Mecánica de Materiales I

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Mecánica de Materiales I"

Transcripción

1 Mecánica de Materiales I Tema 2 Carga Transversal y Momento Flexionante

2 Índice de contenido Tema 2 Carga Transversal y Momento Flector Índice de contenido Sección 1 - Relación entre Carga, Fuerza Cortante y Momento Flector Sección 2 - Ecuaciones Generales de Fuerza Cortante y Momento Flector Sección 3 - Esfuerzo Normal debido a Momento Flector Sección 4 - Esfuerzo Cortante debido a Carga Transversal Sección 5 - Esfuerzo Normal debido a Momento Flector en miembros curvos Sección 6 - Vigas sometidas a Carga Axial excéntrica Sección 7 - Resumen de Ecuaciones

3 Sección 1 - Relación entre carga, Fuerza cortante y Momento Flector Relación entre Carga, Fuerza Cortante y Momento Flector Los miembros ligeros que soportan cargas aplicadas de forma perpendicular y/o paralela a sus ejes longitudinales se llaman vigas. A menudo se pueden clasificar según el modo en que estén soportadas. Viga simplemente apoyada Viga en voladizo Viga con voladizo

4 Sección 1 - Relación entre carga, Fuerza cortante y Momento Flector Las vigas se presentan en gran variedad de estructuras (armazones de edificios, chasis de automóviles, etc.). En muchos casos, pueden hallarse gran variedad de cargas aplicadas sobre las mismas. Esto hace que determinar la sección transversal crítica (aquella en la que se producen los esfuerzos de mayor magnitud) no sea un procedimiento sencillo, de un solo paso. Se recurre entonces a los diagramas de fuerza cortante y momento flector. Estos diagramas son representaciones gráficas que muestran cómo se distribuyen dichas cargas sobre la viga, revelando dónde se encuentra la sección transversal crítica. En la mayoría de las vigas, los esfuerzos provocados por momentos flectores son más relevantes que aquellos producidos por fuerza cortante. Debido a esto, suele ocurrir que la sección crítica sea aquella en la cual esté aplicado el momento flector de mayor magnitud. Sin embargo, por seguridad, debe hacerse también una evaluación de esfuerzos en la sección donde ocurra la mayor fuerza cortante.

5 Sección 1 - Relación entre carga, Fuerza cortante y Momento Flector Convención de signos Se considerarán con signo positivo: Las cargas variables y/o fuerzas cortantes que generen rotación horaria del segmento de viga. Los momentos flectores que generen compresión en la parte superior de la sección transversal de la viga.

6 Sección 1 - Relación entre carga, Fuerza cortante y Momento Flector Relación entre Fuerza Cortante y Momento Flector Consideremos una viga en sometida a una carga distribuida a lo largo de la misma, como se muestra. El término q(x) Δx representa la fuerza resultante y K Δx es distancia a la que actúa la fuerza cortante desde el extremo derecho; se cumple que 0 < k < 1

7 Sección 1 - Relación entre carga, Fuerza cortante y Momento Flector Al aplicar la primera condición de la estática, obtenemos: Fv V q( x) x ( V V ) 0 Al despejar el término referido a la variación de fuerza cortante, tenemos: V q( x) x queda: Finalmente, al despejar q(x) y aplicar el límite cuando Δx 0 nos Lim x0 V x dv dx q( x)

8 Sección 1 - Relación entre carga, Fuerza cortante y Momento Flector Análogamente, al aplicar la segunda condición de la estática, obtenemos: 2 Mo M V x q( x) k x ( M M ) 0 Despejando el término referido a la variación del momento flector, tenemos: M V x q( x) k x Luego, al despejar V, tomando la aproximación Δx 2 0 y aplicando el límite cuando Δx 0 nos queda: 2 Lim x0 M x dm dx V Podemos observar entonces que el diagrama de fuerza cortante nos indica cómo se comportan las rectas tangentes a la curva que describe la variación del momento flector sobre la viga.

9 Sección 2 - Ecuaciones Generales de Fuerza Cortante y Momento Flector Ecuaciones Generales de Fuerza Cortante y Momento Flector En muchos casos puede resultar de interés disponer de expresiones analíticas que describan cómo varían la fuerza cortante y el momento flector. Para ello, utilizaremos la función de Macaulay, que se define de la siguiente forma: f ( x) x a n 0 si x<a (x a) n si x >a

10 Sección 2 - Ecuaciones Generales de Fuerza Cortante y Momento Flector 0 si x<a f ( x) x a n (x a) n si x >a Respecto a esta función, podemos acotar lo siguiente: La expresión encerrada en los corchetes agudos es nula hasta que x alcanza el valor de a. Para x>a, la expresión se convierte en un binomio ordinario. Cuando n =0 y x>a, la función es igual a la unidad.

11 Sección 2 - Ecuaciones Generales de Fuerza Cortante y Momento Flector Para determinar las ecuaciones generales de fuerza cortante y momento flector de una viga cargada, se recomienda seguir los siguientes pasos: 1. Hacer un corte imaginario en un extremo de la viga, a la izquierda o a la derecha, según convenga. 2. Determinar las reacciones en apoyos ó empotramientos. 3. Describir cada carga, utilizando para ello una función de Macaulay. 4. El plano de corte imaginario debe coincidir con el final de las cargas distribuidas; de no ser así, las mismas deberán proyectarse hasta dicho corte. Se recomienda entonces agregar y quitar tantas cargas como sea necesario.

12 Sección 2 - Ecuaciones Generales de Fuerza Cortante y Momento Flector A continuación presentamos algunos ejemplos de cargas expresadas utilizando funciones de Macaulay: V( x) 0 M ( x) M x a 0 V ( x) P x a M ( x) P x a 0 1

13 Sección 2 - Ecuaciones Generales de Fuerza Cortante y Momento Flector Como se mencionó anteriormente, al presentarse cargas variables debe procurarse que éstas terminen en el corte imaginario realizado en un extremo de la viga; se procedería entonces como sigue para una carga uniformemente distribuida: V ( x) W x a W x b M ( x) W x a W x b 2 2 2

14 ) ( b x K b x a b K a x a b K x V ) ( b x K b x a b K a x a b K x M Con una carga que varía linealmente, se tendría: Tema 2 - Carga Transversal y Momento Flector Sección 2 - Ecuaciones Generales de Fuerza Cortante y Momento Flector

15 Sección 3 Esfuerzo Normal debido a Momento Flector Esfuerzo Normal debido a Momento Flector Utilizando un material muy deformable como el hule, se puede identificar físicamente qué sucede cuando un miembro prismático recto se somete a flexión. La líneas longitudinales se curvan y las líneas trasversales perpendiculares al momento permanecen rectas, pero sufren una rotación.

16 Sección 3 Esfuerzo Normal debido a Momento Flector Definiremos ahora dos parámetros que nos serán de utilidad próximamente. Llamaremos eje neutro a aquel contenido en el plano de sección transversal, respecto al cual gira la sección. El eje neutro es paralelo al vector momento flector aplicado. Designaremos superficie neutra a la superficie longitudinal conformada por el eje neutro y todas la líneas longitudinales de la viga que lo intercepten.

17 Sección 3 Esfuerzo Normal debido a Momento Flector En resumen, se asumen las siguientes condiciones: La viga es recta. La sección transversal de la viga es uniforme. Todas las cargas actúan de forma perpendicular al eje de la viga. La viga apenas se tuerce al aplicar las cargas. El material del que esté hecha la viga es homogéneo y su modelo de elasticidad es igual a tensión y compresión.

18 Sección 3 Esfuerzo Normal debido a Momento Flector En la figura mostrada puede notarse cómo se vería afectada una porción de una viga y un elemento diferencial de la misma al aplicarse el momento flector.

19 Sección 3 Esfuerzo Normal debido a Momento Flector Podemos plantear una expresión para la deformación unitaria en el elemento: s' s Lim s0 s Donde: Δs = Δx = ρ Δθ Δs = (ρ + y) Δθ Entonces, replanteamos la deformación de la siguiente forma: Lim 0 ( y)

20 Sección 3 Esfuerzo Normal debido a Momento Flector Finalmente: Lim 0 y y Nótese que la deformación normal varía linealmente. En el eje neutro, desde el cual se miden las distancias y, no ocurrirá deformación. Y las deformaciones que ocurran por encima el eje neutro serán de signo contrario a las que ocurren por debajo del mismo.

21 Sección 3 Esfuerzo Normal debido a Momento Flector Recordando la Ley de Hooke, E podemos plantear una primera expresión del esfuerzo, en función de la variable y : y E donde E y ρ son constantes. Ahora, aplicando la primera condición de la estática sobre la sección transversal, tenemos: df da 0

22 Sección 3 Esfuerzo Normal debido a Momento Flector Sustituimos la expresión de σ obtenida anteriormente y nos queda E da y da 0 Dado que ningún da es igual a cero, tenemos que la única solución posible para esta ecuación es que se cumpla lo siguiente: y da 0 Esto nos indica que el eje neutro, desde el cual se miden todas las distancias y, debe coincidir con el centroide de la sección transversal de la viga.

23 Sección 3 Esfuerzo Normal debido a Momento Flector Ahora, aplicaremos la segunda condición de la estática sobre la sección. Nos queda: M M y da 0 De forma similar a la anterior, sustituimos la expresión de σ obtenida mas atrás y obtenemos: M E 2 y da M y da 0 Donde el término que encierra la integral corresponde al momento de inercia de la sección transversal respecto al eje neutro. Designando con la letra I a esta propiedad de área, podemos rescribir la expresión de la siguiente forma: M E I 0

24 Sección 3 Esfuerzo Normal debido a Momento Flector Recordando una expresión obtenida en líneas anteriores: E y y E Al sustituir esto en la ecuación que venimos trabajando, nos queda finalmente: M I y 0 M I y Donde puede observarse que el esfuerzo normal varía linealmente respecto a la dirección y.

25 Sección 3 Esfuerzo Normal debido a Momento Flector Regla de la mano derecha Se utiliza para definir los signos de los esfuerzos normales empleando momentos aplicados. Al colocar la palma de la mano derecha sobre la sección transversal, con el pulgar siguiendo el sentido del momento sobre el eje neutro, la parte de la sección que quede bajo la palma de la mano será aquella que esté sometida a compresión.

26 Sección 4 - Esfuerzo Cortante debido a Carga Transversal Esfuerzo Cortante debido a Carga Transversal Cuando una viga se somete a cargas transversales, éstas no solamente generan un momento interno en la viga sino una fuerza cortante interna. Esta fuerza cortante intenta que las secciones longitudinales se deslicen una sobre las otras. Para ilustrar mejor esto, utilizaremos una viga simplemente apoyada, conformada por tres tablones no unidos entre sí.

27 Sección 4 - Esfuerzo Cortante debido a Carga Transversal Al aplicar una carga como se muestra en la figura, puede notarse cómo los tablones se deslizan entre ellos. Si luego se unen los tablones y se aplica nuevamente la carga, no se presentará dicho deslizamiento. Esto nos indica que debe aparecer una fuerza interna que evite el deslizamiento entre secciones longitudinales de una viga sometida a momento flector.

28 Sección 4 - Esfuerzo Cortante debido a Carga Transversal Nos enfocaremos ahora en conseguir una expresión que nos permita determinar el esfuerzo que se genera en la viga para evitar el deslizamiento anteriormente descrito. Para ello, consideremos una viga como se muestra en la figura. Estudiaremos las fuerzas a las que está sometido un elemento diferencial de la misma.

29 Sección 4 - Esfuerzo Cortante debido a Carga Transversal En la figura podemos observar con mayor detalle el elemento diferencial dentro de la viga. Se cumple: dh 2 2 da dh 1 1 da

30 Sección 4 - Esfuerzo Cortante debido a Carga Transversal Si suponemos que H 2 >H 1, podemos plantear la primera condición de equilibrio en el elemento diferencial: F H 1 H 2 df df H 1 H 2 0 Al sustituir H 1 y H 2, nos queda: df c 2 da 1 y c y 1 2 da Recordando que: M y I

31 Sección 4 - Esfuerzo Cortante debido a Carga Transversal Al introducir esto en la expresión anterior, obtenemos: b dx M I 2 c y y da M I c y da y Si consideramos que M 1 -M 2 =dm, al despejar nos queda: dm dx 1 I b c y da y 1 Luego: dm dx V (Fuerza cortante) c y 1 y da Q (Primer Momento de Área)

32 Sección 4 - Esfuerzo Cortante debido a Carga Transversal la viga: Tenemos finalmente nuestra expresión para el esfuerzo cortante en V Q I b Sin embargo, para que un elemento diferencial se halle en equilibrio, debe existir otra fuerza horizontal, en sentido contrario, que actúe en un plano paralelo. Se tienen entonces dos fuerzas que generan un par en el elemento diferencial. Para anularlo, debe aparecer otro par de fuerzas de igual magnitud y sentido contrario, que actúan en planos perpendiculares a los anteriores, como se muestra.

33 Podemos observar entonces que un esfuerzo cortante consta de tres características: -Actúa en un plano -Actúa en una dirección, que debe ser tangente a dicho plano -Posee una magnitud. Tema 2 - Carga Transversal y Momento Flector Sección 4 - Esfuerzo Cortante debido a Carga Transversal Todas estas características se señalan en la nomenclatura del esfuerzo cortante, como sigue: ij K i indica el plano de acción del esfuerzo cortante j indica la dirección del esfuerzo cortante K es la magnitud del esfuerzo

34 Sección 4 - Esfuerzo Cortante debido a Carga Transversal Entonces, por ejemplo, un xy es un esfuerzo cortante que actúa en el plano x en la dirección y. Observe que debe cumplirse: ij ji También es importante mencionar, que el producto de los signos del plano de acción y de la dirección del esfuerzo debe ser siempre el mismo, sin importar cuál de los cuatro esfuerzos estemos tomando en cuenta. Este producto de signos se le asignará al valor del esfuerzo. En el caso mostrado, el esfuerzo es negativo.

35 Sección 4 - Esfuerzo Cortante debido a Carga Transversal Finalmente, la distribución de esfuerzos en la sección transversal ocurre como se muestra en la figura. Note que la distribución es hiperbólica.

36 Sección 5 - Esfuerzo Normal debido a Momento Flector en miembros curvos Esfuerzo Normal debido a Momento Flector en miembros curvos Para deducir una expresión que nos permita determinar los esfuerzos normales generados por un momento flector aplicado sobre un miembro curvo, asumiremos las siguientes condiciones: El material se comporta en el rango elástico. Las secciones transversales planas permanecen planas después de la flexión. El módulo de elasticidad es el mismo para tracción y para compresión. Las secciones transversales tienen un eje de simetría centroidal en un plano a lo largo de la viga. A diferencia del caso de vigas rectas, el eje neutro no coincide con el eje centroidal longitudinal de la viga.

37 Sección 5 - Esfuerzo Normal debido a Momento Flector en miembros curvos Designaremos r a la distancia que existe entre el centro de curvatura del elemento y el eje neutro de la sección transversal. A su vez, R será la distancia entre dicho centro e curvatura y el eje centroidal de la sección transversal. Notemos que R >r, y que ambos parámetros son constantes para una sección transversal dada.

38 Sección 5 - Esfuerzo Normal debido a Momento Flector en miembros curvos Si aislamos un segmento diferencial de la viga, el esfuerzo tiende a deformar el material en forma tal que cada sección transversal girará un ángulo. Se puede notar que: L 0 d L f d ( r) Luego, por definición: L f L L 0 0

39 Sección 5 - Esfuerzo Normal debido a Momento Flector en miembros curvos Al sustituir L 0 yl f queda: d d ( r) d Luego, hacemos: k d Al introducirlo en la expresión anterior, obtenemos: k r Podemos observar aquí que la deformación varía de forma hiperbólica, no lineal.

40 Sección 5 - Esfuerzo Normal debido a Momento Flector en miembros curvos Como el material se comporta elásticamente, podemos aplicar la ley de Hooke: E E k r De forma similar al caso de viga recta, debe cumplirse la primera condición de equilibrio: F da 0 Tenemos entonces que: da E k r da

41 Sección 5 - Esfuerzo Normal debido a Momento Flector en miembros curvos Como los valores de E, K y r son constantes: da E k da r da 0 De aquí obtenemos que: r da da Esta es la expresión que nos permite determinar la distancia entre el centro de curvatura de la viga y el eje neutro de la sección transversal del elemento.

42 Sección 5 - Esfuerzo Normal debido a Momento Flector en miembros curvos Aplicaremos ahora la segunda condición de equilibrio: M ( r) da De aquí obtenemos que: ( r) da ( r) E k r da 2 ( r) 2 E k da E k da 2 r da r da

43 Sección 5 - Esfuerzo Normal debido a Momento Flector en miembros curvos 2 ( r) 2 E k da E k da 2 r da r da Definiremos ahora cada término resultante del binomio cuadrado: da R A da da A A r

44 Recordando además que: De aquí obtenemos que: r A A r A R r M 2 k E r A r A R r M Tema 2 - Carga Transversal y Momento Flector Sección 5 - Esfuerzo Normal debido a Momento Flector en miembros curvos

45 Despejando σ, nos queda: Luego, estableciendo: Podemos rescribir la expresión de la forma: ) ( ) ( r R A r M r R e e A r M ) ( Tema 2 - Carga Transversal y Momento Flector Sección 5 - Esfuerzo Normal debido a Momento Flector en miembros curvos

46 Sección 5 - Esfuerzo Normal debido a Momento Flector en miembros curvos Finalmente, la distribución de esfuerzos en la sección transversal ocurre como se muestra en la figura. Nótese que: M ( r) Lim 0 A e M ( r) Lim A e 0

47 Sección 6 Vigas sometidas a carga axial excéntrica Vigas sometida a carga axial excéntrica Cuando nos encontremos con el caso de una viga en la que se halle aplicada una carga axial cuya recta de acción no pase por el eje centroidal, se calcula el momento flector que produce la excentricidad de la carga. Entonces, el esfuerzo normal resultante vendrá dado por la superposición de los efectos producidos por la carga axial (aplicada en el centroide de la sección transversal) y el momento generado. ( P y) y I P A M y I P A

48 Sección 7 - Resumen de ecuaciones Resumen de ecuaciones Relación entre carga, fuerza cortante y momento flector: Lim x0 V x dv dx q( x) Lim x0 M x dm dx V V: Fuerza Cortante en una sección transversal M: Momento Flector en una sección transversal x: Distancia desde un extremo de la viga

49 Sección 7 - Resumen de ecuaciones Esfuerzo normal debido a momento flector: M I y : Esfuerzo normal en un punto de la sección transversal M: Momento flector sobre la sección transversal y: Distancia desde el centroide hasta el punto de interés sobre la sección transversal I: Momento de inercia de la sección transversal

50 Sección 7 - Resumen de ecuaciones Esfuerzo cortante debido a carga transversal: ij V I Q b : Esfuerzo cortante en un punto de la sección transversal V: Carga transversal sobre la sección Q: Momento de área (respecto al punto de interés) I: Momento de inercia de la sección transversal b: Espesor de la sección transversal (respecto al punto de interés)

51 Sección 7 - Resumen de ecuaciones Esfuerzo normal debido a momento flector en miembros curvos: M ( r) A e : Esfuerzo normal en un punto de la sección transversal M: Momento flector sobre la sección : Distancia medida desde el centro de curvatura del elemento hasta el punto de interés A: Área de sección transversal e: Distancia entre el eje neutro y el centroide de la sección transversal r: Distancia medida desde el centro de curvatura hasta el eje neutro de la sección transversal

52 Sección 7 - Resumen de ecuaciones Parámetro r para el cálculo del esfuerzo normal debido a momento flector en miembros curvos: r da da r: Distancia medida desde el centro de curvatura del elemento hasta el eje neutro de la sección transversal A: Área de la sección transversal : Distancia medida desde el centro de curvatura del elemento hasta el punto de interés de la sección transversal.

CURSO: MECÁNICA DE SÓLIDOS II

CURSO: MECÁNICA DE SÓLIDOS II UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA CURSO: MECÁNICA DE SÓLIDOS II PROFESOR: ING. JORGE A. MONTAÑO PISFIL CURSO DE

Más detalles

Mecánica de Materiales I

Mecánica de Materiales I Mecánica de Materiales I Tema 3 Torsión en barras Índice de contenido Sección 1 - Deformaciones en un eje circular Tema 3 - Torsión en barras Índice de contenido Sección 2 - Esfuerzos cortantes en barras

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 6. Flexión 3 un miembro 4 Una viga con un plano de simetría es sometido a pares iguales y opuestos M que actúan en dicho plano.

Más detalles

Mecánica de Sólidos. UDA 4: Fuerza Cortante y Momento Flexionante en Vigas

Mecánica de Sólidos. UDA 4: Fuerza Cortante y Momento Flexionante en Vigas Mecánica de Sólidos UDA 4: Fuerza Cortante y Momento Flexionante en Vigas Generalidades: FLEXIÓN Y ESFUERZO Ocurre flexión cuando un elemento de sección constante y simétrica respecto al plano donde ocurre

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.

Más detalles

2 =0 (3.146) Expresando, las componentes del tensor de esfuerzos en coordenadas cartesianas como: 2 ; = 2 2 ; =

2 =0 (3.146) Expresando, las componentes del tensor de esfuerzos en coordenadas cartesianas como: 2 ; = 2 2 ; = 3.7. Función de Airy Cuando las fuerzas de cuerpo b son constantes en un sólido con estado de deformación o esfuerzo plano, el problema elástico se simplifica considerablemente mediante el uso de una función

Más detalles

II.- CONCEPTOS FUNDAMENTALES DEL ANÁLISIS ESTRUCTURAL

II.- CONCEPTOS FUNDAMENTALES DEL ANÁLISIS ESTRUCTURAL II.- CONCEPTOS FUNDAMENTALES DEL ANÁLISIS ESTRUCTURAL 2.1.- Introducción Los métodos fundamentales disponibles para el analista estructural son el método de la flexibilidad (o de las fuerzas), y el método

Más detalles

Deflexión DE vigas. Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV

Deflexión DE vigas. Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV Deflexión DE vigas Profesor: Cristian Castillo Realizado por: Barrios, Yasnahir Campos,

Más detalles

Mecánica de Materiales I

Mecánica de Materiales I Tema 4 - Estados de Esfuerzos Deformaciones Mecánica de Materiales I Tema 4 Estados de Esfuerzos Deformaciones Índice de contenido Sección 1 - Estado general de esfuerzos Sección - Transformación de esfuerzos

Más detalles

La transformada de Laplace como aplicación en la resistencia de materiales

La transformada de Laplace como aplicación en la resistencia de materiales Docencia La transformada de Laplace como aplicación en la resistencia de materiales Agustín Pacheco Cárdenas y Javier Alejandro Gómez Sánchez Facultad de Ingeniería, UAQ; Depto. Ciencias Básicas, ITQ Facultad

Más detalles

T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA-

T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA- T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA- 1. Dadas las siguientes vigas, A) clasificarlas según su sustentación en : empotradas, simplemente

Más detalles

TRABAJO PRÁCTICO Nº. 5: SOLICITACIONES (M, Q y N)

TRABAJO PRÁCTICO Nº. 5: SOLICITACIONES (M, Q y N) TRABAJO PRÁCTICO Nº. 5: SOLICITACIONES (M, Q y N) 1. A) Dadas las siguientes vigas, clasificarlas según su sustentación en: empotradas, simplemente apoyadas, en voladizo, continuas, con articulaciones,

Más detalles

CUANTOS TIPOS DE APOYO, NUDOS O SOPORTES SE PUEDEN IDENTIFICAR O CONSTRUIR UNA ESTRUCTURA?

CUANTOS TIPOS DE APOYO, NUDOS O SOPORTES SE PUEDEN IDENTIFICAR O CONSTRUIR UNA ESTRUCTURA? DEFINICION DE FUERZA AXIAL. Cuando suponemos las fuerzas internas uniformemente distribuidas, se sigue de la estática elemental que la resultante P de las fuerzas internas debe estar aplicadas en el centroide

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2015-1 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés

Más detalles

Unidad N 5. Tensiones Normales en Vigas Flexión Objetivos Introducción TENSIONES NORMALES EN VIGAS 1

Unidad N 5. Tensiones Normales en Vigas Flexión Objetivos Introducción TENSIONES NORMALES EN VIGAS 1 TENSONES NORLES EN VGS 1 Unidad N 5 Tensiones Normales en Vigas Flexión 5.1. Objetivos l terminar el estudio de esta unidad usted deberá ser capaz de resolver los siguientes objetivos trazados para el

Más detalles

CURSO: MECÁNICA DE SÓLIDOS II

CURSO: MECÁNICA DE SÓLIDOS II UNIVERSIDAD NACIONAL DEL CALLAO FACULAD DE INGENIERÍA ELÉCRICA Y ELECRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCRICA CURSO: MECÁNICA DE SÓLIDOS II PROFESOR: ING. JORGE A. MONAÑO PISFIL CURSO DE MECÁNICA

Más detalles

Unidad Resistencia de Materiales. Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S

Unidad Resistencia de Materiales. Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S Unidad Resistencia de Materiales Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S MÓDULO III: FLEXIÓN INTRODUCCION En los capítulos anteriores las fuerzas internas eran conocidas o constantes

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 7. Cortante transversal 4 Se debe tomar en cuenta que las en general están sometidas a cargas transversales, las cuales no

Más detalles

(ε c ) max. y b. (ε t ) max. Fig.11. Distribución de deformaciones unitarias por flexión en sección compuesta por dos materiales.

(ε c ) max. y b. (ε t ) max. Fig.11. Distribución de deformaciones unitarias por flexión en sección compuesta por dos materiales. 6. Vigas (Elementos) Compuestos por dos o más Materiales Las ecuaciones obtenidas en la Sección 3 se basan en la hipótesis que el material que forma la sección del elemento, además de ser lineal-elástico,

Más detalles

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS Tecnología. Enunciados Ejercicios. ESTÁTICA-ESTRUCTURAS. Página 0 σ: tensiones (kp/cm 2 ) ε: deformaciones (alargamientos unitarios) σ t = σ adm : tensión de

Más detalles

Ecuaciones diferenciales de Equilibrio

Ecuaciones diferenciales de Equilibrio Ecuaciones diferenciales de Equilibrio 28 de marzo de 2006 1. Elasticidad en una dimensión 1.1. Esfuerzo σ y carga lineal b(x) Para examinar un cuerpo desde el contínuo, que es la primera hipótesis (a),

Más detalles

ESTRUCTURAS SIMETRICAS

ESTRUCTURAS SIMETRICAS ESTRUCTURAS SIMETRICAS Las estructuras reales presentan con mucha frecuencia diseños que tienen la característica de ser simétricas con relación a algún plano, como por ejemplo las estructuras de muchos

Más detalles

Introducción a la Elasticidad y Resistencia de Materiales

Introducción a la Elasticidad y Resistencia de Materiales Lección 1 Introducción a la Elasticidad y Resistencia de Materiales Contenidos 1.1. Mecánica del Sólido Rígido y Mecánica del Sólido Deformable............................. 2 1.1.1. Sólido Rígido..........................

Más detalles

El modelo de barras: cálculo de esfuerzos

El modelo de barras: cálculo de esfuerzos Lección 6 El modelo de barras: cálculo de esfuerzos Contenidos 6.1. Definición de barra prismática............... 78 6.2. Tipos de uniones........................ 78 6.3. Estructuras isostáticas y estructuras

Más detalles

Curso: RESISTENCIA DE MATERIALES 1

Curso: RESISTENCIA DE MATERIALES 1 Curso: RESISTENCIA DE MATERIALES 1 Módulo 3: TEORÍA DE VIGAS Luis Segura (lsegura@fing.edu.uy) º Semestre - 015 Universidad de la República - Uruguay Módulo 3 Teoría de vigas º Semestre 015 Luis Segura

Más detalles

Estática de Vigas. 20 de mayo de 2006

Estática de Vigas. 20 de mayo de 2006 Estática de Vigas 0 de mayo de 006 Los elementos estructurales que vamos a estudiar en este capítulo estarán sometidos a fuerzas o distribuciones aplicadas lateral o transversalmente a sus ejes y el objetivo

Más detalles

RESISTENCIA DE MATERIALES

RESISTENCIA DE MATERIALES UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL RESISTENCIA DE MATERIALES CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ingeniería Estructural CODIGO SEMESTRE

Más detalles

Sistema Estructural de Masa Activa

Sistema Estructural de Masa Activa Sistema Estructural de Masa Activa DEFINICIÓN DE SISTEMAS ESTRUCTURALES Son sistemas compuestos de uno o varios elementos, dispuestos de tal forma, que tanto la estructura total como cada uno de sus componentes,

Más detalles

Mecánica de Sólidos. UDA 3: Torsión en Ejes de Sección Circular

Mecánica de Sólidos. UDA 3: Torsión en Ejes de Sección Circular Mecánica de Sólidos UDA 3: Torsión en Ejes de Sección Circular 1 Definición y Limitaciones Se analizarán los efectos que produce la aplicación de una carga de torsión sobre un elemento largo y recto como

Más detalles

Elementos Uniaxiales Sometidos a Carga Axial Pura

Elementos Uniaxiales Sometidos a Carga Axial Pura Elementos Uniaiales Sometidos a Carga ial ura Definición: La Tensión representa la intensidad de las fuerzas internas por unidad de área en diferentes puntos de una sección del sólido aislada (Fig. 1a).

Más detalles

Elasticidad Ecuaciones constitutivas

Elasticidad Ecuaciones constitutivas Elasticidad Ecuaciones constitutivas Recordemos el Tensor de Esfuerzos Ahora pensemos qué pasa cuando aplicamos una fuerza a un cuerpo, es posible que éste se deforme (cambie de forma) Cambio en el desplazamiento

Más detalles

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 2

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 2 1. Tema: Determinación de la posición de las galgas extensiométricas en una barra de torsión. 2. Objetivos: a. Simular el comportamiento estático de una barra de torsión, mediante el uso de un paquete

Más detalles

Folio EST VIGAS HIPERESTATICAS. Folio: EST Fecha: Noviembre/2000. Autores: Arqto. Verónica Veas B. Arqto.

Folio EST VIGAS HIPERESTATICAS. Folio: EST Fecha: Noviembre/2000. Autores: Arqto. Verónica Veas B. Arqto. Folio EST 0-0 VIGAS HIPERESTATICAS Materia: Estructura II Folio: Fecha: EST -0 Noviembre/000 Autores: Arqto. Verónica Veas B. Arqto. Jing Chang Lou Folio EST -0 MORFOLOGÍA ESTRUCTURAL I.- INTRODUCCION

Más detalles

Centro de gravedad de un cuerpo bidimensional

Centro de gravedad de un cuerpo bidimensional Centro de gravedad de un cuerpo bidimensional Al sumar las fuerzas en la dirección z vertical y los momentos alrededor de los ejes horizontales y y x, Aumentando el número de elementos en que está dividida

Más detalles

Estructuras de Edificación: Tema 21 - El método del equilibrio en estructuras de nudos rígidos.

Estructuras de Edificación: Tema 21 - El método del equilibrio en estructuras de nudos rígidos. Estructuras de Edificación: Tema 21 - El método del equilibrio en estructuras de nudos rígidos. David Herrero Pérez Departamento de Estructuras y Construcción Universidad Politécnica de Cartagena Grado

Más detalles

Complemento al Capítulo 5. FLEXIÓN SIMPLE, FLEXIÓN COMPUESTA Y ESFUERZO CORTANTE ESVIADO

Complemento al Capítulo 5. FLEXIÓN SIMPLE, FLEXIÓN COMPUESTA Y ESFUERZO CORTANTE ESVIADO Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Complemento al Capítulo 5. FLEXIÓN SIMPLE, FLEXIÓN COMPUESTA Y ESFUERZO CORTANTE ESVIADO 1. FLEXIÓN ESVIADA

Más detalles

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO PROBEMAS DE RESISTENCIA DE MATERIAES MÓDUO 5: FEXIÓN DE VIGAS CURSO 016-17 5.1( ).- Halle, en MPa, la tensión normal máxima de compresión en la viga cuya sección y diagrama de momentos flectores se muestran

Más detalles

ME Capítulo 3. Alejandro Ortiz Bernardin. Universidad de Chile

ME Capítulo 3. Alejandro Ortiz Bernardin.  Universidad de Chile Diseño de Elementos Mecánicos ME-5600 Capítulo 3 Alejandro Ortiz Bernardin www.cec.uchile.cl/~aortizb Departamento de Ingeniería Mecánica Universidad de Chile Contenidos del Capítulo Diagramas de Cuerpo

Más detalles

CAPITULO 1 INTRODUCCION AL ANALISIS DE TENSIONES Y DEFORMACIONES DE UNA ESTRUCTURA

CAPITULO 1 INTRODUCCION AL ANALISIS DE TENSIONES Y DEFORMACIONES DE UNA ESTRUCTURA CAPITULO 1 INTRODUCCION AL ANALISIS DE TENSIONES Y DEFORMACIONES DE UNA ESTRUCTURA Con el propósito de seleccionar los materiales y establecer las dimensiones de los elementos que forman una estructura

Más detalles

ESTATICA. Debajo se encuentran las formulas para calcular las componentes y el ángulo α que determina la dirección de la fuerza.

ESTATICA. Debajo se encuentran las formulas para calcular las componentes y el ángulo α que determina la dirección de la fuerza. ESTATICA Es la parte de la física que estudia las fuerzas en equilibrio. Si sobre un cuerpo no actúan fuerzas o actúan varias fuerzas cuya resultante es cero, decimos que el cuerpo está en equilibrio.

Más detalles

TEMA 3. BASES DEL DISEÑO MECÁNICO CON MATERIALES.

TEMA 3. BASES DEL DISEÑO MECÁNICO CON MATERIALES. Félix C. Gómez de León Antonio González Carpena TEMA 3. BASES DEL DISEÑO MECÁNICO CON MATERIALES. Curso de Resistencia de Materiales cálculo de estructuras. Clases de tensiones. Índice. Tensión simple

Más detalles

ME Capítulo 4. Alejandro Ortiz Bernardin. Universidad de Chile

ME Capítulo 4. Alejandro Ortiz Bernardin.  Universidad de Chile Diseño de Elementos Mecánicos ME-5600 Capítulo 4 Alejandro Ortiz Bernardin www.cec.uchile.cl/~aortizb Departamento de Ingeniería Mecánica Universidad de Chile Contenidos del Capítulo Constantes de Resorte

Más detalles

CAPÍTULO 14. TABIQUES

CAPÍTULO 14. TABIQUES CAPÍTULO 14. TABIQUES 14.0. SIMBOLOGÍA A g área total o bruta de la sección de hormigón, en mm 2. En una sección hueca, A g es el área de hormigon solamente y no incluye el área del o los vacíos. Ver el

Más detalles

Leonardo Da Vinci (Siglo XV)

Leonardo Da Vinci (Siglo XV) UN POCO DE HISTORIA Leonardo Da Vinci (Siglo XV) Los 6 puentes de Leonardo Leonardo Da Vinci (Siglo XV) El método para doblar vigas de madera para darles forma de arco sin romper sus fibras Galileo (Siglo

Más detalles

1.- Torsión. Momento de Torsión

1.- Torsión. Momento de Torsión MECÁNICA TÉCNICA TEMA XX 1.- Torsión. Momento de Torsión En un caso más general, puede suceder que el plano del Momento, determinado por el momento resultante de todos los momentos de las fuerzas de la

Más detalles

5. ESFUERZOS INTERNOS EN VIGAS

5. ESFUERZOS INTERNOS EN VIGAS 5. ESFUERZOS INTERNOS EN VIGAS 5.. Introducción En este capítulo se estudiarán las fuerzas internas que existen al interior de un sólido (más específicamente en vigas) y que son las que mantienen unidas

Más detalles

Capítulo 5. FLEXIÓN COMPUESTA

Capítulo 5. FLEXIÓN COMPUESTA Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 5. FLEXIÓN COMPUESTA 5.1 FLEXION COMPUESTA PLANA. 5.1.1 Se dice que una pieza está sometida a flexión

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1 Si la sección de un perfil metálico es la que aparece en la figura, suponiendo que la chapa que une los círculos es de espesor e inercia despreciables, determina la relación entre las secciones A 1 y A

Más detalles

CAPÍTULO II ESFUERZO. La estática de cuerpos dice que los cuerpos sometidos a cargas se mantienen en equilibrio

CAPÍTULO II ESFUERZO. La estática de cuerpos dice que los cuerpos sometidos a cargas se mantienen en equilibrio CAPÍTULO II ESFUERZO 2.1 ESFUERZOS La estática de cuerpos dice que los cuerpos sometidos a cargas se mantienen en equilibrio con la ayuda de fuerzas internas o reacciones. Las fuerzas internas son las

Más detalles

- Todos. - Todos. - Todos. Proporciona los conocimientos científicos para el diseño de elementos mecánicos

- Todos. - Todos. - Todos. Proporciona los conocimientos científicos para el diseño de elementos mecánicos Nombre de la asignatura: Mecánica de Sólidos. Carrera : Ingeniería Mecánica Clave de la asignatura: MCM-934 Clave local: Horas teoría horas practica créditos: 3--8.- UBICACIÓN DE LA ASIGNATURA A) RELACIÓN

Más detalles

15.5. Torsión uniforme en barras prismáticas de sección de

15.5. Torsión uniforme en barras prismáticas de sección de Lección 15 Torsión uniforme Contenidos 15.1. Distribución de tensiones tangenciales estáticamente equivalentes a un momento torsor................ 186 15.2. Torsión uniforme en barras prismáticas de sección

Más detalles

1. DINÁMICA. Matías Enrique Puello Chamorro

1. DINÁMICA. Matías Enrique Puello Chamorro Índice 1. DINÁMICA 2 2. DINAMICA 3 2.1. Dinámica...................................................... 3 2.2. Concepto de FUERZA.............................................. 4 2.3. Tipos de fuerza...................................................

Más detalles

El Principio de los Desplazamientos Virtuales (PDV)

El Principio de los Desplazamientos Virtuales (PDV) El Principio de los Desplazamientos Virtuales (PDV) Apellidos, nombre Basset Salom, uisa (lbasset@mes.upv.es) Departamento Centro Mecánica de Medios Continuos y Teoría de Estructuras Escuela Técnica Superior

Más detalles

EJERCICIO 1. Trazar diagramas de momento flector y corte, y calcular las máximas tensiones que ocurren en la viga simplemente apoyada m. 0.

EJERCICIO 1. Trazar diagramas de momento flector y corte, y calcular las máximas tensiones que ocurren en la viga simplemente apoyada m. 0. EJERCICIOS DE APLICACION EJERCICIO 1. razar diagramas de momento flector y corte, y calcular las máximas tensiones que ocurren en la viga simplemente apoyada. θ.8 m y x 15. m p.1 m θ.1 m La carga axial

Más detalles

Leonardo Da Vinci (Siglo XV)

Leonardo Da Vinci (Siglo XV) UN POCO DE HISTORIA Leonardo Da Vinci (Siglo XV) Los 6 puentes de Leonardo Leonardo Da Vinci (Siglo XV) El método para doblar vigas de madera para darles forma de arco sin romper sus fibras Galileo (Siglo

Más detalles

DINÁMICA DE LA ROTACIÓN

DINÁMICA DE LA ROTACIÓN DINÁMICA DE LA ROTACIÓN 1. La polea de la figura tiene radio R y momento de inercia, respecto a un eje que pasa por su centro de masa perpendicular al plano del papel. La cuerda no resbala sobre la polea

Más detalles

INDICE. e h Introducción Flexión compuesta. Tensiones normales Esfuerzo Cortante. Tensiones tangenciales

INDICE. e h Introducción Flexión compuesta. Tensiones normales Esfuerzo Cortante. Tensiones tangenciales INDICE 13.1 Introducción. 13.2 Flexión compuesta. Tensiones normales. a2 r2 13.3 Esfuerzo Cortante. Tensiones tangenciales r2 e h e2 13.4 Centro de Esfuerzos Cortantes. 13.5 Torsión libre. Analogía de

Más detalles

Introducción a la Materialidad Taller II Jorge García- Federico García G Teórica : Flexión I

Introducción a la Materialidad Taller II Jorge García- Federico García G Teórica : Flexión I Hasta ahora vimos: esfuerzos axiales simples: Tracción y Compresión. Flexión: esfuerzo compuesto, Tracción y Compresión en un mismo sólido distanciados por un brazo de palanca (z). A través de la comprensión

Más detalles

EJERCICIOS COMPLEMENTARIOS DE ELASTICIDAD AÑO ACADÉMICO

EJERCICIOS COMPLEMENTARIOS DE ELASTICIDAD AÑO ACADÉMICO EJERCICIOS COMPLEMENTARIOS DE ELASTICIDAD AÑO ACADÉMICO 2011-2012 Prob 1. Sobre las caras de un paralepípedo elemental que representa el entorno de un punto de un sólido elástico existen las tensiones

Más detalles

Mecánica de materiales p mecatrónica. M.C. Pablo Ernesto Tapia González

Mecánica de materiales p mecatrónica. M.C. Pablo Ernesto Tapia González Mecánica de materiales p mecatrónica M.C. Pablo Ernesto Tapia González Fundamentos de la materia: La mecánica de los cuerpos deformables es una disciplina básica en muchos campos de la ingeniería. Para

Más detalles

EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO

EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO 1. Objetivo El objetivo de esta aplicación es ilustrar cómo se pueden integrar las ecuaciones diferenciales

Más detalles

Módulo 2. Deflexiones en vigas

Módulo 2. Deflexiones en vigas Módulo 2 Deflexiones en vigas Introducción Todos los cuerpos reales se deforman bajo la aplicación de una carga, elástica o plásticamente. Un cuerpo puede ser tan insensible a la deformación que el supuesto

Más detalles

Nombre de la asignatura: Resistencia de los materiales. Carrera : Ingeniería Mecánica. Clave de la asignatura: ACC

Nombre de la asignatura: Resistencia de los materiales. Carrera : Ingeniería Mecánica. Clave de la asignatura: ACC Nombre de la asignatura: Resistencia de los materiales. Carrera : Ingeniería Mecánica Clave de la asignatura: ACC- 96 Clave local: Horas teoría horas practicas créditos: 4--0.- UBICACIÓN DE LA ASIGNATURA

Más detalles

DINÁMICA. Física 1º bachillerato Dinámica 1

DINÁMICA. Física 1º bachillerato Dinámica 1 DINÁMICA 1. Fuerzas. 2. Principios de la dinámica. 3. Momento lineal (o cantidad de movimiento). 4. Impulso mecánico. 5. Interacción gravitatoria. 6. Fuerza centrípeta. 7. Fuerza elástica. 8. Fuerza de

Más detalles

Mecánica de Materiales I

Mecánica de Materiales I Mecánica de Materiales I Tema 6 Columnas Sección 1 - Consideraciones iniciales Consideraciones iniciales Una columna es un elemento sometido a compresión, el cual es lo suficientemente delgado respecto

Más detalles

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÍA ASIGNATURA: LABORATORIO DE ENSAYOS MECÁNICOS GUIA ACADEMICA: ENSAYO DE FLEXIÓN

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÍA ASIGNATURA: LABORATORIO DE ENSAYOS MECÁNICOS GUIA ACADEMICA: ENSAYO DE FLEXIÓN 1. OBJETIVOS Los objetivos de los ensayos de flexión son : -Determinar una curva carga-desplazamiento del prototipo -Analizar el comportamiento de los materiales metálicos al ser sometidos a un esfuerzo

Más detalles

6 Propiedades elásticas de los materiales

6 Propiedades elásticas de los materiales Propiedades elásticas de los materiales 1 6 Propiedades elásticas de los materiales 6.0 Introducción En el resto del capítulo de mecánica se ha estudiado como las fuerzas actúan sobre objetos indeformables.

Más detalles

Resistencia de Materiales. Estructuras. Tema 11. Inestabilidad en barras. Pandeo. Barra Empotrada-Empotrada.

Resistencia de Materiales. Estructuras. Tema 11. Inestabilidad en barras. Pandeo. Barra Empotrada-Empotrada. Resistencia de Materiales. Estructuras Tema 11. Inestabilidad en barras. Pandeo Módulo 6 Barra Empotrada-Empotrada. En los módulos anteriores se ha estudiado el caso del pandeo en la barra articulada-articulada,

Más detalles

RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA ESFUERZOS COMBINADOS

RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA ESFUERZOS COMBINADOS RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA FLEXION Y AXIAL 2013 roberto.ortega.a@usach.cl RESISTENCIA DE MATERIALES I ICM FLEXION Y AXIAL 2013 roberto.ortega.a@usach.cl RESISTENCIA DE MATERIALES

Más detalles

RM - Resistencia de los Materiales

RM - Resistencia de los Materiales Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2017 205 - ESEIAAT - Escuela Superior de Ingenierías Industrial, Aeroespacial y Audiovisual de Terrassa 712 - EM - Departamento

Más detalles

1- Esfuerzo de corte. Tensiones tangenciales.

1- Esfuerzo de corte. Tensiones tangenciales. MECÁNICA TÉCNICA TEMA XV 1- Esfuerzo de corte. Tensiones tangenciales. En el tema XI se definió el esfuerzo de corte que normalmente se lo simboliza con la letra Q. En este tema vamos a tratar el caso

Más detalles

PROGRAMA INSTRUCCIONAL

PROGRAMA INSTRUCCIONAL UNIVERSIDAD FERMIN TORO VICE-RECTORADO ACADEMICO FACULTAD DE INGENIERIA ESCUELA DE COMPUTACION ESCUELA DE ELÉCTRICA ESCUELA DE TELECOMUNICACIONES PROGRAMA AL FUNDAMENTOS DE RESISTENCIA DE LOS MATERIALES

Más detalles

2014 RESISTENCIA DE MATERIALES I ICM RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA ESFUERZOS COMBINADOS

2014 RESISTENCIA DE MATERIALES I ICM RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA ESFUERZOS COMBINADOS RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA FLEXION Y AXIAL 2014 roberto.ortega.a@usach.cl RESISTENCIA DE MATERIALES I ICM FLEXION Y AXIAL 2014 roberto.ortega.a@usach.cl RESISTENCIA DE MATERIALES

Más detalles

ESTÁTICA. El Centro de Gravedad (CG) de un cuerpo es el punto donde se considera aplicado el peso.

ESTÁTICA. El Centro de Gravedad (CG) de un cuerpo es el punto donde se considera aplicado el peso. C U S O: ÍSICA COMÚN MATEIAL: C-08 ESTÁTICA En esta unidad analizaremos el equilibrio de un cuerpo grande, que no puede considerarse como una partícula. Además, vamos a considerar dicho cuerpo como un

Más detalles

TEMA 08 ESTÁTICA. Prof. Ricardo Nitsche Corvalán

TEMA 08 ESTÁTICA. Prof. Ricardo Nitsche Corvalán 1 TEMA 08 ESTÁTICA 2 8.1.- NOCIONES DE ESTÁTICA. 8.1.1.- Definición de Estática. Estática es la rama de la mecánica que estudia a los sistemas en equilibrio; para ello se requiere principalmente aplicar

Más detalles

Proyecto Final Laboratorio Resistencia de Materiales 2 ÍNDICE

Proyecto Final Laboratorio Resistencia de Materiales 2 ÍNDICE ÍNDICE Índice... 1 Objetivos... 2 General... 2 Específicos... 2 Introducción... 3 ESFUERZOS COMBINADOS... 4 Estados de esfuerzo y esfuerzos principales... 5 Estado triaxial de esfuerzo... 5 Estado biaxial

Más detalles

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Resistencia de Materiales. Carrera: Ingeniería en Pesquerías. Clave de la asignatura: PEM 0633

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Resistencia de Materiales. Carrera: Ingeniería en Pesquerías. Clave de la asignatura: PEM 0633 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Resistencia de Materiales Ingeniería en Pesquerías PEM 0633 3 2 8 2.- HISTORIA

Más detalles

APUNTES DE CLASE: PORTICOS

APUNTES DE CLASE: PORTICOS Introducción: Los pórticos están conformados por elementos conectados entre si, que interactúan para distribuir los esfuerzos y dar rigidez al sistema. El sistema compuesto por dintel parante funciona

Más detalles

III. Análisis de marcos

III. Análisis de marcos Objetivo: 1. Efectuar el análisis de estructuras de marcos. 1. Introducción. Aquellas estructuras constituidas de vigas unidimensionales conectadas en sus extremos de forma pivotada o rígida son conocidas

Más detalles

Curso: RESISTENCIA DE MATERIALES 1

Curso: RESISTENCIA DE MATERIALES 1 Curso: RESISTENCIA DE MATERIALES 1 Módulo 2: Fuerza axial y dimensionado Luis Segura (lsegura@fing.edu.uy) 2º Semestre - 2015 Universidad de la República - Uruguay Módulo 2 2º Semestre 2015 Luis Segura

Más detalles

DINÁMICA. Un cuerpo modifica su velocidad si sobre él se ejerce una acción externa.

DINÁMICA. Un cuerpo modifica su velocidad si sobre él se ejerce una acción externa. DINÁMICA La Dinámica es la parte de la Física que estudia las acciones que se ejercen sobre los cuerpos y la manera en que estas acciones influyen sobre el movimiento de los mismos. Un cuerpo modifica

Más detalles

T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS

T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS 1- Analice la deformada de cada uno de los casos presentados en la figura inferior. Responda a las siguientes consignas: a) Cuál es la parte de la viga (superior

Más detalles

En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente.

En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente. TORQUE Y EQUILIBRIO DE CUERPO RÍGIDO. En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente. De traslación a lo largo de una trayectoria, de rotación mientras se está trasladando,

Más detalles

TEMA 4: PROBLEMAS RESUELTOS DE DEFORMACIÓN ANGULAR

TEMA 4: PROBLEMAS RESUELTOS DE DEFORMACIÓN ANGULAR Problemas eformación ngular T : PROLS RSULTOS ORÓN NGULR.. plicando el método de la deformación angular obtener el diagrama de momentos flectores y dibujar aproximadamente la deformada de la estructura

Más detalles

Práctico 10: Desplazamientos en vigas isostáticas

Práctico 10: Desplazamientos en vigas isostáticas Práctico 10: Desplazamientos en vigas isostáticas Ejercicio 1: Una columna telescópica de tres tramos está empotrada en la base y sometida a una carga de 5kN (compresión) en su etremo superior. a longitud

Más detalles

Material. E Módulo de elasticidad ACERO ALUMINIO HORMIGÓN MADERA DURA MADERA SEMI DURA MADERA BLANDA 80.

Material. E Módulo de elasticidad ACERO ALUMINIO HORMIGÓN MADERA DURA MADERA SEMI DURA MADERA BLANDA 80. Cátedra Ing. José M. Canciani Estructuras I MADERA Propiedades d mecánicas: Las propiedades p mecánicas de la madera determinan su capacidad para resistir fuerzas externas. Frente a la acción de una carga

Más detalles

Dinámica del Sólido Rígido

Dinámica del Sólido Rígido Dinámica del Sólido Rígido El presente documento de clase sobre dinámica del solido rígido está basado en los contenidos volcados en la excelente página web del curso de Física I del Prof. Javier Junquera

Más detalles

Hipótesis en las Ciencias de la Construcción

Hipótesis en las Ciencias de la Construcción Hipótesis en las Ciencias de la Construcción Especialización en diseño estructural de obras de arquitectura Trabajo Taller 1: Revisión de las hipótesis en la teoría de la flexión. Grupo de trabajo: Fecha

Más detalles

ESTÁTICA Y RESISTENCIA DE MATERIALES (Ing. Industrial)

ESTÁTICA Y RESISTENCIA DE MATERIALES (Ing. Industrial) ESTÁTICA Y RESISTENCIA DE MATERIALES (Ing. Industrial) T P Nº 5: FUERZAS EN EL ESPACIO MOMENTO DE INERCIA 1) Se aplica una fuerza F a un punto de un cuerpo, tal como se indica en la fig. Determinar: a)

Más detalles

TEMA 4: ESFUERZOS Y SOLICITACIONES

TEMA 4: ESFUERZOS Y SOLICITACIONES TEMA 4: ESFUERZOS Y SOLICITACIONES ESTRUCTURAS 1 ANTONIO DELGADO TRUJILLO ENRIQUE DE JUSTO MOSCARDÓ JAVIER LOZANO MOHEDANO MARÍA CONCEPCIÓN BASCÓN HURTADO Departamento de Mecánica de Medios Continuos,

Más detalles

Estática. Fuerzas Internas

Estática. Fuerzas Internas Estática 7 Fuerzas Internas Objectivos Método de las secciones para determinar las cargas internas o solicitaciones en un miembro. Describir la tensión interna de corte o cizalla y el momento interno de

Más detalles

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIDAD III. HIDROCINEMÁTICA Introducción. La hidrocinemática o cinemática de los líquidos se ocupa del estudio de las partículas que integran

Más detalles

Planteamiento del problema elástico lineal

Planteamiento del problema elástico lineal Capítulo 3 Planteamiento del problema elástico lineal Para la simulación o representación de un proceso o un fenómeno físico, una de las partes fundamentales es su planteamiento matemático, que en su forma

Más detalles

TEMA 11: ESTRUCTURA DE BARRAS

TEMA 11: ESTRUCTURA DE BARRAS TEMA 11: ESTRUCTURA DE BARRAS ESTRUCTURAS 1 ENRIQUE DE JUSTO MOSCARDÓ ANTONIO DELGADO TRUJILLOh ANTONIA FERNÁNDEZ SERRANO MARÍA CONCEPCIÓN BASCÓN HURTADO Departamento de Mecánica de Medios Continuos, Teoría

Más detalles

Material 2. Fig. 12. Barra compuesta de dos materiales

Material 2. Fig. 12. Barra compuesta de dos materiales 5. Elementos Compuestos de Materiales Diferentes Considérese un elemento compuesto por dos o más materiales (elemento de sección transversal no homogénea), y supóngase que este elemento se somete a la

Más detalles

Resistencia de Materiales FLEXIÓN PLANA I: (Cálculo de tensiones)

Resistencia de Materiales FLEXIÓN PLANA I: (Cálculo de tensiones) Resistencia de ateriales FLEXIÓN PLANA I: (Cálculo de tensiones) Resistencia de ateriales FLEXIÓN PLANA I: (Cálculo de tensiones). Introducción. Lees diagramas en vigas isostáticas. Tensiones en la barra

Más detalles

Tema 6: FLEXIÓN: DEFORMACIONES

Tema 6: FLEXIÓN: DEFORMACIONES Tema 6: Fleión: Deformaciones Tema 6: FLEXÓN: DEFORCONES + Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 008 1 Tema 6: Fleión: Deformaciones 6.1.- NTRODUCCÓN Las deformaciones ha que limitarlas

Más detalles

Capítulo 3. TRACCIÓN Y COMPRESIÓN SIMPLE

Capítulo 3. TRACCIÓN Y COMPRESIÓN SIMPLE Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 3. TRACCIÓN Y COMPRESIÓN SIMPLE 3.1 BARRA PRISMÁTICA SOMETIDA A UN ESFUERZO NORMAL CONSTANTE Consideremos

Más detalles

TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10

TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10 TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10 1 Es sabido que los materiales con comportamiento dúctil fallan por deslizamiento entre los planos donde se produce la rotura.

Más detalles