Módulo 2. Deflexiones en vigas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Módulo 2. Deflexiones en vigas"

Transcripción

1 Módulo 2 Deflexiones en vigas

2

3 Introducción Todos los cuerpos reales se deforman bajo la aplicación de una carga, elástica o plásticamente. Un cuerpo puede ser tan insensible a la deformación que el supuesto de rigidez no afecte en grado suficiente a un análisis para asegurar un tratamiento no-rígido. Si después se comprueba que la deformación del cuerpo no era despreciable, entonces la declaración de rigidez fue una decisión errónea, no un supuesto equivocado. Un cable metálico es flexible, pero en tensión puede ser prácticamente rígido y se distorsiona mucho si se somete a cargas de compresión. El mismo cuerpo puede ser rígido o no rígido. El análisis de la deflexión influye en las situaciones de diseño en muchas formas. A menudo, el tamaño de una pieza se determina de acuerdo con las deflexiones, en vez de calcularse con base a los límites de esfuerzo y algunas veces, los elementos mecánicos se diseñan para que tengan una característica particular de la relación fuerza-deflexión.

4 En este capítulo nos centraremos en otro aspecto del diseño de vigas, llamado determinación de las deflexiones. Es de particular interés la determinación de la máxima deflexión de una viga bajo ciertas condiciones de cargas pues las especificaciones de diseño de la misma generalmente incluyen un valor máximo admisible para dicha deflexión. También será de interés conocer las deflexiones para el análisis de vigas indeterminadas (aquellas en las que el número de reacciones excede al de ecuaciones de equilibrio) Para una viga prismática sometida a flexión pura la misma se flexa un arco de circunferencia en el cual, dentro del rango elástico, la curvatura de la superficie neutra se calcula de la siguiente forma:

5 De aquí que este valor de deformación es válido en cualquier lugar y se concluye que la deformación normal longitudinal x varía linealmente con la distancia y desde la superficie neutra. La deformación x alcanza su valor máximo en c que es la distancia mayor desde la superficie neutra por lo que el máximo valor absoluto de dicha deformación es:

6 donde M es el momento flector, E el módulo de elasticidad e I el momento de inercia de la sección transversal en su eje neutro. Cuando una viga es sometida a cargas transversales, la ecuación anterior sigue siendo válida para cualquier otra sección transversal, sin embargo, tanto el flector como la curvatura de la superficie neutra podrán variar de sección a sección. Llamando x a la distancia de la sección desde la izquierda de la viga, podemos escribir:

7 Deformación bajo cargas transversales Consideremos, por eje,plo, una viga cantilever AB de longitud L, sometida a una carga concentrada P en su extremo A. Tendremos que M(x)=-Px por lo que quedaría: Lo cual muestra que la curvatura de la superficie neutra varía linealmente con x, desde cero en A, donde A es, a PL/EI en B donde. B =EI/PL

8 Notamos que el mayor valor de la curvatura (i.e., el menor valor del radio de curvatura) ocurre en el soporte C, donde M es máximo. De la información obtenida de la curvatura, tendremos una idea aproximada de la deformación de la viga. Sin embargo, el análisis y diseño de una viga usualmente requiere mayor información precisa de la deflexión y de la pendiente en varios puntos. El conocimiento de la máxima deflexión de la viga será de particular importancia

9 Ecuación de la elástica Del análisis matemático se sabe que la curvatura de una curva plana en un punto Q(x,y) de la curva puede ser expresada como Pero en el caso de la curva elástica de una viga, la pendiente dy/dx es muy pequeña, y su cuadrado es despreciable comparado con la unidad. De aquí que: Y sustituyendo:

10 La ecuación obtenida es una ecuación diferencial lineal de segundo orden. El producto EI es conocido como rigidex flexional. Para el caso de vigas de sección transversal constante: Llamando (x) al ángulo medido en radianes que forma la tangente a la curva elástica con la horizontal y observando que dicho ángulo es muy pequeño, tendremos: De aquí que se puede escribir la ecuación anterior de forma alternativa:

11 Integrando: Las constantes C 1 y C 2 se determinan con las condiciones de borde o, más precisamente con las condiciones impuestas por la soportación de la viga.

12 Ejemplos: 1. Determinar la ecuación de la elástica y la deflexión y pendiente en A 2. Determinar la ecuación de la elástica y la máxima deflexión de la viga 3. Determinar la pendiente y deflexión en D

13 Determinación de la elástica a partir de la distribución de las cargas Recordamos de CMM1 que, cuando una viga soporta una carga distribuida w(x), tenemos que: dm/dx = V y dv/dx =-w para cualquier punto de la viga. Luego:

14 De lo anterior concluimos que, cuando una viga prismática está sometida a una carga distribuida w(x), su curva elástica se encuentra gobernada por la siguiente ecuación diferencial lineal de cuarto orden :

15 Las cuatro constantes de integración pueden determinarse mediante las condiciones de borde. Dichas condiciones incluyen (a) las condiciones impuestas en la deflexión o pendiente de la viga, y (b) la condición de que V y M son cero en el extremo libre de una viga cantilever:

16 Ecuaciones fundamentales Intensidad de carga Esfuerzo cortante Momento flector Pendiente Deflexión x x x x x 4 d y EI w 4 dx 3 d y EI V 3 dx 2 d y EI M 2 dx dy EI dx y

17 Ejemplo: La viga simplemente soportada AB está sometida a una carga uniformemente distribuida w por unidad de longitud de viga. Determinar la ecuación de la elástica y la máxima deflexión de la viga.

18 Vigas estáticamente indeterminadas En el ejemplo mostrado se ve que las reacciones involucran 4 incógnitas mientras que las ecuaciones de equilibrio son 3: ECUACIONES DE EQUILIBRIO:

19 ECUACIÓN DE LA ELÁSTICA: Teniendo en cuenta las condiciones de borde indicadas, tenemos que x=0, =0 y x=0, y=0 en A, por lo que sustituyendo en las ecs. anteriores se llega a C 1 =C 2 =0, por lo que llegamos a : Pero la tercera condición de borde requiere que y=0 para x=l. sustituyendo en la ecuación anterior:

20

21 Funciones de singularidad o de Macaulay

22 Las 4 funciones de singularidad definidas en la tabla anterior, utilizando los paréntesis, constituye un medio útil y sencillo para integrar a través de discontinuidades. Mediante su utilización, las expresiones generales para cortante y flector pueden ser escritas cuando la viga es cargada con fuerzas y momentos concentrados. Como se puede ver en la tabla, los momentos y fuerzas concentradas son cero para todos los valores de x diferentes de a y están indefinidas para valores de x=a. Observar que el escalón unidad y las funciones rampa son cero solamente para valores de x menores que a. Las primeras dos integraciones de q(x) para V(x) y M(x) no requieren de constantes de integración.

23

24 Las reacciones R 1 y R 2 pueden ser encontradas de la forma usual (suma de fuerzas y momentos igual cero), o pueden ser encontradas notando que el cortante y el flector deberán ser cero en cualquier lado excepto en la región 0 x 20in. Lo que significa que V =0 para valores de x mayores que 20in. De aquí : Como el flector deberá ser cero en la misma región, tenemos que: Por lo cual:

25

26

27 La aplicación a la deflexión de vigas es una simple extensión de lo visto. Son fáciles de evaluar y pueden simplificar enormemente la solución de problemas estáticamente indeterminados. Ejemplos: 1. Consideremos la viga mostrada. Desarrolle las ecuaciones de deflexión utilizando funciones de singularidad

28

29

30 2. Determine la deflexión para la viga simplemente soportada con la distribución de cargas mostrada La intensidad de carga es: De la estática: Integrando: Empezando por la derecha podemos omitir la función de singularidad:

31 Integrando dos veces más: Conds. de borde

32 3. Para la viga y cargas mostradas y utilizando funciones de singularidad, expresar el cortante y el flector como función de x desde el soporte A

33 Superposición Cuando una viga es sometida a varias cargas distribuidas o concentradas, es muchas veces conveniente computar separadamente las pendientes y deflexiones causadas por cada una de las cargas en cuestión. La pendiente y la deflexión debido a cargas combinadas se obtienen aplicando el principio de superposición y sumando los valores de las pendientes o deflexiones correspondientes a las cargas mencionadas. Ejemplos: 1.

34 2. Caso hiperestático

35 La superposición resuelve el efecto de cargas combinadas sobre una estructura mediante la determinación de los efectos que cada carga por separado y sumando algebraicamente los resultados. La superposición puede aplicarse a condición de qué: 1. Cada efecto esté relacionado linealmente con la carga que lo produce 2. Una carga no genere una condición que afecte el resultado de otra carga 3. Las deformaciones resultantes de alguna carga específica no sean lo suficientemente grandes como para alterar las relaciones geométricas de las partes del sistema estructural.

36

37

38 Método de las «Areas Momento» En la primera parte de este capítulo utilizamos un método matemático basado en la integración de una ecuación diferencial para determinar la deflexión y pendiente de una viga en cualquier punto. El momento flector fué expresado como una función M(x) de la distancia x medida a lo largo de la viga, y dos integraciones sucesivas llevan a las funciones (x) e y(x) que representan respectivamente, la pendiente y la deflexión en cualquier punto de la viga. En esta parte veremos como las propiedades geométricas de la curva elástica pueden ser utilizadas para determinar la deflexión y la pendiente de una viga en un punto específico.

39 Consideremos una viga AB sometida a alguna carga arbitraria (Fig. a). Representamos el diagrama que representa la variación a lo largo de la viga de la cantidad M/EI (Fig. b). Vemos que, excepto por la diferencia en las escalas de las ordenadas, este diagrama es el mismo que el de flector si la rigidez a la flexión de la viga es constante Primer teorema de Mohr: D/C = área bajo el diagrama (M/EI) entre C y D

40 Consideremos ahora dos puntos P y P localizados entre C y D, a una distancia dx uno de otro (ver figura). Las tangentes a la elástica por P y P interceptan a la vertical por C determinando un segmento de longitud dt La pendiente en P y el ángulo d formado por las tangentes en P y P son ambos pequeñas cantidades, por lo que podremos asumir que dt es igual al arco de radio x subtenido el ángulo d. Tendremos, por ende:

41 Ahora integramos la ecuación anterior desde C a D. Notamos que, el punto P describe la curva elástica desde C a D, la tangente en P barre la vertical a través de C desde C a E. La integral de la parte izquierda es entonces igual a la distancia vertical desde C a la tangente en D. Esta distancia se denota por t C/D y es llamada la desviación tangencial de C respecto de D. Tenemos, por lo tanto: Observamos que (M/EI)dx representa un elemento de área bajo el diagrama (M/EI), y x 1 (M/EI)dx el momento de primer orden de este elemento respecto a un eje vertical por C.

42 El miembro de la derecha representa el momento de primer orden respecto de el eje del área localizada bajo el diagrama (M/EI) entre C y D. Podemos, por consiguiente, establecer el segundo teorema del área-momento (2 teorema de Mohr): La desviación tangencial t C/D de C respecto de D es igual al primer momento respecto a un eje vertical por C del área bajo el diagrama (M/EI) entre C y D. Recordando que el primer momento de un área respecto de su eje es igual al producto del área por la distancia desde su centroide al eje, podemos expresar el segundo teorema de la siguiente forma:

43

44

45

46

47

48

49

50 Módulo 3 Métodos energéticos

51 Energía de deformación Consideremos una barra BC de longitud L y sección transversal A empotrada en B sometida a una carga axial P que se incrementa lentamente y graficamos en un diagrama esfuerzo-deformación.

52 Ahora consideramos el trabajo du realizado por la carga P cuando la barra se estira una longitud diferencial dx. Dicho trabajo elemental es igual a P dx El trabajo total U realizado por la carga cuando la barra se deforma hasta x 1 es por lo tanto:

53 El trabajo realizado por la carga P mientras esta es aplicada lentamente a la barra deberá resultar en un incremento de alguna energía asociada con la deformación de dicha barra. Esta energía se conoce como la energía de deformación de la barra. Unidades: N.m (joules) ó lb-ft En el caso de deformaciones elásticas y lineales, la parte del diagrama carga-deformación involucrada puede ser representada mediante una recta de ecuación P=kx.

54 Veremos más adelante que el concepto de energía de deformación será útil para la determinación de los efectos de cargas de choque sobre estructuras o componentes de máquinas.

55 Densidad de energía de deformación La idea es eliminar el efecto del tamaño y centrar la atención en las propiedades del material. Dividiendo la energía de deformación U por el volumen V = AL de la barra, tendremos que: Teniendo en cuenta que P/A representa el esfuerzo normal x en la barra, y x/l la deformación normal ϵ x :

56 El valor de la densidad de energía de deformación obtenida haciendo ϵ 1 = ϵ R, donde ϵ R es la deformación de ruptura es conocida como el módulo de tenacidad del material (área total bajo la curva esfuerzodeformación) Notamos que la densidad de energía de deformación u es igual al área bajo la curva esfuerzodeformación, medidos desde ϵ x hasta ϵ x = ϵ 1

57 Módulo de resiliencia Representa la energía por unidad de volumen que el material puede absorber sin entrar en fluencia.

58 Energía elástica de deformación para esfuerzos normales El valor de la energía de deformación U de un cuerpo sujeto a esfuerzos normales uniaxiales pueden ser obtenidos integrando: Energía elástica del cuerpo

59 Energía elástica de deformación para carga axial Para el caso de una barra de sección uniforme A:

60 Ejercicio: Una carga P es aplicada en B a dos barras del mismo material y de sección uniforme A. Determinar la energía de deformación del sistema.

61 Energía elástica de deformación para flexión Sea M el momento flector a una distancia x: La segunda integral representa el momento de inercia I de la sección transversal a través de su eje neutro.

62 Ejercicio: Determinar la energía de deformación de la viga cantilever AB, tomando solamente en cuenta los efectos de los esfuerzos normales

63 Energía elástica de deformación para cortante

64 Energía elástica de deformación para torsión

65 Energía elástica de deformación para cortante transversal

66 Energía elástica de deformación para un estado general de esfuerzos Donde a, b y c son los esfuerzos principales en el punto dado Separemos ahora la densidad de energía de deformación u en dos partes, una parte u v asociada con un cambio en el volumen del material y una parte u d asociada con una distorsión o cambio de forma del material en el mismo punto: u = u v + u d

67 dilatación: Cambio en volumen por unidad de volumen

68

69 La porción u v de la densidad de energía de deformación correspondiente a un cambio de volumen del elemento puede ser obtenido sustituyendo cada uno de los esfuerzos principales por

70 Para el caso de estado plano de esfuerzos, y asumiendo que el eje c es perpendicular al plano de esfuerzos, tenemos que c =0 entonces: Considerando el caso particular de ensayo de tracción, notamos que, en fluencia a = Y, b = 0, por lo que (u d ) Y = Y2 /6G. Y deberá cumplirse que para un estado dado de esfuerzos estaremos del lado seguro siempre y cuando u d (u d ) Y ó:

71 Trabajo y energía bajo estado de carga simple

72

73

74 Trabajo y energía bajo estado de cargas múltiples Los coeficientes ij se llaman coeficientes de influencia

75

76 Energía de deformación debido a las cargas P1 y P2 Diferenciando ambos miembros con respecto a P 1 y P 2 queda

77 Teoremas de Castigliano Más generalmente, si una estructura elástica está sometida a n cargas P 1, P 2,, P n, la deflexión x j del punto de aplicación de P j, medido a lo largo de la línea de acción de ésta, puede ser expresado como la derivada parcial de la energía de deformación de la estructura respecto a la carga P j : ídem para momentos:

78 Teoremas de Castigliano En la figura se muestra una curva carga-deflexión general para un sistema elástico. Los símbolos Q y son generales y pueden indicar cualquier tipo de carga (axial, torsional, flexión o cortante transversal) y su correspondiente deflexión (lineal o angular). El único requerimiento es el de relacionamiento lineal, lo que implica que todos los esfuerzos están dentro del rango elástico y no ocurren inestabilidades. Trabajo Qd Que corresponde al área bajo la curva de la figura. Si el material es perfectamente elástico, dicha área es también igual a la energía elástica U almacenada dentro del material

79 Además, debido a que el sistema es lineal, dicha energía también será igual al área U' (energía complementaria) : U' U Q 2 Vale decir que la energía elástica almacenada es igual a la deflexión multiplicada por la fuerza promedio. La energía adicional asociada con la carga incremental dq es: du' du dq La tasa de cambio de la energía con la carga cuando actúa dicha carga Q es: du dq dq dq ó du dq De aquí que la deflexión elástica en este sistema simple es la derivada de la energía de deformación respecto de la carga aplicada 2º TEOREMA DE CASTIGLIANO: Cuando un cuerpo es deformado elásticamente mediante cualquier sistema de cargas, la deflexión en cualquier punto P y en cualquier dirección a, es igual a la derivada parcial de la energía de deformación (con el sistema de cargas actuando) respecto de la carga P actuando en la dirección a.

80 Matemáticamente, dicho teorema puede expresarse como: U Q Cuando Q es una fuerza, es una deflexión lineal ( ). Cuando Q es un momento, es una deflexión angular ( ). El teorema puede ser aplicado incluso si el sistema de carga no incluye la carga en el punto P en la dirección a. En dicho caso es necesario aplicar una carga imaginaria (fuerza o momento fantasma ), comúnmente designada Q. Luego de que se obtenga su expresión, la misma será igualada a cero para obtener el resultado final. 1er TEOREMA DE CASTIGLIANO: U Q

81 Ejemplos

82 Tablas

83

84

85

86

87 Ejemplos

88

89 Principio de los trabajos virtuales Asumiendo que el sistema es conservativo, el trabajo virtual W realizado por fuerzas reales a través de desplazamientos virtuales en la dirección de las fuerzas aplicadas es cero.

90 Trabajo virtual externo = Trabajo virtual interno

Mecánica de Materiales I

Mecánica de Materiales I Tema 5 - Defleión en Vigas Mecánica de Materiales I Tema 5 Defleión en vigas Tema 5 - Defleión en vigas Sección - Ecuación diferencial de la elástica Ecuación diferencial de la elástica Para comenzar este

Más detalles

CUANTOS TIPOS DE APOYO, NUDOS O SOPORTES SE PUEDEN IDENTIFICAR O CONSTRUIR UNA ESTRUCTURA?

CUANTOS TIPOS DE APOYO, NUDOS O SOPORTES SE PUEDEN IDENTIFICAR O CONSTRUIR UNA ESTRUCTURA? DEFINICION DE FUERZA AXIAL. Cuando suponemos las fuerzas internas uniformemente distribuidas, se sigue de la estática elemental que la resultante P de las fuerzas internas debe estar aplicadas en el centroide

Más detalles

Deflexión DE vigas. Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV

Deflexión DE vigas. Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV Deflexión DE vigas Profesor: Cristian Castillo Realizado por: Barrios, Yasnahir Campos,

Más detalles

II.- CONCEPTOS FUNDAMENTALES DEL ANÁLISIS ESTRUCTURAL

II.- CONCEPTOS FUNDAMENTALES DEL ANÁLISIS ESTRUCTURAL II.- CONCEPTOS FUNDAMENTALES DEL ANÁLISIS ESTRUCTURAL 2.1.- Introducción Los métodos fundamentales disponibles para el analista estructural son el método de la flexibilidad (o de las fuerzas), y el método

Más detalles

Deflexiones de vigas y marcos

Deflexiones de vigas y marcos Deflexiones de vigas y marcos Cuando se carga una estructura, sus elementos esforzados se deforman. Cuando esto ocurre, la estructura cambia de forma y sus puntos se desplazan. Aunque estas deflexiones

Más detalles

Estructuras de Edificación: Tema 20 - La pieza recta

Estructuras de Edificación: Tema 20 - La pieza recta Resumen Estructuras de Edificación: Tema 20 - La pieza recta David Herrero Pérez Departamento de Estructuras y Construcción Universidad Politécnica de Cartagena Grado en Ingeniería de Edificación Segundo

Más detalles

Mecánica de Sólidos. UDA 2: Miembros Cargados Axialmente.

Mecánica de Sólidos. UDA 2: Miembros Cargados Axialmente. Mecánica de Sólidos UDA 2: Miembros Cargados Axialmente. UDA 2: Estructuras sometidas a Cargas Axiales Principio de Saint Venant Debido a la carga, la barra se deforma como lo indican las línes dibujadas

Más detalles

Los cables flexibles y las cadenas se usan para soportar y transmitir cargas entre miembros.

Los cables flexibles y las cadenas se usan para soportar y transmitir cargas entre miembros. Los cables fleibles y las cadenas se usan para soportar y transmitir cargas entre miembros. En los puentes en suspensión, estos llevan la mayor parte de las cargas. En el análisis de fuerzas, el peso de

Más detalles

Mecánica de Materiales I

Mecánica de Materiales I Mecánica de Materiales I Tema 3 Torsión en barras Índice de contenido Sección 1 - Deformaciones en un eje circular Tema 3 - Torsión en barras Índice de contenido Sección 2 - Esfuerzos cortantes en barras

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.

Más detalles

Mecánica de Sólidos. UDA 4: Fuerza Cortante y Momento Flexionante en Vigas

Mecánica de Sólidos. UDA 4: Fuerza Cortante y Momento Flexionante en Vigas Mecánica de Sólidos UDA 4: Fuerza Cortante y Momento Flexionante en Vigas Generalidades: FLEXIÓN Y ESFUERZO Ocurre flexión cuando un elemento de sección constante y simétrica respecto al plano donde ocurre

Más detalles

El esfuerzo axil. Contenidos

El esfuerzo axil. Contenidos Lección 8 El esfuerzo axil Contenidos 8.1. Distribución de tensiones normales estáticamente equivalentes a esfuerzos axiles.................. 104 8.2. Deformaciones elásticas y desplazamientos debidos

Más detalles

CURSO: MECÁNICA DE SÓLIDOS II

CURSO: MECÁNICA DE SÓLIDOS II UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA CURSO: MECÁNICA DE SÓLIDOS II PROFESOR: ING. JORGE A. MONTAÑO PISFIL CURSO DE

Más detalles

CÓDIGO: FOR-DO-062 VERSIÓN: 0 FECHA:26/08/2016 FORMATO RESUMEN DECONTENIDO DE CURSO O SÍLABO

CÓDIGO: FOR-DO-062 VERSIÓN: 0 FECHA:26/08/2016 FORMATO RESUMEN DECONTENIDO DE CURSO O SÍLABO 1. INFORMACIÓN GENERAL DEL CURSO Facultad Ingeniería Fecha de Actualización 23/11/2016 Programa Ingeniería mecánica Semestre V Nombre Resistencia de materiales Código 714030 Prerrequisitos 71308 Estática

Más detalles

Elementos Uniaxiales Sometidos a Carga Axial Pura

Elementos Uniaxiales Sometidos a Carga Axial Pura Elementos Uniaiales Sometidos a Carga ial ura Definición: La Tensión representa la intensidad de las fuerzas internas por unidad de área en diferentes puntos de una sección del sólido aislada (Fig. 1a).

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2015-1 2 Capítulo 6. Flexión 3 un miembro 4 Una viga con un plano de simetría es sometido a pares iguales y opuestos M que actúan en dicho plano.

Más detalles

RESISTENCIA DE MATERIALES

RESISTENCIA DE MATERIALES UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL RESISTENCIA DE MATERIALES CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ingeniería Estructural CODIGO SEMESTRE

Más detalles

ME Capítulo 4. Alejandro Ortiz Bernardin. Universidad de Chile

ME Capítulo 4. Alejandro Ortiz Bernardin.  Universidad de Chile Diseño de Elementos Mecánicos ME-5600 Capítulo 4 Alejandro Ortiz Bernardin www.cec.uchile.cl/~aortizb Departamento de Ingeniería Mecánica Universidad de Chile Contenidos del Capítulo Constantes de Resorte

Más detalles

Contenido " '* Prefacio. Alfabeto griego

Contenido  '* Prefacio. Alfabeto griego Contenido Prefacio Símbolos ix Xlll Alfabeto griego XVI ""' y 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Introducción a la mecánica de materiales 1 Esfuerzo y defonnación unitaria normales 3 Propiedades mecánicas

Más detalles

ELASTICIDAD POR FLEXIÓN: UNA EXPERIENCIA DE LABORATORIO ADAPTABLE A LOS DISTINTOS NIVELES EDUCATIVOS

ELASTICIDAD POR FLEXIÓN: UNA EXPERIENCIA DE LABORATORIO ADAPTABLE A LOS DISTINTOS NIVELES EDUCATIVOS III Taller Iberoamericano de Enseñanza sobre Educación en Ciencia e Ingeniería de Materiales (TIECIM 0) EASTICIDAD POR FEXIÓN: UNA EXPERIENCIA DE ABORATORIO ADAPTABE A OS DISTINTOS NIVEES EDUCATIVOS T.

Más detalles

RESISTENCIA DE MATERIALES Carácter: Obligatoria

RESISTENCIA DE MATERIALES Carácter: Obligatoria UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL RESISTENCIA DE MATERIALES Carácter: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ingeniería Estructural CODIGO SEMESTRE

Más detalles

Resistencia de materiales

Resistencia de materiales Resistencia de materiales April 3, 009 En ingeniería se denomina viga a un elemento constructivo lineal que trabaja principalmente a exión. La teoría de vigas es una parte de la resistencia de materiales

Más detalles

Capítulo 7. Fuerzas en vigas y cables

Capítulo 7. Fuerzas en vigas y cables Capítulo 7 Fuerzas en vigas y cables Fuerzas en elementos rectos sujetos a dos fuerzas Elemento recto sujeto a dos fuerzas AB Sometido en A y B a fuerzas iguales y opuestas F y F que están dirigidos a

Más detalles

RM - Resistencia de los Materiales

RM - Resistencia de los Materiales Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2017 205 - ESEIAAT - Escuela Superior de Ingenierías Industrial, Aeroespacial y Audiovisual de Terrassa 712 - EM - Departamento

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 6. Flexión 3 un miembro 4 Una viga con un plano de simetría es sometido a pares iguales y opuestos M que actúan en dicho plano.

Más detalles

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 2

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 2 1. Tema: Determinación de la posición de las galgas extensiométricas en una barra de torsión. 2. Objetivos: a. Simular el comportamiento estático de una barra de torsión, mediante el uso de un paquete

Más detalles

Mecánica de Materiales I

Mecánica de Materiales I Mecánica de Materiales I Tema 2 Carga Transversal y Momento Flexionante Índice de contenido Tema 2 Carga Transversal y Momento Flector Índice de contenido Sección 1 - Relación entre Carga, Fuerza Cortante

Más detalles

15.5. Torsión uniforme en barras prismáticas de sección de

15.5. Torsión uniforme en barras prismáticas de sección de Lección 15 Torsión uniforme Contenidos 15.1. Distribución de tensiones tangenciales estáticamente equivalentes a un momento torsor................ 186 15.2. Torsión uniforme en barras prismáticas de sección

Más detalles

IX. Vibración de sistemas continuos

IX. Vibración de sistemas continuos Objetivos:. Determinar expresiones para la energía cinética y potencial de sistemas continuos: barras y vigas.. Emplear métodos variacionales para deducir la ecuación de unidimensional: barras (axial)

Más detalles

Tema 6: FLEXIÓN: DEFORMACIONES

Tema 6: FLEXIÓN: DEFORMACIONES Tema 6: Fleión: Deformaciones Tema 6: FLEXÓN: DEFORCONES + Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 008 1 Tema 6: Fleión: Deformaciones 6.1.- NTRODUCCÓN Las deformaciones ha que limitarlas

Más detalles

T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS

T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS 1- Analice la deformada de cada uno de los casos presentados en la figura inferior. Responda a las siguientes consignas: a) Cuál es la parte de la viga (superior

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1 Si la sección de un perfil metálico es la que aparece en la figura, suponiendo que la chapa que une los círculos es de espesor e inercia despreciables, determina la relación entre las secciones A 1 y A

Más detalles

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA ESTRUCTURAL

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA ESTRUCTURAL UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA ESTRUCTURAL ASIGNATURA: RESISTENCIA DE MATERIALES CÓDIGO: 1102 UNIDADES: 6 Teoría: 5 horas/semana REQUISITOS: 1101,0254-0255

Más detalles

INDICE. par de fuerzas aplicado en perpendicular al EJE LONGITUDINAL de la barra. criterio de signos POSITIVO: regla del sacacorchos

INDICE. par de fuerzas aplicado en perpendicular al EJE LONGITUDINAL de la barra. criterio de signos POSITIVO: regla del sacacorchos INDICE 12.1 Introducción. 12.2 Torsión isostática. Tensiones y giros. 12.3 Torsión hiperestática. 12.4 Introducción a la Flexotorsión. 12.5 Epílogo. Torsión libre. par de fuerzas aplicado en perpendicular

Más detalles

ANÁLISIS DE ESTRUCTURAS INDETERMINADAS POR EL MÉTODO DE LAS FLEXIBILIDADES

ANÁLISIS DE ESTRUCTURAS INDETERMINADAS POR EL MÉTODO DE LAS FLEXIBILIDADES ANÁLISIS DE ESTRUCTURAS INDETERMINADAS POR EL MÉTODO DE LAS FLEXIBILIDADES Introducción El método de las flexibilidades, también conocido como método de las deformaciones consistentes, o el método de la

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2015-1 2 Capítulo 4. Carga axial elástica de un miembro. Miembros s, estáticamente s.. 3 1.1 elástica de un miembro El esfuerzo es un medio

Más detalles

El modelo de barras: cálculo de esfuerzos

El modelo de barras: cálculo de esfuerzos Lección 6 El modelo de barras: cálculo de esfuerzos Contenidos 6.1. Definición de barra prismática............... 78 6.2. Tipos de uniones........................ 78 6.3. Estructuras isostáticas y estructuras

Más detalles

Planteamiento del problema elástico lineal

Planteamiento del problema elástico lineal Capítulo 3 Planteamiento del problema elástico lineal Para la simulación o representación de un proceso o un fenómeno físico, una de las partes fundamentales es su planteamiento matemático, que en su forma

Más detalles

RM - Resistencia de los Materiales

RM - Resistencia de los Materiales Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2018 205 - ESEIAAT - Escuela Superior de Ingenierías Industrial, Aeroespacial y Audiovisual de Terrassa 712 - EM - Departamento

Más detalles

Resistencia de Materiales. Estructuras. Tema 11. Inestabilidad en barras. Pandeo. Barra Empotrada-Empotrada.

Resistencia de Materiales. Estructuras. Tema 11. Inestabilidad en barras. Pandeo. Barra Empotrada-Empotrada. Resistencia de Materiales. Estructuras Tema 11. Inestabilidad en barras. Pandeo Módulo 6 Barra Empotrada-Empotrada. En los módulos anteriores se ha estudiado el caso del pandeo en la barra articulada-articulada,

Más detalles

Introducción a la Elasticidad y Resistencia de Materiales

Introducción a la Elasticidad y Resistencia de Materiales Lección 1 Introducción a la Elasticidad y Resistencia de Materiales Contenidos 1.1. Mecánica del Sólido Rígido y Mecánica del Sólido Deformable............................. 2 1.1.1. Sólido Rígido..........................

Más detalles

Introducción a la Mecánica de los Sólidos

Introducción a la Mecánica de los Sólidos Introducción a la Mecánica de los Sólidos Clase 1 Suposiciones introducidas, Propiedades Mecánicas de los Materiales, Coeficientes de Seguridad Reología Mecánica de los Fluidos Mecánica de las Materias

Más detalles

CURSO: MECÁNICA DE SÓLIDOS II UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

CURSO: MECÁNICA DE SÓLIDOS II UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA UNIVERSIDD NCION DE CO CUTD DE INGENIERÍ EÉCTRIC Y EECTRÓNIC ESCUE ROESION DE INGENIERÍ EÉCTRIC CURSO: MECÁNIC DE SÓIDOS II ROESOR: ING. JORGE. MONTÑO ISI CURSO DE MECÁNIC DE SÓIDOS II CÍTUO 3: CRG XI

Más detalles

2 =0 (3.146) Expresando, las componentes del tensor de esfuerzos en coordenadas cartesianas como: 2 ; = 2 2 ; =

2 =0 (3.146) Expresando, las componentes del tensor de esfuerzos en coordenadas cartesianas como: 2 ; = 2 2 ; = 3.7. Función de Airy Cuando las fuerzas de cuerpo b son constantes en un sólido con estado de deformación o esfuerzo plano, el problema elástico se simplifica considerablemente mediante el uso de una función

Más detalles

RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA ESFUERZOS COMBINADOS

RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA ESFUERZOS COMBINADOS RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA FLEXION Y AXIAL 2013 [email protected] RESISTENCIA DE MATERIALES I ICM FLEXION Y AXIAL 2013 [email protected] RESISTENCIA DE MATERIALES

Más detalles

2014 RESISTENCIA DE MATERIALES I ICM RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA ESFUERZOS COMBINADOS

2014 RESISTENCIA DE MATERIALES I ICM RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA ESFUERZOS COMBINADOS RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA FLEXION Y AXIAL 2014 [email protected] RESISTENCIA DE MATERIALES I ICM FLEXION Y AXIAL 2014 [email protected] RESISTENCIA DE MATERIALES

Más detalles

El Principio de los Desplazamientos Virtuales (PDV)

El Principio de los Desplazamientos Virtuales (PDV) El Principio de los Desplazamientos Virtuales (PDV) Apellidos, nombre Basset Salom, uisa ([email protected]) Departamento Centro Mecánica de Medios Continuos y Teoría de Estructuras Escuela Técnica Superior

Más detalles

Prácticas Complementarias de Resistencia 12-13

Prácticas Complementarias de Resistencia 12-13 Prácticas Complementarias de Resistencia 12-13 1) Dibujar sendos croquis con las reacciones acotadas en magnitud y sentido para las vigas de la figura 1: Figura 1 2) Calcular las reacciones del muro y

Más detalles

T P Nº 7: TENSIONES Y DEFORMACIONES AXIALES

T P Nº 7: TENSIONES Y DEFORMACIONES AXIALES ESTATICA Y RESISTENCIA DE MATERIALES (QUIMICA Y MINAS) T P Nº 7: TENSIONES Y DEFORMACIONES AXIALES 1) Dos cables de acero, AB y BC, sostiene una lámpara que pesa 15 lb. El cable AB tiene un ángulo α =

Más detalles

Teoremas energéticos fundamentales del análisis estructural. Aplicación a celosías planas

Teoremas energéticos fundamentales del análisis estructural. Aplicación a celosías planas Teoremas energéticos fundamentales del análisis estructural Aplicación a celosías planas Índice Directos Densidad de energía Complementarios Densidad de energía complementaria Energía elástica (Función

Más detalles

ANALISIS DE VIGAS ESTATICAMENTE INDETERMINADAS

ANALISIS DE VIGAS ESTATICAMENTE INDETERMINADAS NISIS DE VIGS ESTTICENTE INDETERINDS.. DEFINICIÓN. Se denomina de esta manera a una barra sujeta a carga lateral; perpendicular a su eje longitudinal, en la que el número de reacciones en los soportes

Más detalles

< momento aplicado sobre un nudo; < carga repartida; < carga concentrada. Movimientos y deformaciones impuestos:

< momento aplicado sobre un nudo; < carga repartida; < carga concentrada. Movimientos y deformaciones impuestos: Viga continua con múltiples patologías 1/5 Figura 1 Viga continua con multiples patologías Problema de viga continua Vamos a calcular todos los esfuerzos, reacciones y curvaturas, y a dibujar la deformada

Más detalles

Mecánica de Materiales I

Mecánica de Materiales I Mecánica de Materiales I Tema 1 Esfuerzo y Deformación Introducción Índice de contenido Sección 1 - Concepto de Esfuerzo Sección 2 - Deformaciones Sección 3 - Ensayo de tracción Sección 4 - Curva Esfuerzo-Deformación

Más detalles

CURSO: MECÁNICA DE SÓLIDOS II

CURSO: MECÁNICA DE SÓLIDOS II UNIVERSIDAD NACIONAL DEL CALLAO FACULAD DE INGENIERÍA ELÉCRICA Y ELECRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCRICA CURSO: MECÁNICA DE SÓLIDOS II PROFESOR: ING. JORGE A. MONAÑO PISFIL CURSO DE MECÁNICA

Más detalles

MECÁNICA DEL SÓLIDO REAL (3º, Máquinas). Curso 2010/ TEST Nº 1

MECÁNICA DEL SÓLIDO REAL (3º, Máquinas). Curso 2010/ TEST Nº 1 MECÁNICA DEL SÓLIDO REAL (3º, Máquinas). Curso 2010/11. 17-2-2011 Nombre... Nº... TEST Nº 1 Nº Tema Indicar si son verdaderas () o falsas () las siguientes afirmaciones / 1 1 En un modelo de medio continuo

Más detalles

Tabla breve del Contenido

Tabla breve del Contenido Tabla breve del Contenido PARTE UNO: ESTRUCTURAS ESTÁTICAMENTE DETERMINADAS CAPÍTULO 1 Introducción 3 CAPÍTULO 2 Cargas estructurales 16 CAPÍTULO 3 Sistema de cargas y comportamiento 43 CAPÍTULO 4 Reacciones

Más detalles

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO PROBEMAS DE RESISTENCIA DE MATERIAES MÓDUO 5: FEXIÓN DE VIGAS CURSO 016-17 5.1( ).- Halle, en MPa, la tensión normal máxima de compresión en la viga cuya sección y diagrama de momentos flectores se muestran

Más detalles

EXAMEN FINAL: PRIMER PARCIAL RESISTENCIA DE MATERIALES

EXAMEN FINAL: PRIMER PARCIAL RESISTENCIA DE MATERIALES EXAMEN FINAL: PRIMER PARCIAL RESISTENCIA DE MATERIALES Curso 2015-2016 3er curso del Grado en Ingeniería de Organización Industrial Apellidos, Nombre: Compañía: Sección: Cuestión 1 Cuestión 2 Cuestión

Más detalles

Calcular la energía de deformación de la viga de rigidez constante EI, simplemente apoyada, indicada en la figura.

Calcular la energía de deformación de la viga de rigidez constante EI, simplemente apoyada, indicada en la figura. 11.29.- Calcular la energía de deformación de la viga de rigidez constante EI, simplemente apoyada, indicada en la figura. 30-6-98 11.30.- Calcular en Julios el potencial interno de una viga en voladizo

Más detalles

Nombre de la asignatura: Resistencia de los materiales. Carrera : Ingeniería Mecánica. Clave de la asignatura: ACC

Nombre de la asignatura: Resistencia de los materiales. Carrera : Ingeniería Mecánica. Clave de la asignatura: ACC Nombre de la asignatura: Resistencia de los materiales. Carrera : Ingeniería Mecánica Clave de la asignatura: ACC- 96 Clave local: Horas teoría horas practicas créditos: 4--0.- UBICACIÓN DE LA ASIGNATURA

Más detalles

Unidad Resistencia de Materiales. Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S

Unidad Resistencia de Materiales. Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S Unidad Resistencia de Materiales Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S MÓDULO III: FLEXIÓN INTRODUCCION En los capítulos anteriores las fuerzas internas eran conocidas o constantes

Más detalles

1.1. De los momentos de segundo orden y los ejes principales de inercia

1.1. De los momentos de segundo orden y los ejes principales de inercia I 1. ASPECTOS TEÓRICOS 1.1. De los momentos de segundo orden y los ejes principales de inercia Sea una sección plana de área como la de la figura 1 definido cualquier pareja de ejes perpendiculares en

Más detalles

ESTABILIDAD II A Ejercicios No Resueltos: SOLICITACION AXIL en régimen elástico

ESTABILIDAD II A Ejercicios No Resueltos: SOLICITACION AXIL en régimen elástico A continuación, ejercicios no resueltos para los alumnos de la materia Estabilidad II A, los mismos fueron extraídos del libro: Resistencia de Materiales. Autor: Luis Ortiz Berrocal. Ejercicio n 1: Calcular

Más detalles

El Principio de las Fuerzas Virtuales

El Principio de las Fuerzas Virtuales El Principio de las Fuerzas Virtuales Apellidos, nombre Basset Salom, uisa ([email protected]) Departamento Centro Mecánica de Medios Continuos y Teoría de Estructuras Escuela Técnica Superior de Arquitectura

Más detalles

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS Tecnología. Enunciados Ejercicios. ESTÁTICA-ESTRUCTURAS. Página 0 σ: tensiones (kp/cm 2 ) ε: deformaciones (alargamientos unitarios) σ t = σ adm : tensión de

Más detalles

MÉTODO ALGEBRÁICO PARA DETERMINAR LA DEFORMACIÓN POR DEFLEXIÓN EN VIGAS ESTÁTICAMENTE INDETERMINADAS

MÉTODO ALGEBRÁICO PARA DETERMINAR LA DEFORMACIÓN POR DEFLEXIÓN EN VIGAS ESTÁTICAMENTE INDETERMINADAS ISSN 007-1957 MÉTODO ALGEBRÁICO PARA DETERMINAR LA DEFORMACIÓN POR DEFLEXIÓN EN VIGAS ESTÁTICAMENTE INDETERMINADAS Juan José Martínez Cosgalla Escuela Superior de Ingeniería Mecánica y Eléctrica, Instituto

Más detalles

Prácticas de Resistencia 12-13

Prácticas de Resistencia 12-13 Prácticas de Resistencia 12-13 1) Calcular las reacciones en los apoyos de la viga de la figura 1 para los siguientes dos casos de la carga actuante: parábola de 2º grado con tangente horizontal en C;

Más detalles

T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA-

T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA- T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA- 1. Dadas las siguientes vigas, A) clasificarlas según su sustentación en : empotradas, simplemente

Más detalles

Capítulo 3. TRACCIÓN Y COMPRESIÓN SIMPLE

Capítulo 3. TRACCIÓN Y COMPRESIÓN SIMPLE Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 3. TRACCIÓN Y COMPRESIÓN SIMPLE 3.1 BARRA PRISMÁTICA SOMETIDA A UN ESFUERZO NORMAL CONSTANTE Consideremos

Más detalles

1- Esfuerzo de corte. Tensiones tangenciales.

1- Esfuerzo de corte. Tensiones tangenciales. MECÁNICA TÉCNICA TEMA XV 1- Esfuerzo de corte. Tensiones tangenciales. En el tema XI se definió el esfuerzo de corte que normalmente se lo simboliza con la letra Q. En este tema vamos a tratar el caso

Más detalles

PROBLEMA 1 (10 puntos)

PROBLEMA 1 (10 puntos) RESISTENCIA DE MATERIALES EXAMEN FINAL / PRUEBA DE EVALUACIÓN CONTINUA 3 CURSO 017-18 17-01-018 PROBLEMA 1 (10 puntos) Fecha de publicación de la preacta: de febrero de 018 Fecha de revisión del examen:

Más detalles

ME Capítulo 3. Alejandro Ortiz Bernardin. Universidad de Chile

ME Capítulo 3. Alejandro Ortiz Bernardin.  Universidad de Chile Diseño de Elementos Mecánicos ME-5600 Capítulo 3 Alejandro Ortiz Bernardin www.cec.uchile.cl/~aortizb Departamento de Ingeniería Mecánica Universidad de Chile Contenidos del Capítulo Diagramas de Cuerpo

Más detalles

Contenido. CAPÍTULO 1 Introducción 3. CAPÍTULO 2 Cargas estructurales 17 PARTE I ESTRUCTURAS ESTÁTICAMENTE DETERMINADAS DEDICATORIA PREFACIO.

Contenido. CAPÍTULO 1 Introducción 3. CAPÍTULO 2 Cargas estructurales 17 PARTE I ESTRUCTURAS ESTÁTICAMENTE DETERMINADAS DEDICATORIA PREFACIO. Contenido DEDICATORIA PREFACIO v vii PARTE I ESTRUCTURAS ESTÁTICAMENTE DETERMINADAS CAPÍTULO 1 Introducción 3 1.1 Análisis y diseño estructural 3 1.2 Historia del análisis estructural 4 1.3 Principios

Más detalles

TEMA 4: PROBLEMAS RESUELTOS DE DEFORMACIÓN ANGULAR

TEMA 4: PROBLEMAS RESUELTOS DE DEFORMACIÓN ANGULAR Problemas eformación ngular T : PROLS RSULTOS ORÓN NGULR.. plicando el método de la deformación angular obtener el diagrama de momentos flectores y dibujar aproximadamente la deformada de la estructura

Más detalles

III. Análisis de marcos

III. Análisis de marcos Objetivo: 1. Efectuar el análisis de estructuras de marcos. 1. Introducción. Aquellas estructuras constituidas de vigas unidimensionales conectadas en sus extremos de forma pivotada o rígida son conocidas

Más detalles

Estática. Fuerzas Internas

Estática. Fuerzas Internas Estática 7 Fuerzas Internas Objectivos Método de las secciones para determinar las cargas internas o solicitaciones en un miembro. Describir la tensión interna de corte o cizalla y el momento interno de

Más detalles

1.- De las siguientes afirmaciones, marque la que considere FALSA:

1.- De las siguientes afirmaciones, marque la que considere FALSA: APLIACIÓN DE RESISTENCIA DE ATERIALES. CURSO 0-3 CONVOCATORIA ETRAORDINARIA. 8jun03 Fecha de publicación de la preacta: de Julio Fecha hora de revisión: 9 de Julio a las 0:30 horas TEST (tiempo: 5 minutos)

Más detalles

Leonardo Da Vinci (Siglo XV)

Leonardo Da Vinci (Siglo XV) UN POCO DE HISTORIA Leonardo Da Vinci (Siglo XV) Los 6 puentes de Leonardo Leonardo Da Vinci (Siglo XV) El método para doblar vigas de madera para darles forma de arco sin romper sus fibras Galileo (Siglo

Más detalles

Leonardo Da Vinci (Siglo XV)

Leonardo Da Vinci (Siglo XV) UN POCO DE HISTORIA Leonardo Da Vinci (Siglo XV) Los 6 puentes de Leonardo Leonardo Da Vinci (Siglo XV) El método para doblar vigas de madera para darles forma de arco sin romper sus fibras Galileo (Siglo

Más detalles

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA CIVIL DEPARTAMENTO DE INGENIERÍA ESTRUCTURAL

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA CIVIL DEPARTAMENTO DE INGENIERÍA ESTRUCTURAL 11 TIPO DE 53: Minas; 1: Petróleo; 53, :Hidrometeorología FUNDAMENTACIÓN Esta asignatura presenta los parámetros y criterios que permiten describir los materiales, así como también las dimensiones que

Más detalles

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÍA ASIGNATURA: LABORATORIO DE ENSAYOS MECÁNICOS GUIA ACADEMICA: ENSAYO DE FLEXIÓN

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÍA ASIGNATURA: LABORATORIO DE ENSAYOS MECÁNICOS GUIA ACADEMICA: ENSAYO DE FLEXIÓN 1. OBJETIVOS Los objetivos de los ensayos de flexión son : -Determinar una curva carga-desplazamiento del prototipo -Analizar el comportamiento de los materiales metálicos al ser sometidos a un esfuerzo

Más detalles

Flexión pura y flexión desviada

Flexión pura y flexión desviada Lección 9 Flexión pura y flexión desviada Contenidos 9.1. Distribución de tensiones normales estáticamente equivalentes a momentos flectores................ 114 9.2. Flexión pura..........................

Más detalles

CURVATURA EN COLUMNAS

CURVATURA EN COLUMNAS UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLIVAR UNIDAD DE ESTUDIOS BASICOS DEPARTAMENTO DE CIENCIAS AREA DE MATEMATICA CURVATURA EN COLUMNAS Prof. Cristian Castillo Sección 02 Presentado por: Olivera Ricardo

Más detalles

Punto material: Una partícula. Puede ocupar distintos puntos espaciales en su movimiento alolargodeltiempo.

Punto material: Una partícula. Puede ocupar distintos puntos espaciales en su movimiento alolargodeltiempo. 1.11 Ecuaciones del movimiento 1.11. Ecuaciones del movimiento La descripción más elemental del movimiento del Medio Continuo puede llevarse a cabo mediante funciones matemáticas que describan la posición

Más detalles

EJERCICIOS COMPLEMENTARIOS DE ELASTICIDAD AÑO ACADÉMICO

EJERCICIOS COMPLEMENTARIOS DE ELASTICIDAD AÑO ACADÉMICO EJERCICIOS COMPLEMENTARIOS DE ELASTICIDAD AÑO ACADÉMICO 2011-2012 Prob 1. Sobre las caras de un paralepípedo elemental que representa el entorno de un punto de un sólido elástico existen las tensiones

Más detalles

Mecánica de las Estructuras I

Mecánica de las Estructuras I Mecánica de las Estructuras I Página 1 de 5 Programa de: UNIVERSIDAD NACIONAL DE CÓRDOBA Facultad de Ciencias Exactas, Físicas y Naturales República Argentina Mecánica de las Estructuras I Código: 5006

Más detalles

Ecuaciones diferenciales de Equilibrio

Ecuaciones diferenciales de Equilibrio Ecuaciones diferenciales de Equilibrio 28 de marzo de 2006 1. Elasticidad en una dimensión 1.1. Esfuerzo σ y carga lineal b(x) Para examinar un cuerpo desde el contínuo, que es la primera hipótesis (a),

Más detalles

Deformaciones. Contenidos

Deformaciones. Contenidos Lección 2 Deformaciones Contenidos 2.1. Concepto de deformación................... 14 2.2. Deformación en el entorno de un punto.......... 15 2.2.1. Vector deformación. Componentes intrínsecas........

Más detalles

ÍNDICE TOMO 1 DISEÑO Y CÁLCULO ELÁSTICO DE LOS SISTEMAS ESTRUCTURALES ÍNDICE GENERAL

ÍNDICE TOMO 1 DISEÑO Y CÁLCULO ELÁSTICO DE LOS SISTEMAS ESTRUCTURALES ÍNDICE GENERAL ÍNDICE TOMO 1 DISEÑO Y CÁLCULO ELÁSTICO DE LOS SISTEMAS ESTRUCTURALES ÍNDICE GENERAL INTRODUCCIÓN Tomo I CAPÍTULO 1. ESTUDIO TIPOLÓGICO DE LAS ESTRUCTURAS DE VECTOR ACTIVO O DE NUDOS ARTICULADOS. CAPÍTULO

Más detalles

Sílabo de Mecánica de Materiales I

Sílabo de Mecánica de Materiales I Sílabo de Mecánica de Materiales I I. Datos generales Código ASUC 00568 Carácter Obligatorio Créditos 5 Periodo académico 2018 Prerrequisito Mecánica Vectorial - Estática Horas Teóricas 4 Prácticas 2 II.

Más detalles

Estructuras de Edificación: Tema 21 - El método del equilibrio en estructuras de nudos rígidos.

Estructuras de Edificación: Tema 21 - El método del equilibrio en estructuras de nudos rígidos. Estructuras de Edificación: Tema 21 - El método del equilibrio en estructuras de nudos rígidos. David Herrero Pérez Departamento de Estructuras y Construcción Universidad Politécnica de Cartagena Grado

Más detalles

TEORÍA DE HILOS FLEXIBLES: CATENARIAS

TEORÍA DE HILOS FLEXIBLES: CATENARIAS TEORÍA DE HILOS FLEXIBLES. APLICACIÓN A LAS CATENARIAS 1. INTRODUCCION La flexibilidad de los hilos hace que su estudio difiera en cierto modo de los sistemas discretos considerados hasta ahora en el curso

Más detalles

Estructuras de Edificación: Tema 18 - Estructuras articuladas. Cálculo de desplazamientos.

Estructuras de Edificación: Tema 18 - Estructuras articuladas. Cálculo de desplazamientos. Estructuras de Edificación: Tema 18 - Estructuras articuladas. Cálculo de desplazamientos. David Herrero Pérez Departamento de Estructuras y Construcción Universidad Politécnica de Cartagena Grado en Ingeniería

Más detalles

Powered by TCPDF (www.tcpdf.org)

Powered by TCPDF (www.tcpdf.org) Powered by TCPDF (www.tcpdf.org) > Ecuación de Transformación para la Deformación Plana. Relaciona el tensor de deformaciones de un punto con la medida de una galga en ese punto con un ángulo φ del eje

Más detalles

RESISTENCIA DE MATERIALES

RESISTENCIA DE MATERIALES RESISTENCIA DE MATERIALES Carrera: Ingeniería Civil Plan: Ord. 1030 Ciclo Lectivo: 2018 en adelante Nivel: III Modalidad: Cuatrimestral (1er. Cuatrimestre) Asignatura: RESISTENCIA DE MATERIALES Departamento:

Más detalles