Módulo 2. Deflexiones en vigas
|
|
|
- Ramona Sosa Peña
- hace 9 años
- Vistas:
Transcripción
1 Módulo 2 Deflexiones en vigas
2
3 Introducción Todos los cuerpos reales se deforman bajo la aplicación de una carga, elástica o plásticamente. Un cuerpo puede ser tan insensible a la deformación que el supuesto de rigidez no afecte en grado suficiente a un análisis para asegurar un tratamiento no-rígido. Si después se comprueba que la deformación del cuerpo no era despreciable, entonces la declaración de rigidez fue una decisión errónea, no un supuesto equivocado. Un cable metálico es flexible, pero en tensión puede ser prácticamente rígido y se distorsiona mucho si se somete a cargas de compresión. El mismo cuerpo puede ser rígido o no rígido. El análisis de la deflexión influye en las situaciones de diseño en muchas formas. A menudo, el tamaño de una pieza se determina de acuerdo con las deflexiones, en vez de calcularse con base a los límites de esfuerzo y algunas veces, los elementos mecánicos se diseñan para que tengan una característica particular de la relación fuerza-deflexión.
4 En este capítulo nos centraremos en otro aspecto del diseño de vigas, llamado determinación de las deflexiones. Es de particular interés la determinación de la máxima deflexión de una viga bajo ciertas condiciones de cargas pues las especificaciones de diseño de la misma generalmente incluyen un valor máximo admisible para dicha deflexión. También será de interés conocer las deflexiones para el análisis de vigas indeterminadas (aquellas en las que el número de reacciones excede al de ecuaciones de equilibrio) Para una viga prismática sometida a flexión pura la misma se flexa un arco de circunferencia en el cual, dentro del rango elástico, la curvatura de la superficie neutra se calcula de la siguiente forma:
5 De aquí que este valor de deformación es válido en cualquier lugar y se concluye que la deformación normal longitudinal x varía linealmente con la distancia y desde la superficie neutra. La deformación x alcanza su valor máximo en c que es la distancia mayor desde la superficie neutra por lo que el máximo valor absoluto de dicha deformación es:
6 donde M es el momento flector, E el módulo de elasticidad e I el momento de inercia de la sección transversal en su eje neutro. Cuando una viga es sometida a cargas transversales, la ecuación anterior sigue siendo válida para cualquier otra sección transversal, sin embargo, tanto el flector como la curvatura de la superficie neutra podrán variar de sección a sección. Llamando x a la distancia de la sección desde la izquierda de la viga, podemos escribir:
7 Deformación bajo cargas transversales Consideremos, por eje,plo, una viga cantilever AB de longitud L, sometida a una carga concentrada P en su extremo A. Tendremos que M(x)=-Px por lo que quedaría: Lo cual muestra que la curvatura de la superficie neutra varía linealmente con x, desde cero en A, donde A es, a PL/EI en B donde. B =EI/PL
8 Notamos que el mayor valor de la curvatura (i.e., el menor valor del radio de curvatura) ocurre en el soporte C, donde M es máximo. De la información obtenida de la curvatura, tendremos una idea aproximada de la deformación de la viga. Sin embargo, el análisis y diseño de una viga usualmente requiere mayor información precisa de la deflexión y de la pendiente en varios puntos. El conocimiento de la máxima deflexión de la viga será de particular importancia
9 Ecuación de la elástica Del análisis matemático se sabe que la curvatura de una curva plana en un punto Q(x,y) de la curva puede ser expresada como Pero en el caso de la curva elástica de una viga, la pendiente dy/dx es muy pequeña, y su cuadrado es despreciable comparado con la unidad. De aquí que: Y sustituyendo:
10 La ecuación obtenida es una ecuación diferencial lineal de segundo orden. El producto EI es conocido como rigidex flexional. Para el caso de vigas de sección transversal constante: Llamando (x) al ángulo medido en radianes que forma la tangente a la curva elástica con la horizontal y observando que dicho ángulo es muy pequeño, tendremos: De aquí que se puede escribir la ecuación anterior de forma alternativa:
11 Integrando: Las constantes C 1 y C 2 se determinan con las condiciones de borde o, más precisamente con las condiciones impuestas por la soportación de la viga.
12 Ejemplos: 1. Determinar la ecuación de la elástica y la deflexión y pendiente en A 2. Determinar la ecuación de la elástica y la máxima deflexión de la viga 3. Determinar la pendiente y deflexión en D
13 Determinación de la elástica a partir de la distribución de las cargas Recordamos de CMM1 que, cuando una viga soporta una carga distribuida w(x), tenemos que: dm/dx = V y dv/dx =-w para cualquier punto de la viga. Luego:
14 De lo anterior concluimos que, cuando una viga prismática está sometida a una carga distribuida w(x), su curva elástica se encuentra gobernada por la siguiente ecuación diferencial lineal de cuarto orden :
15 Las cuatro constantes de integración pueden determinarse mediante las condiciones de borde. Dichas condiciones incluyen (a) las condiciones impuestas en la deflexión o pendiente de la viga, y (b) la condición de que V y M son cero en el extremo libre de una viga cantilever:
16 Ecuaciones fundamentales Intensidad de carga Esfuerzo cortante Momento flector Pendiente Deflexión x x x x x 4 d y EI w 4 dx 3 d y EI V 3 dx 2 d y EI M 2 dx dy EI dx y
17 Ejemplo: La viga simplemente soportada AB está sometida a una carga uniformemente distribuida w por unidad de longitud de viga. Determinar la ecuación de la elástica y la máxima deflexión de la viga.
18 Vigas estáticamente indeterminadas En el ejemplo mostrado se ve que las reacciones involucran 4 incógnitas mientras que las ecuaciones de equilibrio son 3: ECUACIONES DE EQUILIBRIO:
19 ECUACIÓN DE LA ELÁSTICA: Teniendo en cuenta las condiciones de borde indicadas, tenemos que x=0, =0 y x=0, y=0 en A, por lo que sustituyendo en las ecs. anteriores se llega a C 1 =C 2 =0, por lo que llegamos a : Pero la tercera condición de borde requiere que y=0 para x=l. sustituyendo en la ecuación anterior:
20
21 Funciones de singularidad o de Macaulay
22 Las 4 funciones de singularidad definidas en la tabla anterior, utilizando los paréntesis, constituye un medio útil y sencillo para integrar a través de discontinuidades. Mediante su utilización, las expresiones generales para cortante y flector pueden ser escritas cuando la viga es cargada con fuerzas y momentos concentrados. Como se puede ver en la tabla, los momentos y fuerzas concentradas son cero para todos los valores de x diferentes de a y están indefinidas para valores de x=a. Observar que el escalón unidad y las funciones rampa son cero solamente para valores de x menores que a. Las primeras dos integraciones de q(x) para V(x) y M(x) no requieren de constantes de integración.
23
24 Las reacciones R 1 y R 2 pueden ser encontradas de la forma usual (suma de fuerzas y momentos igual cero), o pueden ser encontradas notando que el cortante y el flector deberán ser cero en cualquier lado excepto en la región 0 x 20in. Lo que significa que V =0 para valores de x mayores que 20in. De aquí : Como el flector deberá ser cero en la misma región, tenemos que: Por lo cual:
25
26
27 La aplicación a la deflexión de vigas es una simple extensión de lo visto. Son fáciles de evaluar y pueden simplificar enormemente la solución de problemas estáticamente indeterminados. Ejemplos: 1. Consideremos la viga mostrada. Desarrolle las ecuaciones de deflexión utilizando funciones de singularidad
28
29
30 2. Determine la deflexión para la viga simplemente soportada con la distribución de cargas mostrada La intensidad de carga es: De la estática: Integrando: Empezando por la derecha podemos omitir la función de singularidad:
31 Integrando dos veces más: Conds. de borde
32 3. Para la viga y cargas mostradas y utilizando funciones de singularidad, expresar el cortante y el flector como función de x desde el soporte A
33 Superposición Cuando una viga es sometida a varias cargas distribuidas o concentradas, es muchas veces conveniente computar separadamente las pendientes y deflexiones causadas por cada una de las cargas en cuestión. La pendiente y la deflexión debido a cargas combinadas se obtienen aplicando el principio de superposición y sumando los valores de las pendientes o deflexiones correspondientes a las cargas mencionadas. Ejemplos: 1.
34 2. Caso hiperestático
35 La superposición resuelve el efecto de cargas combinadas sobre una estructura mediante la determinación de los efectos que cada carga por separado y sumando algebraicamente los resultados. La superposición puede aplicarse a condición de qué: 1. Cada efecto esté relacionado linealmente con la carga que lo produce 2. Una carga no genere una condición que afecte el resultado de otra carga 3. Las deformaciones resultantes de alguna carga específica no sean lo suficientemente grandes como para alterar las relaciones geométricas de las partes del sistema estructural.
36
37
38 Método de las «Areas Momento» En la primera parte de este capítulo utilizamos un método matemático basado en la integración de una ecuación diferencial para determinar la deflexión y pendiente de una viga en cualquier punto. El momento flector fué expresado como una función M(x) de la distancia x medida a lo largo de la viga, y dos integraciones sucesivas llevan a las funciones (x) e y(x) que representan respectivamente, la pendiente y la deflexión en cualquier punto de la viga. En esta parte veremos como las propiedades geométricas de la curva elástica pueden ser utilizadas para determinar la deflexión y la pendiente de una viga en un punto específico.
39 Consideremos una viga AB sometida a alguna carga arbitraria (Fig. a). Representamos el diagrama que representa la variación a lo largo de la viga de la cantidad M/EI (Fig. b). Vemos que, excepto por la diferencia en las escalas de las ordenadas, este diagrama es el mismo que el de flector si la rigidez a la flexión de la viga es constante Primer teorema de Mohr: D/C = área bajo el diagrama (M/EI) entre C y D
40 Consideremos ahora dos puntos P y P localizados entre C y D, a una distancia dx uno de otro (ver figura). Las tangentes a la elástica por P y P interceptan a la vertical por C determinando un segmento de longitud dt La pendiente en P y el ángulo d formado por las tangentes en P y P son ambos pequeñas cantidades, por lo que podremos asumir que dt es igual al arco de radio x subtenido el ángulo d. Tendremos, por ende:
41 Ahora integramos la ecuación anterior desde C a D. Notamos que, el punto P describe la curva elástica desde C a D, la tangente en P barre la vertical a través de C desde C a E. La integral de la parte izquierda es entonces igual a la distancia vertical desde C a la tangente en D. Esta distancia se denota por t C/D y es llamada la desviación tangencial de C respecto de D. Tenemos, por lo tanto: Observamos que (M/EI)dx representa un elemento de área bajo el diagrama (M/EI), y x 1 (M/EI)dx el momento de primer orden de este elemento respecto a un eje vertical por C.
42 El miembro de la derecha representa el momento de primer orden respecto de el eje del área localizada bajo el diagrama (M/EI) entre C y D. Podemos, por consiguiente, establecer el segundo teorema del área-momento (2 teorema de Mohr): La desviación tangencial t C/D de C respecto de D es igual al primer momento respecto a un eje vertical por C del área bajo el diagrama (M/EI) entre C y D. Recordando que el primer momento de un área respecto de su eje es igual al producto del área por la distancia desde su centroide al eje, podemos expresar el segundo teorema de la siguiente forma:
43
44
45
46
47
48
49
50 Módulo 3 Métodos energéticos
51 Energía de deformación Consideremos una barra BC de longitud L y sección transversal A empotrada en B sometida a una carga axial P que se incrementa lentamente y graficamos en un diagrama esfuerzo-deformación.
52 Ahora consideramos el trabajo du realizado por la carga P cuando la barra se estira una longitud diferencial dx. Dicho trabajo elemental es igual a P dx El trabajo total U realizado por la carga cuando la barra se deforma hasta x 1 es por lo tanto:
53 El trabajo realizado por la carga P mientras esta es aplicada lentamente a la barra deberá resultar en un incremento de alguna energía asociada con la deformación de dicha barra. Esta energía se conoce como la energía de deformación de la barra. Unidades: N.m (joules) ó lb-ft En el caso de deformaciones elásticas y lineales, la parte del diagrama carga-deformación involucrada puede ser representada mediante una recta de ecuación P=kx.
54 Veremos más adelante que el concepto de energía de deformación será útil para la determinación de los efectos de cargas de choque sobre estructuras o componentes de máquinas.
55 Densidad de energía de deformación La idea es eliminar el efecto del tamaño y centrar la atención en las propiedades del material. Dividiendo la energía de deformación U por el volumen V = AL de la barra, tendremos que: Teniendo en cuenta que P/A representa el esfuerzo normal x en la barra, y x/l la deformación normal ϵ x :
56 El valor de la densidad de energía de deformación obtenida haciendo ϵ 1 = ϵ R, donde ϵ R es la deformación de ruptura es conocida como el módulo de tenacidad del material (área total bajo la curva esfuerzodeformación) Notamos que la densidad de energía de deformación u es igual al área bajo la curva esfuerzodeformación, medidos desde ϵ x hasta ϵ x = ϵ 1
57 Módulo de resiliencia Representa la energía por unidad de volumen que el material puede absorber sin entrar en fluencia.
58 Energía elástica de deformación para esfuerzos normales El valor de la energía de deformación U de un cuerpo sujeto a esfuerzos normales uniaxiales pueden ser obtenidos integrando: Energía elástica del cuerpo
59 Energía elástica de deformación para carga axial Para el caso de una barra de sección uniforme A:
60 Ejercicio: Una carga P es aplicada en B a dos barras del mismo material y de sección uniforme A. Determinar la energía de deformación del sistema.
61 Energía elástica de deformación para flexión Sea M el momento flector a una distancia x: La segunda integral representa el momento de inercia I de la sección transversal a través de su eje neutro.
62 Ejercicio: Determinar la energía de deformación de la viga cantilever AB, tomando solamente en cuenta los efectos de los esfuerzos normales
63 Energía elástica de deformación para cortante
64 Energía elástica de deformación para torsión
65 Energía elástica de deformación para cortante transversal
66 Energía elástica de deformación para un estado general de esfuerzos Donde a, b y c son los esfuerzos principales en el punto dado Separemos ahora la densidad de energía de deformación u en dos partes, una parte u v asociada con un cambio en el volumen del material y una parte u d asociada con una distorsión o cambio de forma del material en el mismo punto: u = u v + u d
67 dilatación: Cambio en volumen por unidad de volumen
68
69 La porción u v de la densidad de energía de deformación correspondiente a un cambio de volumen del elemento puede ser obtenido sustituyendo cada uno de los esfuerzos principales por
70 Para el caso de estado plano de esfuerzos, y asumiendo que el eje c es perpendicular al plano de esfuerzos, tenemos que c =0 entonces: Considerando el caso particular de ensayo de tracción, notamos que, en fluencia a = Y, b = 0, por lo que (u d ) Y = Y2 /6G. Y deberá cumplirse que para un estado dado de esfuerzos estaremos del lado seguro siempre y cuando u d (u d ) Y ó:
71 Trabajo y energía bajo estado de carga simple
72
73
74 Trabajo y energía bajo estado de cargas múltiples Los coeficientes ij se llaman coeficientes de influencia
75
76 Energía de deformación debido a las cargas P1 y P2 Diferenciando ambos miembros con respecto a P 1 y P 2 queda
77 Teoremas de Castigliano Más generalmente, si una estructura elástica está sometida a n cargas P 1, P 2,, P n, la deflexión x j del punto de aplicación de P j, medido a lo largo de la línea de acción de ésta, puede ser expresado como la derivada parcial de la energía de deformación de la estructura respecto a la carga P j : ídem para momentos:
78 Teoremas de Castigliano En la figura se muestra una curva carga-deflexión general para un sistema elástico. Los símbolos Q y son generales y pueden indicar cualquier tipo de carga (axial, torsional, flexión o cortante transversal) y su correspondiente deflexión (lineal o angular). El único requerimiento es el de relacionamiento lineal, lo que implica que todos los esfuerzos están dentro del rango elástico y no ocurren inestabilidades. Trabajo Qd Que corresponde al área bajo la curva de la figura. Si el material es perfectamente elástico, dicha área es también igual a la energía elástica U almacenada dentro del material
79 Además, debido a que el sistema es lineal, dicha energía también será igual al área U' (energía complementaria) : U' U Q 2 Vale decir que la energía elástica almacenada es igual a la deflexión multiplicada por la fuerza promedio. La energía adicional asociada con la carga incremental dq es: du' du dq La tasa de cambio de la energía con la carga cuando actúa dicha carga Q es: du dq dq dq ó du dq De aquí que la deflexión elástica en este sistema simple es la derivada de la energía de deformación respecto de la carga aplicada 2º TEOREMA DE CASTIGLIANO: Cuando un cuerpo es deformado elásticamente mediante cualquier sistema de cargas, la deflexión en cualquier punto P y en cualquier dirección a, es igual a la derivada parcial de la energía de deformación (con el sistema de cargas actuando) respecto de la carga P actuando en la dirección a.
80 Matemáticamente, dicho teorema puede expresarse como: U Q Cuando Q es una fuerza, es una deflexión lineal ( ). Cuando Q es un momento, es una deflexión angular ( ). El teorema puede ser aplicado incluso si el sistema de carga no incluye la carga en el punto P en la dirección a. En dicho caso es necesario aplicar una carga imaginaria (fuerza o momento fantasma ), comúnmente designada Q. Luego de que se obtenga su expresión, la misma será igualada a cero para obtener el resultado final. 1er TEOREMA DE CASTIGLIANO: U Q
81 Ejemplos
82 Tablas
83
84
85
86
87 Ejemplos
88
89 Principio de los trabajos virtuales Asumiendo que el sistema es conservativo, el trabajo virtual W realizado por fuerzas reales a través de desplazamientos virtuales en la dirección de las fuerzas aplicadas es cero.
90 Trabajo virtual externo = Trabajo virtual interno
Mecánica de Materiales I
Tema 5 - Defleión en Vigas Mecánica de Materiales I Tema 5 Defleión en vigas Tema 5 - Defleión en vigas Sección - Ecuación diferencial de la elástica Ecuación diferencial de la elástica Para comenzar este
CUANTOS TIPOS DE APOYO, NUDOS O SOPORTES SE PUEDEN IDENTIFICAR O CONSTRUIR UNA ESTRUCTURA?
DEFINICION DE FUERZA AXIAL. Cuando suponemos las fuerzas internas uniformemente distribuidas, se sigue de la estática elemental que la resultante P de las fuerzas internas debe estar aplicadas en el centroide
Deflexión DE vigas. Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV
Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV Deflexión DE vigas Profesor: Cristian Castillo Realizado por: Barrios, Yasnahir Campos,
II.- CONCEPTOS FUNDAMENTALES DEL ANÁLISIS ESTRUCTURAL
II.- CONCEPTOS FUNDAMENTALES DEL ANÁLISIS ESTRUCTURAL 2.1.- Introducción Los métodos fundamentales disponibles para el analista estructural son el método de la flexibilidad (o de las fuerzas), y el método
Deflexiones de vigas y marcos
Deflexiones de vigas y marcos Cuando se carga una estructura, sus elementos esforzados se deforman. Cuando esto ocurre, la estructura cambia de forma y sus puntos se desplazan. Aunque estas deflexiones
Estructuras de Edificación: Tema 20 - La pieza recta
Resumen Estructuras de Edificación: Tema 20 - La pieza recta David Herrero Pérez Departamento de Estructuras y Construcción Universidad Politécnica de Cartagena Grado en Ingeniería de Edificación Segundo
Mecánica de Sólidos. UDA 2: Miembros Cargados Axialmente.
Mecánica de Sólidos UDA 2: Miembros Cargados Axialmente. UDA 2: Estructuras sometidas a Cargas Axiales Principio de Saint Venant Debido a la carga, la barra se deforma como lo indican las línes dibujadas
Los cables flexibles y las cadenas se usan para soportar y transmitir cargas entre miembros.
Los cables fleibles y las cadenas se usan para soportar y transmitir cargas entre miembros. En los puentes en suspensión, estos llevan la mayor parte de las cargas. En el análisis de fuerzas, el peso de
Mecánica de Materiales I
Mecánica de Materiales I Tema 3 Torsión en barras Índice de contenido Sección 1 - Deformaciones en un eje circular Tema 3 - Torsión en barras Índice de contenido Sección 2 - Esfuerzos cortantes en barras
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.
Mecánica de Sólidos. UDA 4: Fuerza Cortante y Momento Flexionante en Vigas
Mecánica de Sólidos UDA 4: Fuerza Cortante y Momento Flexionante en Vigas Generalidades: FLEXIÓN Y ESFUERZO Ocurre flexión cuando un elemento de sección constante y simétrica respecto al plano donde ocurre
El esfuerzo axil. Contenidos
Lección 8 El esfuerzo axil Contenidos 8.1. Distribución de tensiones normales estáticamente equivalentes a esfuerzos axiles.................. 104 8.2. Deformaciones elásticas y desplazamientos debidos
CURSO: MECÁNICA DE SÓLIDOS II
UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA CURSO: MECÁNICA DE SÓLIDOS II PROFESOR: ING. JORGE A. MONTAÑO PISFIL CURSO DE
CÓDIGO: FOR-DO-062 VERSIÓN: 0 FECHA:26/08/2016 FORMATO RESUMEN DECONTENIDO DE CURSO O SÍLABO
1. INFORMACIÓN GENERAL DEL CURSO Facultad Ingeniería Fecha de Actualización 23/11/2016 Programa Ingeniería mecánica Semestre V Nombre Resistencia de materiales Código 714030 Prerrequisitos 71308 Estática
Elementos Uniaxiales Sometidos a Carga Axial Pura
Elementos Uniaiales Sometidos a Carga ial ura Definición: La Tensión representa la intensidad de las fuerzas internas por unidad de área en diferentes puntos de una sección del sólido aislada (Fig. 1a).
Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo
Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2015-1 2 Capítulo 6. Flexión 3 un miembro 4 Una viga con un plano de simetría es sometido a pares iguales y opuestos M que actúan en dicho plano.
RESISTENCIA DE MATERIALES
UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL RESISTENCIA DE MATERIALES CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ingeniería Estructural CODIGO SEMESTRE
ME Capítulo 4. Alejandro Ortiz Bernardin. Universidad de Chile
Diseño de Elementos Mecánicos ME-5600 Capítulo 4 Alejandro Ortiz Bernardin www.cec.uchile.cl/~aortizb Departamento de Ingeniería Mecánica Universidad de Chile Contenidos del Capítulo Constantes de Resorte
Contenido " '* Prefacio. Alfabeto griego
Contenido Prefacio Símbolos ix Xlll Alfabeto griego XVI ""' y 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Introducción a la mecánica de materiales 1 Esfuerzo y defonnación unitaria normales 3 Propiedades mecánicas
ELASTICIDAD POR FLEXIÓN: UNA EXPERIENCIA DE LABORATORIO ADAPTABLE A LOS DISTINTOS NIVELES EDUCATIVOS
III Taller Iberoamericano de Enseñanza sobre Educación en Ciencia e Ingeniería de Materiales (TIECIM 0) EASTICIDAD POR FEXIÓN: UNA EXPERIENCIA DE ABORATORIO ADAPTABE A OS DISTINTOS NIVEES EDUCATIVOS T.
RESISTENCIA DE MATERIALES Carácter: Obligatoria
UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL RESISTENCIA DE MATERIALES Carácter: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ingeniería Estructural CODIGO SEMESTRE
Resistencia de materiales
Resistencia de materiales April 3, 009 En ingeniería se denomina viga a un elemento constructivo lineal que trabaja principalmente a exión. La teoría de vigas es una parte de la resistencia de materiales
Capítulo 7. Fuerzas en vigas y cables
Capítulo 7 Fuerzas en vigas y cables Fuerzas en elementos rectos sujetos a dos fuerzas Elemento recto sujeto a dos fuerzas AB Sometido en A y B a fuerzas iguales y opuestas F y F que están dirigidos a
RM - Resistencia de los Materiales
Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2017 205 - ESEIAAT - Escuela Superior de Ingenierías Industrial, Aeroespacial y Audiovisual de Terrassa 712 - EM - Departamento
Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo
Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 6. Flexión 3 un miembro 4 Una viga con un plano de simetría es sometido a pares iguales y opuestos M que actúan en dicho plano.
DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 2
1. Tema: Determinación de la posición de las galgas extensiométricas en una barra de torsión. 2. Objetivos: a. Simular el comportamiento estático de una barra de torsión, mediante el uso de un paquete
Mecánica de Materiales I
Mecánica de Materiales I Tema 2 Carga Transversal y Momento Flexionante Índice de contenido Tema 2 Carga Transversal y Momento Flector Índice de contenido Sección 1 - Relación entre Carga, Fuerza Cortante
15.5. Torsión uniforme en barras prismáticas de sección de
Lección 15 Torsión uniforme Contenidos 15.1. Distribución de tensiones tangenciales estáticamente equivalentes a un momento torsor................ 186 15.2. Torsión uniforme en barras prismáticas de sección
IX. Vibración de sistemas continuos
Objetivos:. Determinar expresiones para la energía cinética y potencial de sistemas continuos: barras y vigas.. Emplear métodos variacionales para deducir la ecuación de unidimensional: barras (axial)
Tema 6: FLEXIÓN: DEFORMACIONES
Tema 6: Fleión: Deformaciones Tema 6: FLEXÓN: DEFORCONES + Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 008 1 Tema 6: Fleión: Deformaciones 6.1.- NTRODUCCÓN Las deformaciones ha que limitarlas
T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS
T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS 1- Analice la deformada de cada uno de los casos presentados en la figura inferior. Responda a las siguientes consignas: a) Cuál es la parte de la viga (superior
Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1
Si la sección de un perfil metálico es la que aparece en la figura, suponiendo que la chapa que une los círculos es de espesor e inercia despreciables, determina la relación entre las secciones A 1 y A
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA ESTRUCTURAL
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA ESTRUCTURAL ASIGNATURA: RESISTENCIA DE MATERIALES CÓDIGO: 1102 UNIDADES: 6 Teoría: 5 horas/semana REQUISITOS: 1101,0254-0255
INDICE. par de fuerzas aplicado en perpendicular al EJE LONGITUDINAL de la barra. criterio de signos POSITIVO: regla del sacacorchos
INDICE 12.1 Introducción. 12.2 Torsión isostática. Tensiones y giros. 12.3 Torsión hiperestática. 12.4 Introducción a la Flexotorsión. 12.5 Epílogo. Torsión libre. par de fuerzas aplicado en perpendicular
ANÁLISIS DE ESTRUCTURAS INDETERMINADAS POR EL MÉTODO DE LAS FLEXIBILIDADES
ANÁLISIS DE ESTRUCTURAS INDETERMINADAS POR EL MÉTODO DE LAS FLEXIBILIDADES Introducción El método de las flexibilidades, también conocido como método de las deformaciones consistentes, o el método de la
Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo
Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2015-1 2 Capítulo 4. Carga axial elástica de un miembro. Miembros s, estáticamente s.. 3 1.1 elástica de un miembro El esfuerzo es un medio
El modelo de barras: cálculo de esfuerzos
Lección 6 El modelo de barras: cálculo de esfuerzos Contenidos 6.1. Definición de barra prismática............... 78 6.2. Tipos de uniones........................ 78 6.3. Estructuras isostáticas y estructuras
Planteamiento del problema elástico lineal
Capítulo 3 Planteamiento del problema elástico lineal Para la simulación o representación de un proceso o un fenómeno físico, una de las partes fundamentales es su planteamiento matemático, que en su forma
RM - Resistencia de los Materiales
Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2018 205 - ESEIAAT - Escuela Superior de Ingenierías Industrial, Aeroespacial y Audiovisual de Terrassa 712 - EM - Departamento
Resistencia de Materiales. Estructuras. Tema 11. Inestabilidad en barras. Pandeo. Barra Empotrada-Empotrada.
Resistencia de Materiales. Estructuras Tema 11. Inestabilidad en barras. Pandeo Módulo 6 Barra Empotrada-Empotrada. En los módulos anteriores se ha estudiado el caso del pandeo en la barra articulada-articulada,
Introducción a la Elasticidad y Resistencia de Materiales
Lección 1 Introducción a la Elasticidad y Resistencia de Materiales Contenidos 1.1. Mecánica del Sólido Rígido y Mecánica del Sólido Deformable............................. 2 1.1.1. Sólido Rígido..........................
Introducción a la Mecánica de los Sólidos
Introducción a la Mecánica de los Sólidos Clase 1 Suposiciones introducidas, Propiedades Mecánicas de los Materiales, Coeficientes de Seguridad Reología Mecánica de los Fluidos Mecánica de las Materias
CURSO: MECÁNICA DE SÓLIDOS II UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA
UNIVERSIDD NCION DE CO CUTD DE INGENIERÍ EÉCTRIC Y EECTRÓNIC ESCUE ROESION DE INGENIERÍ EÉCTRIC CURSO: MECÁNIC DE SÓIDOS II ROESOR: ING. JORGE. MONTÑO ISI CURSO DE MECÁNIC DE SÓIDOS II CÍTUO 3: CRG XI
2 =0 (3.146) Expresando, las componentes del tensor de esfuerzos en coordenadas cartesianas como: 2 ; = 2 2 ; =
3.7. Función de Airy Cuando las fuerzas de cuerpo b son constantes en un sólido con estado de deformación o esfuerzo plano, el problema elástico se simplifica considerablemente mediante el uso de una función
RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA ESFUERZOS COMBINADOS
RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA FLEXION Y AXIAL 2013 [email protected] RESISTENCIA DE MATERIALES I ICM FLEXION Y AXIAL 2013 [email protected] RESISTENCIA DE MATERIALES
2014 RESISTENCIA DE MATERIALES I ICM RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA ESFUERZOS COMBINADOS
RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA FLEXION Y AXIAL 2014 [email protected] RESISTENCIA DE MATERIALES I ICM FLEXION Y AXIAL 2014 [email protected] RESISTENCIA DE MATERIALES
El Principio de los Desplazamientos Virtuales (PDV)
El Principio de los Desplazamientos Virtuales (PDV) Apellidos, nombre Basset Salom, uisa ([email protected]) Departamento Centro Mecánica de Medios Continuos y Teoría de Estructuras Escuela Técnica Superior
Prácticas Complementarias de Resistencia 12-13
Prácticas Complementarias de Resistencia 12-13 1) Dibujar sendos croquis con las reacciones acotadas en magnitud y sentido para las vigas de la figura 1: Figura 1 2) Calcular las reacciones del muro y
T P Nº 7: TENSIONES Y DEFORMACIONES AXIALES
ESTATICA Y RESISTENCIA DE MATERIALES (QUIMICA Y MINAS) T P Nº 7: TENSIONES Y DEFORMACIONES AXIALES 1) Dos cables de acero, AB y BC, sostiene una lámpara que pesa 15 lb. El cable AB tiene un ángulo α =
Teoremas energéticos fundamentales del análisis estructural. Aplicación a celosías planas
Teoremas energéticos fundamentales del análisis estructural Aplicación a celosías planas Índice Directos Densidad de energía Complementarios Densidad de energía complementaria Energía elástica (Función
ANALISIS DE VIGAS ESTATICAMENTE INDETERMINADAS
NISIS DE VIGS ESTTICENTE INDETERINDS.. DEFINICIÓN. Se denomina de esta manera a una barra sujeta a carga lateral; perpendicular a su eje longitudinal, en la que el número de reacciones en los soportes
< momento aplicado sobre un nudo; < carga repartida; < carga concentrada. Movimientos y deformaciones impuestos:
Viga continua con múltiples patologías 1/5 Figura 1 Viga continua con multiples patologías Problema de viga continua Vamos a calcular todos los esfuerzos, reacciones y curvaturas, y a dibujar la deformada
Mecánica de Materiales I
Mecánica de Materiales I Tema 1 Esfuerzo y Deformación Introducción Índice de contenido Sección 1 - Concepto de Esfuerzo Sección 2 - Deformaciones Sección 3 - Ensayo de tracción Sección 4 - Curva Esfuerzo-Deformación
CURSO: MECÁNICA DE SÓLIDOS II
UNIVERSIDAD NACIONAL DEL CALLAO FACULAD DE INGENIERÍA ELÉCRICA Y ELECRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCRICA CURSO: MECÁNICA DE SÓLIDOS II PROFESOR: ING. JORGE A. MONAÑO PISFIL CURSO DE MECÁNICA
MECÁNICA DEL SÓLIDO REAL (3º, Máquinas). Curso 2010/ TEST Nº 1
MECÁNICA DEL SÓLIDO REAL (3º, Máquinas). Curso 2010/11. 17-2-2011 Nombre... Nº... TEST Nº 1 Nº Tema Indicar si son verdaderas () o falsas () las siguientes afirmaciones / 1 1 En un modelo de medio continuo
Tabla breve del Contenido
Tabla breve del Contenido PARTE UNO: ESTRUCTURAS ESTÁTICAMENTE DETERMINADAS CAPÍTULO 1 Introducción 3 CAPÍTULO 2 Cargas estructurales 16 CAPÍTULO 3 Sistema de cargas y comportamiento 43 CAPÍTULO 4 Reacciones
PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO
PROBEMAS DE RESISTENCIA DE MATERIAES MÓDUO 5: FEXIÓN DE VIGAS CURSO 016-17 5.1( ).- Halle, en MPa, la tensión normal máxima de compresión en la viga cuya sección y diagrama de momentos flectores se muestran
EXAMEN FINAL: PRIMER PARCIAL RESISTENCIA DE MATERIALES
EXAMEN FINAL: PRIMER PARCIAL RESISTENCIA DE MATERIALES Curso 2015-2016 3er curso del Grado en Ingeniería de Organización Industrial Apellidos, Nombre: Compañía: Sección: Cuestión 1 Cuestión 2 Cuestión
Calcular la energía de deformación de la viga de rigidez constante EI, simplemente apoyada, indicada en la figura.
11.29.- Calcular la energía de deformación de la viga de rigidez constante EI, simplemente apoyada, indicada en la figura. 30-6-98 11.30.- Calcular en Julios el potencial interno de una viga en voladizo
Nombre de la asignatura: Resistencia de los materiales. Carrera : Ingeniería Mecánica. Clave de la asignatura: ACC
Nombre de la asignatura: Resistencia de los materiales. Carrera : Ingeniería Mecánica Clave de la asignatura: ACC- 96 Clave local: Horas teoría horas practicas créditos: 4--0.- UBICACIÓN DE LA ASIGNATURA
Unidad Resistencia de Materiales. Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S
Unidad Resistencia de Materiales Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S MÓDULO III: FLEXIÓN INTRODUCCION En los capítulos anteriores las fuerzas internas eran conocidas o constantes
1.1. De los momentos de segundo orden y los ejes principales de inercia
I 1. ASPECTOS TEÓRICOS 1.1. De los momentos de segundo orden y los ejes principales de inercia Sea una sección plana de área como la de la figura 1 definido cualquier pareja de ejes perpendiculares en
ESTABILIDAD II A Ejercicios No Resueltos: SOLICITACION AXIL en régimen elástico
A continuación, ejercicios no resueltos para los alumnos de la materia Estabilidad II A, los mismos fueron extraídos del libro: Resistencia de Materiales. Autor: Luis Ortiz Berrocal. Ejercicio n 1: Calcular
El Principio de las Fuerzas Virtuales
El Principio de las Fuerzas Virtuales Apellidos, nombre Basset Salom, uisa ([email protected]) Departamento Centro Mecánica de Medios Continuos y Teoría de Estructuras Escuela Técnica Superior de Arquitectura
ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS
ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS Tecnología. Enunciados Ejercicios. ESTÁTICA-ESTRUCTURAS. Página 0 σ: tensiones (kp/cm 2 ) ε: deformaciones (alargamientos unitarios) σ t = σ adm : tensión de
MÉTODO ALGEBRÁICO PARA DETERMINAR LA DEFORMACIÓN POR DEFLEXIÓN EN VIGAS ESTÁTICAMENTE INDETERMINADAS
ISSN 007-1957 MÉTODO ALGEBRÁICO PARA DETERMINAR LA DEFORMACIÓN POR DEFLEXIÓN EN VIGAS ESTÁTICAMENTE INDETERMINADAS Juan José Martínez Cosgalla Escuela Superior de Ingeniería Mecánica y Eléctrica, Instituto
Prácticas de Resistencia 12-13
Prácticas de Resistencia 12-13 1) Calcular las reacciones en los apoyos de la viga de la figura 1 para los siguientes dos casos de la carga actuante: parábola de 2º grado con tangente horizontal en C;
T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA-
T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA- 1. Dadas las siguientes vigas, A) clasificarlas según su sustentación en : empotradas, simplemente
Capítulo 3. TRACCIÓN Y COMPRESIÓN SIMPLE
Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 3. TRACCIÓN Y COMPRESIÓN SIMPLE 3.1 BARRA PRISMÁTICA SOMETIDA A UN ESFUERZO NORMAL CONSTANTE Consideremos
1- Esfuerzo de corte. Tensiones tangenciales.
MECÁNICA TÉCNICA TEMA XV 1- Esfuerzo de corte. Tensiones tangenciales. En el tema XI se definió el esfuerzo de corte que normalmente se lo simboliza con la letra Q. En este tema vamos a tratar el caso
PROBLEMA 1 (10 puntos)
RESISTENCIA DE MATERIALES EXAMEN FINAL / PRUEBA DE EVALUACIÓN CONTINUA 3 CURSO 017-18 17-01-018 PROBLEMA 1 (10 puntos) Fecha de publicación de la preacta: de febrero de 018 Fecha de revisión del examen:
ME Capítulo 3. Alejandro Ortiz Bernardin. Universidad de Chile
Diseño de Elementos Mecánicos ME-5600 Capítulo 3 Alejandro Ortiz Bernardin www.cec.uchile.cl/~aortizb Departamento de Ingeniería Mecánica Universidad de Chile Contenidos del Capítulo Diagramas de Cuerpo
Contenido. CAPÍTULO 1 Introducción 3. CAPÍTULO 2 Cargas estructurales 17 PARTE I ESTRUCTURAS ESTÁTICAMENTE DETERMINADAS DEDICATORIA PREFACIO.
Contenido DEDICATORIA PREFACIO v vii PARTE I ESTRUCTURAS ESTÁTICAMENTE DETERMINADAS CAPÍTULO 1 Introducción 3 1.1 Análisis y diseño estructural 3 1.2 Historia del análisis estructural 4 1.3 Principios
TEMA 4: PROBLEMAS RESUELTOS DE DEFORMACIÓN ANGULAR
Problemas eformación ngular T : PROLS RSULTOS ORÓN NGULR.. plicando el método de la deformación angular obtener el diagrama de momentos flectores y dibujar aproximadamente la deformada de la estructura
III. Análisis de marcos
Objetivo: 1. Efectuar el análisis de estructuras de marcos. 1. Introducción. Aquellas estructuras constituidas de vigas unidimensionales conectadas en sus extremos de forma pivotada o rígida son conocidas
Estática. Fuerzas Internas
Estática 7 Fuerzas Internas Objectivos Método de las secciones para determinar las cargas internas o solicitaciones en un miembro. Describir la tensión interna de corte o cizalla y el momento interno de
1.- De las siguientes afirmaciones, marque la que considere FALSA:
APLIACIÓN DE RESISTENCIA DE ATERIALES. CURSO 0-3 CONVOCATORIA ETRAORDINARIA. 8jun03 Fecha de publicación de la preacta: de Julio Fecha hora de revisión: 9 de Julio a las 0:30 horas TEST (tiempo: 5 minutos)
Leonardo Da Vinci (Siglo XV)
UN POCO DE HISTORIA Leonardo Da Vinci (Siglo XV) Los 6 puentes de Leonardo Leonardo Da Vinci (Siglo XV) El método para doblar vigas de madera para darles forma de arco sin romper sus fibras Galileo (Siglo
Leonardo Da Vinci (Siglo XV)
UN POCO DE HISTORIA Leonardo Da Vinci (Siglo XV) Los 6 puentes de Leonardo Leonardo Da Vinci (Siglo XV) El método para doblar vigas de madera para darles forma de arco sin romper sus fibras Galileo (Siglo
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA CIVIL DEPARTAMENTO DE INGENIERÍA ESTRUCTURAL
11 TIPO DE 53: Minas; 1: Petróleo; 53, :Hidrometeorología FUNDAMENTACIÓN Esta asignatura presenta los parámetros y criterios que permiten describir los materiales, así como también las dimensiones que
UNIVERSIDAD LIBRE FACULTAD DE INGENIERÍA ASIGNATURA: LABORATORIO DE ENSAYOS MECÁNICOS GUIA ACADEMICA: ENSAYO DE FLEXIÓN
1. OBJETIVOS Los objetivos de los ensayos de flexión son : -Determinar una curva carga-desplazamiento del prototipo -Analizar el comportamiento de los materiales metálicos al ser sometidos a un esfuerzo
Flexión pura y flexión desviada
Lección 9 Flexión pura y flexión desviada Contenidos 9.1. Distribución de tensiones normales estáticamente equivalentes a momentos flectores................ 114 9.2. Flexión pura..........................
CURVATURA EN COLUMNAS
UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLIVAR UNIDAD DE ESTUDIOS BASICOS DEPARTAMENTO DE CIENCIAS AREA DE MATEMATICA CURVATURA EN COLUMNAS Prof. Cristian Castillo Sección 02 Presentado por: Olivera Ricardo
Punto material: Una partícula. Puede ocupar distintos puntos espaciales en su movimiento alolargodeltiempo.
1.11 Ecuaciones del movimiento 1.11. Ecuaciones del movimiento La descripción más elemental del movimiento del Medio Continuo puede llevarse a cabo mediante funciones matemáticas que describan la posición
EJERCICIOS COMPLEMENTARIOS DE ELASTICIDAD AÑO ACADÉMICO
EJERCICIOS COMPLEMENTARIOS DE ELASTICIDAD AÑO ACADÉMICO 2011-2012 Prob 1. Sobre las caras de un paralepípedo elemental que representa el entorno de un punto de un sólido elástico existen las tensiones
Mecánica de las Estructuras I
Mecánica de las Estructuras I Página 1 de 5 Programa de: UNIVERSIDAD NACIONAL DE CÓRDOBA Facultad de Ciencias Exactas, Físicas y Naturales República Argentina Mecánica de las Estructuras I Código: 5006
Ecuaciones diferenciales de Equilibrio
Ecuaciones diferenciales de Equilibrio 28 de marzo de 2006 1. Elasticidad en una dimensión 1.1. Esfuerzo σ y carga lineal b(x) Para examinar un cuerpo desde el contínuo, que es la primera hipótesis (a),
Deformaciones. Contenidos
Lección 2 Deformaciones Contenidos 2.1. Concepto de deformación................... 14 2.2. Deformación en el entorno de un punto.......... 15 2.2.1. Vector deformación. Componentes intrínsecas........
ÍNDICE TOMO 1 DISEÑO Y CÁLCULO ELÁSTICO DE LOS SISTEMAS ESTRUCTURALES ÍNDICE GENERAL
ÍNDICE TOMO 1 DISEÑO Y CÁLCULO ELÁSTICO DE LOS SISTEMAS ESTRUCTURALES ÍNDICE GENERAL INTRODUCCIÓN Tomo I CAPÍTULO 1. ESTUDIO TIPOLÓGICO DE LAS ESTRUCTURAS DE VECTOR ACTIVO O DE NUDOS ARTICULADOS. CAPÍTULO
Sílabo de Mecánica de Materiales I
Sílabo de Mecánica de Materiales I I. Datos generales Código ASUC 00568 Carácter Obligatorio Créditos 5 Periodo académico 2018 Prerrequisito Mecánica Vectorial - Estática Horas Teóricas 4 Prácticas 2 II.
Estructuras de Edificación: Tema 21 - El método del equilibrio en estructuras de nudos rígidos.
Estructuras de Edificación: Tema 21 - El método del equilibrio en estructuras de nudos rígidos. David Herrero Pérez Departamento de Estructuras y Construcción Universidad Politécnica de Cartagena Grado
TEORÍA DE HILOS FLEXIBLES: CATENARIAS
TEORÍA DE HILOS FLEXIBLES. APLICACIÓN A LAS CATENARIAS 1. INTRODUCCION La flexibilidad de los hilos hace que su estudio difiera en cierto modo de los sistemas discretos considerados hasta ahora en el curso
Estructuras de Edificación: Tema 18 - Estructuras articuladas. Cálculo de desplazamientos.
Estructuras de Edificación: Tema 18 - Estructuras articuladas. Cálculo de desplazamientos. David Herrero Pérez Departamento de Estructuras y Construcción Universidad Politécnica de Cartagena Grado en Ingeniería
Powered by TCPDF (www.tcpdf.org)
Powered by TCPDF (www.tcpdf.org) > Ecuación de Transformación para la Deformación Plana. Relaciona el tensor de deformaciones de un punto con la medida de una galga en ese punto con un ángulo φ del eje
RESISTENCIA DE MATERIALES
RESISTENCIA DE MATERIALES Carrera: Ingeniería Civil Plan: Ord. 1030 Ciclo Lectivo: 2018 en adelante Nivel: III Modalidad: Cuatrimestral (1er. Cuatrimestre) Asignatura: RESISTENCIA DE MATERIALES Departamento:
