Tema 6: FLEXIÓN: DEFORMACIONES
|
|
|
- Mario Quiroga Villalobos
- hace 9 años
- Vistas:
Transcripción
1 Tema 6: Fleión: Deformaciones Tema 6: FLEXÓN: DEFORCONES + Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.)
2 Tema 6: Fleión: Deformaciones NTRODUCCÓN Las deformaciones ha que limitarlas al igual que las tensiones, bien por raones de seguridad, de mantenimiento o simplemente de estética. sí, en numerosos casos, los elementos estructurales se dimensionarán aparte de a Resistencia, limitando sus tensiones máimas, (tal como hemos visto en el tema anterior), a RGDEZ, haciendo que las deformaciones máimas no sobrepases unos determinados valores admisibles. En diferentes normativas se fijan los valores admisibles de las deformaciones para diferentes elementos estructurales. Con el estudio de las deformaciones de una viga a Fleión, calcularemos los GROS (θ, θ ) que sufren las secciones transversales alrededor del eje neutro las FLECHS o DESPLZENTOS (, ) de sus centros de gravedad. θ Fleión en plano θ Fleión en plano Fig.6.1 Los métodos que desarrollaremos para el cálculo de las deformaciones son los siguientes: étodo de la Ecuación Diferencial de la Línea Elástica étodo de la Ecuación Universal de la Línea Elástica étodo de los Teoremas de ohr étodo energético del Teorema de Castigliano étodo energético de los Trabajos Virtuales Observación: Los dos métodos energéticos los estudiaremos más adelante, en el tema 9º, dado que son métodos de cálculo más generales tienen su aplicación en el estudio de las deformaciones, no sólo a Fleión, sino también en los casos de Tracción, Compresión, Torsión, etc.
3 Sección 6.: étodo de la Ecuación Diferencial de la Elástica 6..-ÉTODO DE L ECUCÓN DFERENCL DE L ELÁSTC Consideremos la viga de la figura sometida a Fleión Simple (R, ) Línea elástica = () Fig.6. Según vimos en la sección se denomina línea elástica: al eje de la viga (el que pasa por los centros de gravedad de todas las secciones transversales), una ve deformado. Tratemos ahora de calcular su ecuación: = () Vimos también en dicha sección, que para el caso de Fleión Pura (sólo momentos flectores), el radio de curvatura de la línea elástica venía dado por la ecuación (5.0): 1 = r E. pues bien, para el caso de la Fleión Simple (momentos flectores fueras cortantes), podremos utiliar la misma fórmula del radio de curvatura, pues la influencia que ejercen las fueras cortantes es pequeña la podremos despreciar en la maoría de los casos. Por otra parte sabemos por atemáticas que el radio de curvatura de una curva se puede obtener de la epresión: d 1 = (6.1) 3/ r d 1 + igualando las epresiones del radio de curvatura: d = (6.) 3 / d E. 1 + epresión obtenida que representa la ecuación diferencial de la línea elástica La integración de esta ecuación diferencial, no lineal, presenta grandes dificultades dado que en la maoría de los casos las deformaciones que se van a presentar, son pequeñas, podremos hacer las siguientes simplificaciones: 3
4 Tema 6: Fleión: Deformaciones θ = () θ tangente d = tagϑ ϑ (para pequeñas deformaciones) Giros de las secciones si las deformaciones son pequeñas: θ es pequeño tag θ es pequeño d/ es Fig.6.3 d pequeño 1+ 1 haciendo esta aproimación en la ecuación (6.) quedará: d d d d = (6.3) o bien: (6.4) = ϑ = E. E. E. Observación: con el sistema de ejes coordenados adoptado en el tema 5. para las vigas a fleión, resultará que: si si > 0 < 0 d d < 0 > 0 En efecto, supongamos: >0 1 θ Fig.6.4 tag 1 θ 1 tag si > > 0 además según se ve en la fig.6.4 : ϑ < ϑ dϑ < dϑ d con lo cual se cumplirá : < 0 o lo que es lo mismo : < 0 lo mismo se comprobaría para el caso: <0. 4
5 Sección 6.: étodo de la Ecuación Diferencial de la Elástica En virtud de ello en las ecuaciones (6.3) (6.4) deberemos introducir un signo (-) quedando finalmente como Ecuación diferencial de la línea elástica : d = E. dϑ (6.5) o bien: = (6.6) E. OSERVCONES: 1.- ntegrando una ve la Ecuación diferencial de la línea elástica obtendremos los Giros θ (ver ecuación 6.6). Si integramos dos veces dicha ecuación obtendremos las Flechas de los centros de gravedad de cada sección (ver ecuación 6.5) o lo que es lo mismo la Ecuación de la línea elástica: = ().- La ecuación de la línea elástica: = (), es una función continua (ver figura 6.5.a). Si fuera discontinua (ver figura 6.5.b), es que se habría roto Fig.6.5.a Fig.6.5.b 3.- La ecuación de los giros: θ = θ (), es también una función continua. Sería discontinua sólo si la elástica presentase un punto anguloso (ver fig.6.5.c) θ 1 tag 1 tag tag θ 1 θ punto anguloso Fig.6.5.c En un punto anguloso se ha de verificar: 1 mencionada, quedará: = r E. éste valor nunca se va a dar. = 1 = r,entonces la ecuación (5.0), antes para que esto se cumpla =. Pero d 4.- La ecuación diferencial de la elástica sea discontinuo. será discontinua en los puntos en que 5
6 Tema 6: Fleión: Deformaciones 5.- Si en una sección de una viga es = 0, la elástica presentará un punto de infleión en dicho punto d d = = 0 = 0 puntos de infleión de la elástica = ( ) E. 6.- Si la viga hubiese estado sometida a fleión simple en el plano : R,, las ecuaciones diferenciales (6.5) (6.6) de la elástica serían: d = E. (6.7) dϑ (6.8) = E. 7.- Si la viga estuviese sometida a fleión en ambos planos: habría que calcular por separado los giros flechas relativos a ambos planos con las ecuaciones: (6.5), (6.6), (6.7), (6.8). continuación se compondrían vectorialmente los giros: θ, θ las flechas:, giro total: flecha total: ϑ = ϑ + ϑ ϑ = ϑ + ϑ δ = + δ = + Elástica en plano debida a la fleión δ Elástica en plano debida a la fleión Fig.6.6 6
7 Sección 6.3: étodo de los Teoremas de ohr 6.3.-ÉTODO DE LOS TEORES DE OHR Primer Teorema de ohr: El primer teorema de ohr nos permite calcular el ángulo θ que forman entre sí dos secciones de una viga fleionada. Éste ángulo será el mismo que el que forman las tangentes a la elástica en los puntos θ θ tag en tag en θ θ Fig.6.9 La ecuación diferencial de la elástica es, según ecuación 6.6: dϑ. = dϑ = E. E. e integrando esta ecuación entre los puntos :.. dϑ = ϑ ( ) ϑ ( ) = o bien : E. E. ϑ ( ) = ϑ ( ) ϑ ( ) =. E. (6.15) 7
8 Tema 6: Fleión-Deformaciones Caso particular: En el caso de que el módulo de rigide de la viga sea constante: E. = cte, la ecuación se podrá epresar también de la siguiente manera:.. S ϑ ( ) = ϑ ( ) ϑ ( ) = = ( E. = cte) = = E. E. E. (6.16) ecuación que nos dice: el ángulo θ () que forman entre sí dos secciones de la viga fleionada, es igual al área del diagrama de momentos flectores comprendida entre : ( S ), dividido por el módulo de rigide de la viga: E. Observaciones: 1º.- En las epresiones del primer teorema de ohr se consideran positivos los ángulos θ que vaan en sentido horario, siempre que la sección esté situada a la iquierda de la sección. º.- En el caso de una viga en la que conocamos una sección que no gire (por ejemplo casos de empotramientos), podremos conocer mediante este teorema, de forma directa, el giro de cualquier otra sección de la misma θ θ =0 Fig.6.10 ϑ = ϑ ϑ = (como ϑ = 0) = ϑ 8
9 Sección 6.3: étodo de los Teoremas de ohr Segundo Teorema de ohr: El segundo teorema de ohr nos da la distancia en vertical, δ, que ha desde un punto de la elástica a la tangente en otro punto de la elástica. C D 0 1 δ dθ tag en D θ tag en C - tag en Fig.6.11 Para calcular δ haremos lo siguiente: por dos puntos C D de la elástica, mu próimos, situados a una distancia: + respectivamente, traamos las tangentes, las cuales interceptan al segmento = δ en el segmento diferencial 1, cua longitud será: = = ( ). tagϑ ( ). tag( ϑ dϑ) para el caso de pequeñas deformaciones ( ). ϑ ( ).( ϑ dϑ) = ( ). dϑ 1 sumando las longitudes de los segmentos diferenciales 1 al mover los puntos C D desde hasta, tendremos la longitud total δ que queremos calcular. sí: δ = = ( ). dϑ si finalmente se sustitue el valor absoluto de dθ obtenido en el primer teorema de ohr:.( ). δ = (6.17) E. 9
10 Tema 6: Fleión: Deformaciones Caso particular: En el caso de que el módulo de rigide de la viga sea constante: E. = cte, la ecuación se podrá epresar también de la siguiente manera: δ.( )..( ). Q = = ( E. = cte) = = E. E. E. (6.18) ecuación que nos dice: la distancia en vertical: δ que ha desde un punto de la elástica a la tangente en otro punto de la misma, es igual al momento estático respecto del primer punto del área del diagrama de momentos flectores comprendida entre ambos puntos: Q, dividido por el módulo de rigide a fleión de la viga: E. Observaciones: 1º.- En las epresiones del segundo teorema de ohr, cuando δ >0, indicará que el punto está situado por encima de la tangente en, independientemente, en este caso, del orden en que estén situados los puntos. º.- En el caso de una viga en la que conocamos una sección que no gire (por ejemplo casos de empotramientos), podremos conocer mediante este teorema, de forma directa, la flecha en un punto cualquiera de la misma. tag en δ = Fig.6.1 3º.- Si la fleión de la viga fuera debida a un momento flector por tanto la elástica estuviera en el plano las epresiones de los teoremas de ohr: (6.15), (6.16), (6.17) (6.18), serían las mismas, sin más que cambiar: E. E. los giros flechas obtenidos serían: θ θ 4º.- Si la fleión de la viga fuese debida a conjuntamente se procedería de forma análoga a lo indicado para los otros dos métodos epuestos. 10
Tema 7: FLEXIÓN: HIPERESTATICIDAD. Problemas resueltos
Tema 7: FLEXIÓN: HIPERESTTIIDD Problemas resueltos Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 008 7.1.-En la viga de la figura calcular las reacciones en los apoyos M M R R m 1 m Ecuaciones
Problemas resueltos Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SAL.)
Tema 6: FLEXÓN: DEFORONES + Problemas resueltos Prof.: Jaime Santo Domingo Santillana P.S.-Zamora (U.SL.) - 008 6..-La viga de la figura es una PE-60 está sometida a la carga concentrada indicada de 0
Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real
Cátedra de ngeniería Rural Escuela Universitaria de ngeniería Técnica grícola de Ciudad Real Tema : FORMUL DE L FLEXON Fórmula general de la fleión: Momento de inercia módulo resistente. Efecto de la forma
PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO
PROBEMAS DE RESISTENCIA DE MATERIAES MÓDUO 5: FEXIÓN DE VIGAS CURSO 016-17 5.1( ).- Halle, en MPa, la tensión normal máxima de compresión en la viga cuya sección y diagrama de momentos flectores se muestran
********************************************************************** En primer lugar hallaremos la excentricidad de la carga:
31.- Calcular la flecha máima la σ máima que resultan con el modelo de soporte esbelto sometido a carga ecéntrica. E =,1 10 6 kg/cm m. P=10000 kg. M=5000 kgm Sección pn 0 soldados a tope en las alas **********************************************************************
Tema 5 : FLEXIÓN: TENSIONES
Tema 5 : FLEXIÓN: TENSIONES σ MAX (COMPRESIÓN) G n n σ MAX (TRACCIÓN) Problemas Prof.: Jaime Santo Domingo Santillana E.P.S.Zamora (U.SAL.) 008 5.1.Representar los diagramas de fueras cortantes de momentos
(ε c ) max. y b. (ε t ) max. Fig.11. Distribución de deformaciones unitarias por flexión en sección compuesta por dos materiales.
6. Vigas (Elementos) Compuestos por dos o más Materiales Las ecuaciones obtenidas en la Sección 3 se basan en la hipótesis que el material que forma la sección del elemento, además de ser lineal-elástico,
60 o 60 o. RESISTENCIA DE MATERIALES II CURSO EXAMEN DE JUNIO 30/5/ h 15 min
RESISTEI DE MTERIES II URSO 1-1 EXME DE JUIO /5/1 1 h 15 min echa de publicación de la preacta: /6/1 echa y hora de la revisión del examen: 1/6/1 a las 9: 1. Un perfil IPE de m de longitud, empotrado en
ANALISIS DE VIGAS ESTATICAMENTE INDETERMINADAS
NISIS DE VIGS ESTTICENTE INDETERINDS.. DEFINICIÓN. Se denomina de esta manera a una barra sujeta a carga lateral; perpendicular a su eje longitudinal, en la que el número de reacciones en los soportes
Resistencia de Materiales. Estructuras. Tema 11. Inestabilidad en barras. Pandeo. Barra Empotrada-Empotrada.
Resistencia de Materiales. Estructuras Tema 11. Inestabilidad en barras. Pandeo Módulo 6 Barra Empotrada-Empotrada. En los módulos anteriores se ha estudiado el caso del pandeo en la barra articulada-articulada,
EJERCICIOS COMPLEMENTARIOS DE ELASTICIDAD AÑO ACADÉMICO
EJERCICIOS COMPLEMENTARIOS DE ELASTICIDAD AÑO ACADÉMICO 2011-2012 Prob 1. Sobre las caras de un paralepípedo elemental que representa el entorno de un punto de un sólido elástico existen las tensiones
Tensiones principales en el caso plano y Círculo de Mohr
Tensiones principales en el caso plano Círculo de Mohr Partiendo del sistema de ecuaciones que relaciona las componentes de la tensión en el sistema de referencia {, } en función de las componentes de
Práctico 10: Desplazamientos en vigas isostáticas
Práctico 10: Desplazamientos en vigas isostáticas Ejercicio 1: Una columna telescópica de tres tramos está empotrada en la base y sometida a una carga de 5kN (compresión) en su etremo superior. a longitud
RESISTENCIA DE MATERIALES
UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL RESISTENCIA DE MATERIALES CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ingeniería Estructural CODIGO SEMESTRE
400 kn. A 1 = 20 cm 2. A 2 = 10 cm kn
Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDD DE JÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación
T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA-
T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA- 1. Dadas las siguientes vigas, A) clasificarlas según su sustentación en : empotradas, simplemente
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.
Leonardo Da Vinci (Siglo XV)
UN POCO DE HISTORIA Leonardo Da Vinci (Siglo XV) Los 6 puentes de Leonardo Leonardo Da Vinci (Siglo XV) El método para doblar vigas de madera para darles forma de arco sin romper sus fibras Galileo (Siglo
Los cables flexibles y las cadenas se usan para soportar y transmitir cargas entre miembros.
Los cables fleibles y las cadenas se usan para soportar y transmitir cargas entre miembros. En los puentes en suspensión, estos llevan la mayor parte de las cargas. En el análisis de fuerzas, el peso de
Sistema Estructural de Masa Activa
Sistema Estructural de Masa Activa DEFINICIÓN DE SISTEMAS ESTRUCTURALES Son sistemas compuestos de uno o varios elementos, dispuestos de tal forma, que tanto la estructura total como cada uno de sus componentes,
TITULACIÓN: INGENIERO TÉCNICO DE MINAS (PRIMERA PARTE)
EXAMEN DE TEORÍA DE ESTRUCTURAS 03-09-2009 E.T.S.I. MINAS U.P.M. TITULACIÓN: INGENIERO TÉCNICO DE MINAS (PRIMERA PARTE) Duración: 1 hora 15 minutos Fecha de publicación de las calificaciones provisionales:
ME Capítulo 4. Alejandro Ortiz Bernardin. Universidad de Chile
Diseño de Elementos Mecánicos ME-5600 Capítulo 4 Alejandro Ortiz Bernardin www.cec.uchile.cl/~aortizb Departamento de Ingeniería Mecánica Universidad de Chile Contenidos del Capítulo Constantes de Resorte
RM - Resistencia de los Materiales
Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2017 205 - ESEIAAT - Escuela Superior de Ingenierías Industrial, Aeroespacial y Audiovisual de Terrassa 712 - EM - Departamento
60kN/m 50kNm 50kNm. 60kN/m. 50kNm D D D CC. C C 2 2 m 5 m
Ejercicio 6.1 Para las vigas de la figura: a) Bosquejar cualitativamente el diagrama momento flector, el diagrama del giro y el diagrama de la deformada. b) Determinar la flecha en C y el ángulo de giro
Unidad Resistencia de Materiales. Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S
Unidad Resistencia de Materiales Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S MÓDULO III: FLEXIÓN INTRODUCCION En los capítulos anteriores las fuerzas internas eran conocidas o constantes
Hipótesis en las Ciencias de la Construcción
Hipótesis en las Ciencias de la Construcción Especialización en diseño estructural de obras de arquitectura Trabajo Taller 1: Revisión de las hipótesis en la teoría de la flexión. Grupo de trabajo: Fecha
ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS
ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS Tecnología. Enunciados Ejercicios. ESTÁTICA-ESTRUCTURAS. Página 0 σ: tensiones (kp/cm 2 ) ε: deformaciones (alargamientos unitarios) σ t = σ adm : tensión de
Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo
Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 6. Flexión 3 un miembro 4 Una viga con un plano de simetría es sometido a pares iguales y opuestos M que actúan en dicho plano.
Módulo 2. Deflexiones en vigas
Módulo 2 Deflexiones en vigas Introducción Todos los cuerpos reales se deforman bajo la aplicación de una carga, elástica o plásticamente. Un cuerpo puede ser tan insensible a la deformación que el supuesto
E.T.S.I. Caminos, Canales y Puertos I.C.C.P. Universidad de Granada
E.T.S.I. aminos, anales y Puertos I...P. Universidad de Granada ONVO. SEPTIEMBRE TEORÍA DE ESTRUTURAS 16 SEPTIEMBRE 2013 TEORÍA Tiempo: 1 hora. APELLIDOS: FIRMA: NOMBRE: DNI: La Teoría representa 1/3 de
Mecánica de Materiales II: Flexión en Vigas Asimétricas
Mecánica de Materiales : Fleión en Vigas Asimétricas Andrés G. Clavijo V., Contenido ntroducción Vigas asimétricas a fleión Ejes principales de nercia Circulo de Mohr Vigas a fleión de nercia Viga de sección
Estructuras de Edificación: Tema 18 - Estructuras articuladas. Cálculo de desplazamientos.
Estructuras de Edificación: Tema 18 - Estructuras articuladas. Cálculo de desplazamientos. David Herrero Pérez Departamento de Estructuras y Construcción Universidad Politécnica de Cartagena Grado en Ingeniería
Curso: RESISTENCIA DE MATERIALES 1
Curso: RESISTENCIA DE MATERIALES 1 Módulo 3: TEORÍA DE VIGAS Luis Segura ([email protected]) º Semestre - 015 Universidad de la República - Uruguay Módulo 3 Teoría de vigas º Semestre 015 Luis Segura
1.- Torsión. Momento de Torsión
MECÁNICA TÉCNICA TEMA XX 1.- Torsión. Momento de Torsión En un caso más general, puede suceder que el plano del Momento, determinado por el momento resultante de todos los momentos de las fuerzas de la
Flexión Compuesta. Flexión Esviada.
RESISTENCIA DE MATERIALES. ESTRUCTURAS BOLETÍN DE PROBLEMAS Tema 6 Flexión Compuesta. Flexión Esviada. Problema 1 Un elemento resistente está formado por tres chapas soldadas, resultando la sección indicada
En el presente Anejo sólo se incluyen los símbolos más frecuentes utilizados en la Instrucción.
PARTE SEGUNDA: ANEJOS Anejo 1 Notación En el presente Anejo sólo se incluyen los símbolos más frecuentes utilizados en la Instrucción. Mayúsculas romanas A A c A ct A e A j A s A' s A s1 A s2 A s,nec A
CIV302 A y B 5 II-2013 G. Elias Belmonte C. 05/08/ /12/ /07/2013. Tema Objetivo Actividades de Enseñanza Recursos Didácticos
CARTA DESCRIPTIVA (PLANIFICACION DIDACTICA) Materia Grupo Nivel Semestre Docente Fecha de Inicio del calendario acad. Fecha de conclusión calendario acad. Fecha de Elaboración de la carta CIV302 A y B
Vigas Hiperestáticas
Vigas Hiperestáticas A.J.M.Checa November 11, 7 En el tipo de vigas que vamos a analizar en esta sección, el número de incógnitas es mayor que el número de ecuaciones. Por tanto, hemos
PRACTICAS DE LABORATORIO.RESISTENCIA DE MATERIALES. 1/6 ANALISIS DE DEFORMACIONES EN FLEXIÓN SIMPLE
PRACTICAS DE LABORATORIO.RESISTENCIA DE MATERIALES. 1/6 ANALISIS DE DEFORMACIONES EN FLEXIÓN SIMPLE 0. OBJETIVO DE LA PRÁCTICA La realización de esta práctica tiene como objetivos que el alumno compruebe
Datos: a = 1 2m q = 800 kg/m E = kg/cm 2. ************************************************************************
.- En la viga de la figura: a) Determinar las reacciones. b) Dimensionar la sección de la viga con perfil IPN, de forma ue la flecha en el extremo del voladizo no exceda de 5 mm. c) Hallar la flecha máxima
Complemento al Capítulo 5. FLEXIÓN SIMPLE, FLEXIÓN COMPUESTA Y ESFUERZO CORTANTE ESVIADO
Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Complemento al Capítulo 5. FLEXIÓN SIMPLE, FLEXIÓN COMPUESTA Y ESFUERZO CORTANTE ESVIADO 1. FLEXIÓN ESVIADA
Deflexión DE vigas. Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV
Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV Deflexión DE vigas Profesor: Cristian Castillo Realizado por: Barrios, Yasnahir Campos,
RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA ESFUERZOS COMBINADOS
RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA FLEXION Y AXIAL 2013 [email protected] RESISTENCIA DE MATERIALES I ICM FLEXION Y AXIAL 2013 [email protected] RESISTENCIA DE MATERIALES
Dinámica del Sólido Rígido
Dinámica del Sólido Rígido El presente documento de clase sobre dinámica del solido rígido está basado en los contenidos volcados en la excelente página web del curso de Física I del Prof. Javier Junquera
Facultad de Arquitectura. Bases de estática y mecánica de materiales
BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA Facultad de Arquitectura Bases de estática y mecánica de materiales SISTEMA ESTRUCTURAL DE MASA ACTIVA 1. Qué son las estructuras de masa activa? 2. Qué es una
MECANICA APLICADA I. EXAMEN FINAL PRIMER EJERCICIO TIEMPO: Deducir a partir de las siguientes ecuaciones y = αch
MENI PLI I. EXMEN FINL. 07-06-99. PIME EJEIIO TIEMPO: 50 x x x 1. educir a partir de las siguientes ecuaciones y = αch, ch sh = 1 α α α las expresiones de la longitud y la tensión de la catenaria ( puntos)..
Considerando un elemento diferencial de volumen Ω =, fig. 1.6, e integrando dos veces sucesivas la ec. (1.36): ( ) =0 (1.37) (1.
1.1.7. Solución de ecuaciones por integración directa Barra sección constante Determine la función, (), que satisface el PVF del elemento barra de definido en la ec. (1.14). Se considerando que la fuerza
ERM2M - Elasticidad y Resistencia de Materiales II
Unidad responsable: 820 - EUETIB - Escuela Universitaria de Ingeniería Técnica Industrial de Barcelona Unidad que imparte: 737 - RMEE - Departamento de Resistencia de Materiales y Estructuras en la Ingeniería
Geometría de las cáscaras
Geometría de las cáscaras Geometría de las cáscaras Las curvaturas correspondientes a los arcos diferenciales dsx y dsy : 1 2 cte cte x x 1 2 1 r' y 1 r' K 2 K1 El factor K= K1.K2 es el denominado Indice
Asignatura: TEORÍA DE ESTRUCTURAS
Asignatura: TEORÍA DE ESTRUCTURAS Titulación: INGENIERO TÉCNICO EN OBRAS PÚBLICAS Curso (Cuatrimestre): 2º Primer Cuatrimestre Profesor(es) responsable(s): Dr. Luis Sánchez Ricart Ubicación despacho: Despacho
Mercedes López Salinas
ANÁLISIS Y DISEÑO DE MIEMBROS ESTRUCTURALES SOMETIDOS A FLEXIÓN Mercedes López Salinas PhD. Ing. Civil Correo: [email protected] ESTRUCTURAS DE ACERO Y MADERA Facultad de Ciencia y Tecnología Escuela
Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1
Si la sección de un perfil metálico es la que aparece en la figura, suponiendo que la chapa que une los círculos es de espesor e inercia despreciables, determina la relación entre las secciones A 1 y A
INGENIERÍA CIVIL EN MECANICA PLAN 2012 GUÍA DE LABORATORIO
1 INGENIERÍA CIVIL EN MECANICA PLAN 2012 GUÍA DE LABORATORIO ASIGNATURA RESISTENCIA DE MATERIALES II CÓDIGO 9509-0 NIVEL 02 EXPERIENCIA CÓDIGO C971 Flexión 2 Flexión 1. OBJETIVO GENERAL Determinar, mediante
ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f
ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f 1) Se utiliza una barra de acero de sección rectangular para transmitir cuatro cargas axiales, según se indica en la figura.
CI 32B ANALISIS DE ESTRUCTURAS ISOSTATICAS 10 U.D. REQUISITOS: FI 21A, MA 22A DH:(3,0-2,0-,5,0) Obligatorio de la Licenciatura en Ingeniería Civil
1 CI 32B ANALISIS DE ESTRUCTURAS ISOSTATICAS 10 U.D. REQUISITOS: FI 21A, MA 22A DH:(3,0-2,0-,5,0) CARACTER: OBJETIVOS: CONTENIDOS Obligatorio de la Licenciatura en Ingeniería Civil Capacitar al alumno
Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos:
CONOCIMIENTOS PREVIOS. Vectores.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Trigonometría. Resolución de ecuaciones de primer grado. Sería
PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad
PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?
Capítulo 5. FLEXIÓN COMPUESTA
Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 5. FLEXIÓN COMPUESTA 5.1 FLEXION COMPUESTA PLANA. 5.1.1 Se dice que una pieza está sometida a flexión
Mecánica de las estructuras
Mecánica de las Estructuras Página 1 de 6 Programa de: Mecánica de las estructuras UNIVERSIDAD NACIONAL DE CORDOBA Facultad de Ciencias Exactas, Físicas y Naturales República Argentina Código: 6406 Carrera:
T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS
T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS 1- Analice la deformada de cada uno de los casos presentados en la figura inferior. Responda a las siguientes consignas: a) Cuál es la parte de la viga (superior
Unidad N 5. Tensiones Normales en Vigas Flexión Objetivos Introducción TENSIONES NORMALES EN VIGAS 1
TENSONES NORLES EN VGS 1 Unidad N 5 Tensiones Normales en Vigas Flexión 5.1. Objetivos l terminar el estudio de esta unidad usted deberá ser capaz de resolver los siguientes objetivos trazados para el
Nudos Longitud (m) Inercia respecto al eje indicado. Longitud de pandeo (m) (3) Coeficiente de momentos
Barra N3/N4 Perfil: IPE 300, Perfil simple Material: Acero (S275) Z Y Inicial Nudos Final Longitud (m) Área (cm²) Características mecánicas I y I z I t N3 N4 5.000 53.80 8356.00 603.80 20.12 Notas: Inercia
Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.
Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =
Folio EST VIGAS HIPERESTATICAS. Folio: EST Fecha: Noviembre/2000. Autores: Arqto. Verónica Veas B. Arqto.
Folio EST 0-0 VIGAS HIPERESTATICAS Materia: Estructura II Folio: Fecha: EST -0 Noviembre/000 Autores: Arqto. Verónica Veas B. Arqto. Jing Chang Lou Folio EST -0 MORFOLOGÍA ESTRUCTURAL I.- INTRODUCCION
TEMA 4: ESFUERZOS Y SOLICITACIONES
TEMA 4: ESFUERZOS Y SOLICITACIONES ESTRUCTURAS 1 ANTONIO DELGADO TRUJILLO ENRIQUE DE JUSTO MOSCARDÓ JAVIER LOZANO MOHEDANO MARÍA CONCEPCIÓN BASCÓN HURTADO Departamento de Mecánica de Medios Continuos,
CAPÍTULO 2. RESISTENCIAS PASIVAS
CAÍTULO 2. RESISTENCIAS ASIVAS 2.1. Introducción Son aquellas internas o externas a los elementos que constituyen un mecanismo, que de una forma u otra, se oponen al movimiento relativo de los mismos.
TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10
TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10 1 Es sabido que los materiales con comportamiento dúctil fallan por deslizamiento entre los planos donde se produce la rotura.
II.- CONCEPTOS FUNDAMENTALES DEL ANÁLISIS ESTRUCTURAL
II.- CONCEPTOS FUNDAMENTALES DEL ANÁLISIS ESTRUCTURAL 2.1.- Introducción Los métodos fundamentales disponibles para el analista estructural son el método de la flexibilidad (o de las fuerzas), y el método
Volumen de Sólidos de Revolución
60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido
ESTABILIDAD II A Ejercicios No Resueltos: SOLICITACION AXIL en régimen elástico
A continuación, ejercicios no resueltos para los alumnos de la materia Estabilidad II A, los mismos fueron extraídos del libro: Resistencia de Materiales. Autor: Luis Ortiz Berrocal. Ejercicio n 1: Calcular
Programa del curso de Estructuras I
Programa del curso de Estructuras I Presentación del curso - Información sobre calendario, objetivo, sistema de evaluación. - Relación entre estructura y Arquitectura. Modelos - Concepto de modelo, se
2 =0 (3.146) Expresando, las componentes del tensor de esfuerzos en coordenadas cartesianas como: 2 ; = 2 2 ; =
3.7. Función de Airy Cuando las fuerzas de cuerpo b son constantes en un sólido con estado de deformación o esfuerzo plano, el problema elástico se simplifica considerablemente mediante el uso de una función
5. ESFUERZOS INTERNOS EN VIGAS
5. ESFUERZOS INTERNOS EN VIGAS 5.. Introducción En este capítulo se estudiarán las fuerzas internas que existen al interior de un sólido (más específicamente en vigas) y que son las que mantienen unidas
Mecánica de las Estructuras I
Mecánica de las Estructuras I Página 1 de 5 Programa de: UNIVERSIDAD NACIONAL DE CÓRDOBA Facultad de Ciencias Exactas, Físicas y Naturales República Argentina Mecánica de las Estructuras I Código: 5006
DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 2
1. Tema: Determinación de la posición de las galgas extensiométricas en una barra de torsión. 2. Objetivos: a. Simular el comportamiento estático de una barra de torsión, mediante el uso de un paquete
Planteamiento del problema elástico lineal
Capítulo 3 Planteamiento del problema elástico lineal Para la simulación o representación de un proceso o un fenómeno físico, una de las partes fundamentales es su planteamiento matemático, que en su forma
FUNDAMENTOS DE ESTUCTURAS
GUÍA DOCENTE 2011-2012 FUNDAMENTOS DE ESTUCTURAS 1. Denominación de la asignatura: FUNDAMENTOS DE ESTUCTURAS Titulación INGENIERIA DE LA EDIFICACION Código 6455 2. Materia o módulo a la que pertenece la
TEORÍA TEMA 6 CENTRO DE FUERZAS PARALELAS. A- Centro de fuerzas paralelas caso dos fuerzas- caso n fuerzas. Definición centro de fuerzas paralelas.
TEORÍA TEMA 6 CENTRO DE FUERZAS PARALELAS A- Centro de fuerzas paralelas caso dos fuerzas- caso n fuerzas. Definición centro de fuerzas paralelas. B- Caso de fuerzas paralelas de igual sentido (gráfico)
Mecánica de Materiales I
Tema 4 - Estados de Esfuerzos Deformaciones Mecánica de Materiales I Tema 4 Estados de Esfuerzos Deformaciones Índice de contenido Sección 1 - Estado general de esfuerzos Sección - Transformación de esfuerzos
INDICE. e h Introducción Flexión compuesta. Tensiones normales Esfuerzo Cortante. Tensiones tangenciales
INDICE 13.1 Introducción. 13.2 Flexión compuesta. Tensiones normales. a2 r2 13.3 Esfuerzo Cortante. Tensiones tangenciales r2 e h e2 13.4 Centro de Esfuerzos Cortantes. 13.5 Torsión libre. Analogía de
APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL
Vectores y escalares. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Las magnitudes escalares son aquellas magnitudes físicas que
ASIGNATURA: RESISTENCIA DE MATERIALES
Página 1 de 6 CARACTERÍSTICAS GENERALES* Tipo: Formación básica, Obligatoria, Optativa Trabajo de fin de grado, Prácticas externas Duración: Semestral Semestre/s: 4º Número de créditos ECTS: 5 Idioma/s:
TEORÍA DE HILOS FLEXIBLES: CATENARIAS
TEORÍA DE HILOS FLEXIBLES. APLICACIÓN A LAS CATENARIAS 1. INTRODUCCION La flexibilidad de los hilos hace que su estudio difiera en cierto modo de los sistemas discretos considerados hasta ahora en el curso
Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo.
UNIDAD. APLICACIONES DE LAS DERIVADAS.. Información etraída de la primera derivada.. Información etraída de la segunda derivada.. Derivabilidad en intervalos: Teorema de Rolle, del valor medio y Caucy..4
- Todos. - Todos. - Todos. Proporciona los conocimientos científicos para el diseño de elementos mecánicos
Nombre de la asignatura: Mecánica de Sólidos. Carrera : Ingeniería Mecánica Clave de la asignatura: MCM-934 Clave local: Horas teoría horas practica créditos: 3--8.- UBICACIÓN DE LA ASIGNATURA A) RELACIÓN
Capítulo 3. TRACCIÓN Y COMPRESIÓN SIMPLE
Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 3. TRACCIÓN Y COMPRESIÓN SIMPLE 3.1 BARRA PRISMÁTICA SOMETIDA A UN ESFUERZO NORMAL CONSTANTE Consideremos
Límite de una función Funciones continuas
Límite de una función Funciones continuas Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 2014-2015 1 LÍMITE CUANDO LA VARIABLE TIENDE A INFINITO. 3 1. Límite cuando la variable tiende
Ejercicio resuelto VIGA ALIVIANADA METALICA Año 2014
TALLER VERTICAL ESTRUCTURAS VILLAR FAREZ-LOZADA Nivel 1 Ejercicio resuelto VIGA ALIVIANADA METALICA Año 014 EJEMPLO DE CÁLCULO Consideremos tener que cubrir un espacio arquitectónico con una cubierta liviana
Mecánica de Materiales I
Mecánica de Materiales I Tema 3 Torsión en barras Índice de contenido Sección 1 - Deformaciones en un eje circular Tema 3 - Torsión en barras Índice de contenido Sección 2 - Esfuerzos cortantes en barras
UNIVERSIDAD DEL AZUAY Facultad de Ciencia y Tecnología Escuela de Ingeniería Civil y Gerencia de Construcciones Sílabo
1 UNIVERSIDAD DEL AZUAY Facultad de Ciencia y Tecnología Escuela de Ingeniería Civil y Gerencia de Construcciones Sílabo 1. Datos generales: Materia: Estructuras I Código: ICG0502 Créditos: 4 Nivel: 5
CURSO: MECÁNICA DE SÓLIDOS II
UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA CURSO: MECÁNICA DE SÓLIDOS II PROFESOR: ING. JORGE A. MONTAÑO PISFIL CURSO DE
TEMA 4: PROBLEMAS RESUELTOS DE DEFORMACIÓN ANGULAR
Problemas eformación ngular T : PROLS RSULTOS ORÓN NGULR.. plicando el método de la deformación angular obtener el diagrama de momentos flectores y dibujar aproximadamente la deformada de la estructura
Estructuras de Edificación: Tema 21 - El método del equilibrio en estructuras de nudos rígidos.
Estructuras de Edificación: Tema 21 - El método del equilibrio en estructuras de nudos rígidos. David Herrero Pérez Departamento de Estructuras y Construcción Universidad Politécnica de Cartagena Grado
Anexo 1 ( Momentos de segundo orden )
.1 neo 1 ( Momentos de segundo orden ) 1. Momento de inercia En muchas de las fórmulas empleadas en ingeniería aparecen epresiones analíticas de la forma ρ d, siendo ρ la distancia de un elemento diferencial
La transformada de Laplace como aplicación en la resistencia de materiales
Docencia La transformada de Laplace como aplicación en la resistencia de materiales Agustín Pacheco Cárdenas y Javier Alejandro Gómez Sánchez Facultad de Ingeniería, UAQ; Depto. Ciencias Básicas, ITQ Facultad
