplicación izquierda por una matriz fija y su operador adjunto). En el espacio M n (C) con el producto interno canónico X, Y = tr(x Y ) con cada matriz A M n (C) podemos asociar el operador de la multiplicación izquierda por A: L A : M n (C) M n (C) X M n (C) L A X := AX. Demuestre que L A es un operador lineal y calcule su operador adjunto L A. Transformación adjunta a una transformación lineal, página 4 de 6
5 12. Ejercicio (el adjunto al operador de la derivada en el espacio de las funciones suaves de soporte compacto). Denotemos por C 0 (R) al espacio de funciones R C infinitamente derivables de soporte compacto. Se dice que una función f es de soporte compacto si existe un intervalo finito tal que f se anula en todas los puntos fuera de este intervalo. Definimos en C 0 (R) el siguiente producto interno: f, g := + f(x) g(x) dx. Como f y g son de soporte compacto, en realidad la integral siempre es sobre un intervalo finito (que depende de f y g). Ahora consideremos en el espacio C 0 (R) el operador derivada: Calcule su operador adjunto D. D : C 0 (R) C 0 (R), Df := f. 13. Ejercicio (el adjunto al operador integral). Consideremos el espacio de funciones continuas C([a, b]) = C([a, b], C) con el producto interno f, g = b a f(x)g(x) dx. Sea K C([a, b] [a, b]). El operador integral con el núcleo integral K en el espacio C([a, b]) se define como (T f)(x) = b a K(x, t)f(t) dt. Demuestre que T es el operador integral con el núcleo integral K, donde K (x, t) = K(t, x) x, t [a, b]. En otras palabras, (T g)(y) = b K(u, y) g(u) du. a Transformación adjunta a una transformación lineal, página 5 de 6
6 Propiedades aritméticas de la transformación adjunta Suponemos que V y W son espacios vectoriales con producto interno de dimensiones finitas, ambos complejos o ambos reales. 14. Adjunta de la adjunta. Sea T L(V, W ). Entonces (T ) = T. 15. Adjunta de la suma. Sean T, U L(V, W ). Entonces (T + U) = T + U. 16. Adjunta del producto por escalar. Sean T L(V, W ) y λ C. Entonces (λt ) = λt. 17. Adjunta del producto. Sean V, W, X espacios unitarios (o todos euclidianos) y sean T L(V, W ), U L(W, X). Entonces (UT ) = T U. 18. Adjunta de la identidad. Sea V un espacio unitario o euclidiano. Entonces (I V ) = I V. 19. Inversa de la transformación adjunta. Sean V, W espacios vectoriales con producto interno, dim(v ) = dim(w ) < +, T L(V, W ) una transformación lineal invertible. Entonces T también es invertible, y (T ) 1 = (T 1 ). Idea de la demostración. Hay que demostrar que la transformación (T 1 ) es inversa a T, esto es, que (T 1 ) T = I y T (T 1 ) = I. 20. Corolario (invertibilidad de la transformación adjunta). Sean V, W espacios unitarios (o ambos euclidianos), dim(v ) = dim(w ) < +, y sea T L(V, W ). Entonces T es invertible T es invertible. 21. Proposición (espectro del operador adjunto). Sea V un espacio unitario o euclidiano y sea T L(V ). Entonces sp(t ) = sp(t ) = { z C: z sp(t ) }. Demostración. Primero notemos que por las propiedades aritméticas de la adjunta, (T λi) = (T ) (λi) = T λi. Ahora aplicamos el criterio de invertibilidad de la transformación adjunta a la transformación T λi: λ sp(t ) (T λi) no es invertible T λi no es invertible λ sp(t ). Transformación adjunta a una transformación lineal, página 6 de 6
Conjunto R 3 y operaciones lineales en R 3
Conjunto R 3 y operaciones lineales en R 3 Objetivos. Definir el conjunto R 3 y operaciones lineales en R 3. Requisitos. Conjunto de los números reales R, propiedades de las operaciones aritméticas en
Matriz asociada a una transformación lineal respecto a un par de bases
Matriz asociada a una transformación lineal respecto a un par de bases Objetivos Definir la matriz asociada a una transformación lineal respecto a un par de bases y estudiar la representación matricial
Espacios Vectoriales
Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios
Funciones de Clase C 1
Capítulo 7 Funciones de Clase C 1 Vamos a considerar ahora la extensión a varias variables del concepto de función de clase C 1. Cada vez que establezcamos una propiedad de las funciones diferenciables,
Descomposición en valores singulares de una matriz
Descomposición en valores singulares de una matriz Estas notas están dedicadas a demostrar una extensión del teorema espectral conocida como descomposición en valores singulares (SVD en inglés) de gran
Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen
Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen 1. Teorema de la representación matricial de una transformación
Límite superior y límite inferior de una sucesión
Límite superior y límite inferior de una sucesión Objetivos. Definir las nociones de los límites superior e inferior de una sucesión y estudiar sus propiedades básicas. Requisitos. Supremo e ínfimo de
Apéndice sobre ecuaciones diferenciales lineales
Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.
Espacios vectoriales reales.
Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre
Ejemplo 1 Sea V un espacio con producto interno sobre un cuerpo K. A las transformaciones lineales T : V K las llamamos funcionales lineales.
Facultad de Ingeniería - IMERL - Geometría y Álgebra Lineal 2 - Curso 2008. 1 Transformaciones lineales en espacios con producto interno Notas para el curso de Geometría y Algebra Lineal 2 de la Facultad
4. Complementos sobre Problemas de Contorno para S.D.O. Lineales. 4. Complementos sobre Problemas de Contorno
para S.D.O. Lineales 4.1. Problemas de contorno para s.d.o. lineales. Teorema de alternativa 4.1. Problemas de contorno. Teorema de alternativa Fijemos A C 0 ([α, β]; L(R N )) y b C 0 ([α, β]; R N ), dos
Tema 5: Elementos de geometría diferencial
Tema 5: Elementos de geometría diferencial José D. Edelstein Universidade de Santiago de Compostela FÍSICA MATEMÁTICA Santiago de Compostela, abril de 2011 Coordenadas locales y atlas. Funciones y curvas.
Tema 1: Espacios vectoriales
PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina
Definición de la matriz inversa
Definición de la matriz inversa Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, habilidades básicas de resolver sistemas de ecuaciones Ejemplo El número real
Transformaciones lineales
Semana 8 [1/62] 8 de septiembre de 27 Definiciones básicas Semana 8 [2/62] Definición Transformación lineal U, V dos espacios vectoriales sobre el mismo cuerpo Ã. T : U V es una transformación (o función)
ECUACIONES EN DERIVADAS PARCIALES Tópicos previos
ECUACIONES EN DERIVADAS PARCIALES Tópicos previos Para tomar el curso de ecuaciones en derivadas parciales es importante la familiaridad del alumno con los conceptos que se detallan a continuación. Sugerimos
Cálculo de la matriz asociada a una transformación lineal (ejemplos)
Cálculo de la matriz asociada a una transformación lineal ejemplos Objetivos Estudiar con ejemplos cómo se calcula la matriz asociada a una transformación lineal Requisitos Transformación lineal, definición
Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.
ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con
520142: ALGEBRA y ALGEBRA LINEAL
520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición
Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple
Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Estos apuntes están redactados por Maria de los Angeles Isidro Pérez y Egor Maximenko.
Métodos directos para resolver sistemas de ecuaciones lineales
Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el
6.1. Anillos de polinomios.
1 Tema 6.-. Anillo de polinomios. División y factorización. Lema de Gauss. 6.1. Anillos de polinomios. Definición 6.1.1. Sea A un anillo. El anillo de polinomios en la indeterminada X con coeficientes
Tema I 1. EL CUERPO DE LOS REALES, EL CUERPO DE LOS COMPLEJOS
1 Tema I 1. EL CUERPO DE LOS REALES, EL CUERPO DE LOS COMPLEJOS 1.1 Los Números Naturales. Los números naturales aparecen por la necesidad que tiene el hombre (primitivo) tanto de contar como de ordenar
Teoremas de Convergencia
Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y
Espacios vectoriales
Espacios vectoriales [Versión preliminar] Prof. Isabel Arratia Z. Algebra Lineal 1 En el estudio de las matrices y, en particular, de los sistemas de ecuaciones lineales realizamos sumas y multiplicación
MMAF: Espacios normados y espacios de Banach
MMAF: Espacios normados y espacios de Banach Licenciatura en Estadística R. Álvarez-Nodarse Universidad de Sevilla Curso 2011/2012 Espacios vectoriales Definición Sea V un conjunto de elementos sobre el
Transformaciones lineales y matrices
CAPíTULO 5 Transformaciones lineales y matrices 1 Matriz asociada a una transformación lineal Supongamos que V y W son espacios vectoriales de dimensión finita y que T : V W es una transformación lineal
Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.
Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:
Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa
Ecuaciones matriciales AX = B y XA = B Cálculo de la matriz inversa Objetivos Aprender a resolver ecuaciones matriciales de la forma AX = B y XA = B Aprender a calcular la matriz inversa con la eliminación
Una norma en un espacio lineal (o vectorial) X es una función. : X R con las siguientes propiedades: (a) x 0, para todo x X (no negatividad);
MATEMÁTICA APLICADA II Segundo cuatrimestre 20 Licenciatura en Física, Universidad Nacional de Rosario Espacios de Banach. Introducción Frecuentemente estamos interesados en qué tan grande. es una función.
Espacios Vectoriales www.math.com.mx
Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel [email protected] MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................
Tema 3: Espacios vectoriales
Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación
Transformaciones lineales invertibles (no singulares)
Transformaciones lineales invertibles (no singulares) Objetivos. Estudiar la definición y los criterios de invertibilidad de una transformación lineal. Requisitos. Funciones inyectivas, suprayectivas e
Dependencia e independencia lineal
CAPíTULO 3 Dependencia e independencia lineal En este capítulo estudiaremos tres conceptos de gran importancia para el desarrollo del álgebra lineal: el concepto de conjunto generador, el concepto de conjunto
Espacios Vectoriales, Valores y Vectores Propios
, Valores y Vectores Propios José Juan Rincón Pasaye, División de Estudios de Postgrado FIE-UMSNH Curso Propedéutico de Matemáticas para la Maestría en Ciencias opciones: Sistemas de Control y Sistemas
Tema 2: Espacios Vectoriales
Tema 2: Espacios Vectoriales José M. Salazar Octubre de 2016 Tema 2: Espacios Vectoriales Lección 2. Espacios vectoriales. Subespacios vectoriales. Bases. Lección 3. Coordenadas respecto de una base. Ecuaciones.
Matrices triangulares y matrices ortogonales
Matrices triangulares y matrices ortogonales Problemas para examen Matrices diagonales 1. Sea a R n. Se denota por diag(a) la matriz diagonal con entradas a 1,..., a n : diag(a) = [ a j δ j,k ] n j,k=1.
CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE
LA TRANSFORMADA DE LAPLACE Por cálculo integral sabemos que cuando vamos a determinar una integral impropia de la forma,su desarrollo se obtiene realizando un cambio de variable en el límite superior de
Capítulo 7. Espacios vectoriales. 7.1 Definición y ejemplos
Capítulo Espacios vectoriales.1 Definición y ejemplos Un espacio vectorial sobre un cuerpo K (que supondremos conmutativo es un conjunto no vacío junto con 1. una operación interna, +, a la que llamaremos
Sucesiones en R n. Ejemplos.-Considerando el espacio R 2 sea la sucesión {x k } 1 dada por x k = ( k, 1 k) podemos listar como sigue:
Sucesiones en R n Definición. Una sucesión en R n es cualquier lista infinita de vectores en R n x, x,..., x,... algunos de los cuales o todos ellos pueden coincidir entre si. Dada una sucesión x, x,...,
Álgebra Lineal VII: Independencia Lineal.
Álgebra Lineal VII: Independencia Lineal José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email: jrico@salamancaugtomx
Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa.
Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email:
Teorema del Valor Medio
Tema 6 Teorema del Valor Medio Abordamos en este tema el estudio del resultado más importante del cálculo diferencial en una variable, el Teorema del Valor Medio, debido al matemático italo-francés Joseph
Espacios vectoriales. Capítulo Espacios vectoriales y subespacios Preliminares
Capítulo 1 Espacios vectoriales En diversos conjuntos conocidos, por ejemplo los de vectores en el plano o en el espacio (R 2 y R 3 ), o también el de los polinomios (R[X]), sabemos sumar sus elementos
Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos
Lección 2: Funciones vectoriales: límite y continuidad. Diferenciabilidad de campos vectoriales 1.1 Introducción En economía, frecuentemente, nos interesa explicar la variación de unas magnitudes respecto
Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21
Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)
Transformaciones lineales
Capítulo 3 Transformaciones lineales Las transformaciones lineales son las funciones con las que trabajaremos en Álgebra Lineal. Se trata de funciones entre K-espacios vectoriales que son compatibles con
Terminaremos el capítulo con una breve referencia a la teoría de cardinales.
TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto
TEMA 2. ESPACIOS VECTORIALES
TEMA 2. ESPACIOS VECTORIALES CÉSAR ROSALES GEOMETRÍA I En este tema comenzaremos el estudio de los objetos que nos interesarán en esta asignatura: los espacios vectoriales. Estos son estructuras básicas
Espacios completos. 8.1 Sucesiones de Cauchy
Capítulo 8 Espacios completos 8.1 Sucesiones de Cauchy Definición 8.1.1 (Sucesión de Cauchy). Diremos que una sucesión (x n ) n=1 en un espacio métrico (X, d) es de Cauchy si para todo ε > 0 existe un
Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación).
Espacios Topológicos 1 Punto de Acumulación Definición: Sea A un subconjunto arbitrario de R n, se dice que x R n es un punto de acumulación de A si toda bola abierta con centro x contiene un punto A distinto
Definición de la matriz inversa
Definición de la matriz inversa Ejercicios Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, matriz identidad, habilidades básicas de resolver sistemas de ecuaciones
Espacio de Funciones Medibles
Capítulo 22 Espacio de Funciones Medibles Igual que la σ-álgebra de los conjuntos medibles, la familia de funciones medibles, además de contener a todas las funciones razonables (por supuesto son medibles
Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander. Monday, November 5, 2007 at 8:44 am (FA07.
Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander Monday, November 5, 2007 at 8:44 am (FA07.01,02) Para uso exclusivo en el salón de clase. 2007 c Julio C. Carrillo
IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]
Tema 2 ESPACIOS VECTORIALES
Tema 2 ESPACIOS VECTORIALES Prof. Rafael López Camino Universidad de Granada 1 Espacio vectorial Definición 1.1 Un espacio vectorial es una terna (V, +, ), donde V es un conjunto no vacío y +, son dos
Forma polar de números complejos (repaso breve)
Forma polar de números complejos (repaso breve) Objetivos. pasar la forma polar de números complejos. quisitos. Números complejos, funciones trigonométricas, valor absoluto de números complejos, circunferencia
Resumen de Análisis Matemático IV
Resumen de Análisis Matemático IV 1. Funciones inversas e implícitas y extremos condicionados 1.1. Teorema de la función inversa Teorema de la función inversa: Sea A abierto de R n, f : A R n tal que f
Semana03[1/17] Funciones. 16 de marzo de Funciones
Semana03[1/17] 16 de marzo de 2007 Introducción Semana03[2/17] Ya que conocemos el producto cartesiano A B entre dos conjuntos A y B, podemos definir entre ellos algún tipo de correspondencia. Es decir,
May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN
May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p
Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). Lección n 1: Aplicaciones Lineales EPN, verano 2012
AMARUN www.amarun.org Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). Lección n 1: Aplicaciones Lineales EPN, verano 212 Introducción Algunas fechas: 197: Noción de Operador lineal
Conjunto R n y operaciones lineales en R n
Conjunto R n y operaciones lineales en R n Objetivos. Definir el conjunto R n y operaciones lineales en R n, estudiar propiedades de las últimas. Requisitos. Conjunto de los números reales R, propiedades
1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido
E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña
Matrices y Determinantes
Capítulo 1 Matrices y Determinantes 11 Matrices Generalidades Definición 11 Sea E un conjunto cualquiera, m, n N Definimos matriz de orden m n sobre E a una expresión de la forma: a 11 a 12 a 1n a 21 a
2.1. Estructura algebraica de espacio vectorial
Tema 2 Espacios vectoriales de dimensión finita 21 Estructura algebraica de espacio vectorial Los vectores libres en el plano son el sustento geométrico del concepto de espacio vectorial Se trata de segmentos
ANÁLISIS FUNCIONAL. Oscar Blasco
ANÁLISIS FUNCIONAL Oscar Blasco Contents 1 Introducción a los espacios de Hilbert 5 1.1 Producto escalar: Propiedades y ejemplos........... 5 1.2 Completitud y ortogonalidad................... 9 1.3 Proyecciones
Álgebra Lineal IV: Espacios Vectoriales.
Álgebra Lineal IV: Espacios Vectoriales José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamancaugtomx
ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República
ALN Repaso matrices In. Co. Facultad de Ingeniería Universidad de la República Definiciones básicas - Vectores Definiciones básicas - Vectores Construcciones Producto interno: ( x, y n i x y i i ' α Producto
Cálculo II. Tijani Pakhrou
Cálculo II Tijani Pakhrou Índice general 1. Nociones topológicas en R n 1 1.1. Distancia y norma euclídea en R n.................... 1 1.2. Bolas abiertas y cerradas en R n..................... 3 1.3.
Clase 8 Matrices Álgebra Lineal
Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas
Operaciones con matrices
Operaciones con matrices Problemas teóricos En todos los problemas de esta lista se supone que F es un campo (cuerpo). Si no conoce bien el concepto de campo, entonces puede pensar que F = R. Operaciones
Álgebra Lineal Ma1010
Álgebra Lineal Ma1010 Departamento de Matemáticas ITESM Álgebra Lineal - p. 1/16 En esta lectura veremos el proceso para obtener la factorización QR de una matriz. Esta factorización es utilizada para
Sistemas de Ecuaciones Lineales y Matrices
Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una
Tema 5: Sistemas de ecuaciones lineales.
TEORÍA DE ÁLGEBRA: Tema 5 DIPLOMATURA DE ESTADÍSTICA 1 Tema 5: Sistemas de ecuaciones lineales 1 Definiciones generales Definición 11 Una ecuación lineal con n incognitas es una expresión del tipo a 1
CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II
CÁLCULO II Grado M+I Sucesiones y series de funciones Sucesiones y series de funciones 1 / Sucesiones funciones. Convergencia puntual Sucesión de funciones Definición Una sucesión de funciones será cualquier
En este capítulo extenderemos la conocida ecuación. g(b) f = f g g, g(a)
Capítulo 6 Cambio de variable 1. Particiones de la Unidad En este capítulo extenderemos la conocida ecuación (6.1) g(b) g(a) f = b a f g g, válida para funciones iemann-integrables f y funciones diferenciables
Tema 4.- Espacios vectoriales. Transformaciones lineales.
Ingenierías: Aeroespacial, Civil y Química Matemáticas I - Departamento de Matemática Aplicada II Escuela Superior de Ingenieros Universidad de Sevilla Tema 4- Espacios vectoriales Transformaciones lineales
Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos
Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los
1. Convergencia en medida
FACULTAD CS. FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA3801 Teoría de la Medida. Semestre 2009-02 Profesor: Jaime San Martín Auxiliares: Andrés Fielbaum y Cristóbal Guzmán Clase auxiliar 7 21 de Septiembre
ESPACIOS VECTORIALES. VARIEDADES LINEALES, APLICACIONES ENTRE ESPACIOS VECTORIALES. TEOREMAS DE ISOMORFIA.
ESPACIOS VECTORIALES. VARIEDADES LINEALES, APLICACIONES ENTRE ESPACIOS VECTORIALES. TEOREMAS DE ISOMORFIA. Índice de contenido 1. Espacio vectorial....2 Estructura de espacio vectorial...2 Subespacios
TEMA 8.- NORMAS DE MATRICES Y
Álgebra II: Tema 8. TEMA 8.- NORMAS DE MATRICES Y NúMERO DE CONDICIóN Índice. Introducción 2. Norma vectorial y norma matricial. 2 2.. Norma matricial inducida por normas vectoriales......... 4 2.2. Algunos
Subespacios Vectoriales
Subespacios Vectoriales Prof. Apuntes del Postgrado en Ingeniería 31 Mayo 2008 Subespacio Definición de Subespacio y Ejemplos. Definición Sea H un subconjunto no vacio de un espacio vectorial V(K). Si
MATRICES. Capítulo 3. Martínez Héctor Jairo Sanabria Ana María Semestre 02, Introducción Definición y Tipo de Matrices
55 Capítulo 3 MATRICES Martínez Héctor Jairo Sanabria Ana María Semestre 02, 2007 3 Introducción En los capítulos anteriores, utilizando la noción de matriz, simplificamos la representación de problemas
ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales
Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Sea (K, +,.) un cuerpo con característica 0. Podemos pensar K = Q, R o C. Si V es un conjunto cualquiera en el que
Capítulo 8: Vectores
Capítulo 8: Vectores 1. Lección 30. Operaciones con vectores 1.1. Vectores El concepto de vector aparece en Física para describir magnitudes, tales como la fuerza que actúa sobre un punto, en las que no
Introducción a la teoría de anillos
Introducción a la teoría de anillos José Luis Tábara Versión 0.4, 18 de Noviembre del 2001 Índice general 1. Definiciones básicas 1 2. Ideales 17 3. Ideales maximales y primos 26 4. Polinomios 32 5. Divisibilidad
1. Funciones medibles
AMARUN www.amarun.net Comisión de Pedagogía - Diego Chamorro Teoría de la medida (Nivel 2). Lección n 4: Construcción de la integral de Lebesgue EPN, verano 2009 1. Funciones medibles Un concepto de medibilidad
1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO
1 1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos
Índice general 1. El Espacio Normado 2. La Diferencial de Fréchet 3. Teoremas de Taylor
Índice general 1. El Espacio Normado R n 1 1. Normas equivalentes....................... 6 2. Continuidad y limites de funciones............... 9 2.1. Reglas de cálculo para límites.............. 13 2.2.
Herramientas digitales de auto-aprendizaje para Matemáticas
Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura Índice la cadena Tabla de Dada una función f : D R R,
8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV
8.4. CRITERIO DE ESTAB.: METODO DE LIAPUNOV 309 8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV Consideremos el sistema autónomo dx = F (x, y) dt (8.32) dt = G(x, y), y supongamos que tiene
Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos.
Capítulo 1 Preliminares Vamos a ver en este primer capítulo de preliminares algunos conceptos, ideas y propiedades que serán muy útiles para el desarrollo de la asignatura. Se trata de resultados sobre
Teoremas de convergencia y derivación bajo el signo integral
Capítulo 8 Teoremas de convergencia y derivación bajo el signo integral En este capítulo estudiaremos sucintamente bajo qué circunstancias puede intercambiarse el orden de la integral con las operaciones
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x
Conjuntos Infinitos. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO
Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO El estudio de los conjuntos infinitos se inicia con Las Paradojas del Infinito, la última obra del matemático checo Bernard Bolzano, publicada
Trabajo Práctico N 5: ESPACIOS VECTORIALES
Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique
