Vigas Hiperestáticas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Vigas Hiperestáticas"

Transcripción

1 Vigas Hiperestáticas November 11, 7 En el tipo de vigas que vamos a analizar en esta sección, el número de incógnitas es mayor que el número de ecuaciones. Por tanto, hemos de buscar algún método que nos permita establecer tantas relaciones independientes, como ecuaciones necesitemos para calcular las reacciones. Las relaciones geométricas con el momento flector 1, o los Teoremas de Castigliano que explicaremos a continuación, son los métodos que utilizaremos para encontrar las ecuaciones necesarias para resolver las vigas hiperestáticas. 1 Teoremas de Castigliano Sea un cuerpo elástico en R 3 sobre el que actúan un conjunto de fuerzas generalizadas X 1,..., X n aplicadas sobre los puntos del sólido A 1,..., A n y llamamos U T (X 1,..., X n ) a la energía potencial elástica o potencial interno. Entonces la relación entre la deformación δ i del punto A i y X i viene dada por : I II δ i = U T X i (1) X i = U T δ i () 1 ecuación1 Las fuerzas generalizadas se refieren tanto a las fuerzas como a los momentos de las fuerzas. En el caso de las primeras, X i = F i, la deformación δ i = y i es la distancia entre dos puntos, antes y después de la deformación, como se muestra en la figura 1. Si X i = M i es un momento aplicado en i, entonces δ i = dy i, es decir la tangente dx de la deformación en el punto de aplicación del momento. 1

2 Figure 1: deformación 1.1 Ejemplo 1: Sistema isoestático En la figura 1 se muestra una viga de longitud L empotrada en su parte izquierda, y sometida a una carga F en su extremo. Vamos a calcular la deformación inducida utilizando el primer teorema de Castigliano. La energía potencial elástica almacenada en la viga puede calcularse mediante la expresión: M(x) dx U T = (3) EI x= En este caso el momento flector es M(x) =F (x L) Según el primer teorema de Castigliano, δ i = U T F = 1 EI F dx, por lo que: δ i = F EI (x L) dx y por tanto la deformación δ i = y i es, y i = FL3 3EI

3 Sistemas hiperestáticos Se dice que un sistema tiene grado de hipersestaticidad G, cuando son necesarias G ecuaciones extras, además de las correspondientes a las condiciones de equilibrio 3..1 Sistemas de primer orden.1.1 Ejemplo 1 En la viga de la figura, el vínculo B introduce una nueva incógnita en el sistema de ecuaciones estáticas: ÿ F = Ra + R b = ρ o L, (4) Figure : ejemplo ÿ M = L (R b R a ) M a =, (5) x= L como se deduce del diagrama de cuerpo libre de la figura 3. Para calcular las reacciones en los vínculos, podemos volver a utilizar el primer teorema de Castigliano. En este caso podemos utilizar el desplazamiento o su derivada 4. Primer método; La deformación δ i en A es igual a cero, 3 En equilibrio estático: δ i = U T = M M dx =, (6) x= Nÿ F i =, i=1 Mÿ M j =, Si N + M es el número de ecuaciones independientes y V es el número de incógnitas (en nuestro caso, reacciones en vínculos), G = V N M. 4 En los empotramientos δ e =y δ e/ x = j=1 3

4 Figure 3: DCL Esta última expresión nos permite conocer una nueva relación entre las incógnitas (R a,r b,m a ). Pero antes tenemos que calcular el momento flector y su deriva respecto a R a en el único tramo de la viga. M(x) =M a + R a x ρ ox, (7) M(x) = + x, (8) La expresión 8, utilizando la relación 5 para conocer la derivada parcial de M a respecto a R a, queda como: M(x) = x + L 3 4 Rb 1, y de 4, obtenemos: M(x) = x L, Por tanto, ya podemos integrar la expresión 6: de donde obtenemos: x= A M a + R a x ρ ox B (x L) dx =, M a + R al 3 = ρ ol 1, (9) Las relaciones 4, 5 y 9 permiten conocer las reacciones en los vínculos. Solicitación 5 Segundo método; La derivada de la deformación también se anula en el empotramiento, 5 solicitar: (Del lat. sollicitāre). Real Academia Española RAE dδ a dx = U T = M M dx =, (1) x= 4

5 En este caso particular es fácil demostrar que M(x)/ = cte M(x)/, y por tanto: A L cte M a + R a x ρ ox B (x L) dx =, x= igual que antes..1. Ejemplo Igual que en el caso anterior, la viga de la figura 4 tiene grado de hiperestaticidad uno. Las Figure 4: Ejemplo ecuaciones de equilibrio establecen las relaciones entre los vínculos: Figure 5: DCL ÿ F = Ra + R b + 3ρ o =, ÿ M = M a R a =, (11) x= En el primer tramo: M(x) = M a + R a x ρ ox 3 18, (1) 5

6 como se deduce de la figura 6, Para calcular M(x)/ tendremos en cuenta que: Figure 6: Primer Tramo = 1, como podemos deducir de la ecuación 11. Una vez que hemos calculado el momento, utilizamos dδ a /dx =en el empotramiento, Esto es así porque M 3 dx = dx =en el segundo tramo. La integral da como resultado, (M a R a ) + ρ o 9 M a + 4R a 3 16ρ o 9 =, R a 3 + M a = 4ρ o 9, y el sistema de ecuaciones resuelto: R a = ρ o 3 (N) M a = ρ o 15 (Nm) R b = ρ o 15 (N) Es importante saber interpretar los signos negativos de estas expresiones. El resultado es correcto, pues al ser negativos R a y M a actúan en sentido contrario al supuesto en la figura 5. 6

7 Figure 7: Doble empotramiento Figure 8: Primer tramo. Sistemas de orden En el primer tramo: M(x) =R a x M a ρ ox, (13) si además si suponemos que R a = R b, entonces R a = ρ o L/, Figure 9: DCL M(x) = M a + ρ ox (L x), 7

8 Nos basta con una ecuación para relacionar M a y ρ o ; U T = 1 EI dx, M(x)dx =, M a = ρ ol 4 1, (14) También podríamos comprobar que mediante la condición de desplazamiento nulo ena, llegamos al mismo resultado 6. dx, xm(x)dx =, (15)..1 Reducción de un sistema de quinto orden Figure 1: DCL Si en la viga 7 introducimos un vínculo a L/ de uno de los empotramientos, tendremos tres incógnitas y solo una ecuación. Sólo R a y R b están relacionadas. Por tanto, podemos utilizar dos de las siguientes relaciones: δ a = δ b =, dδ a dx = dδ a dx =, La expresión para el momento en primer tramo es la misma que en la ecuación 13 además solo hemos de integrar de a L/ 7 ; A U L/ T = R a x M a ρ ox B dx =, (16) U T R b = A L/ R a x M a x ρ ox 3 B dx =, (17) 6 En este caso, además de considerar R a y M a como variables independientes, R a tiene que aparecer explícitamente en el integrando de la ecuación 15, como se aclara en el siguiente ejemplo 7 Demuéstrelo 8

9 Este mismo razonamiento nos hubiera llevado a la misma solución que en el apartado anterior. Ejercicio propuesto: Demuestre como llegar a la ecuación 17 Utilice las ecuaciones 16 y 17 para encontrar la solución 14 del ejercicio anterior. 9

Estática de Vigas. 20 de mayo de 2006

Estática de Vigas. 20 de mayo de 2006 Estática de Vigas 0 de mayo de 006 Los elementos estructurales que vamos a estudiar en este capítulo estarán sometidos a fuerzas o distribuciones aplicadas lateral o transversalmente a sus ejes y el objetivo

Más detalles

Folio EST VIGAS HIPERESTATICAS. Folio: EST Fecha: Noviembre/2000. Autores: Arqto. Verónica Veas B. Arqto.

Folio EST VIGAS HIPERESTATICAS. Folio: EST Fecha: Noviembre/2000. Autores: Arqto. Verónica Veas B. Arqto. Folio EST 0-0 VIGAS HIPERESTATICAS Materia: Estructura II Folio: Fecha: EST -0 Noviembre/000 Autores: Arqto. Verónica Veas B. Arqto. Jing Chang Lou Folio EST -0 MORFOLOGÍA ESTRUCTURAL I.- INTRODUCCION

Más detalles

Resistencia de Materiales. Estructuras. Tema 11. Inestabilidad en barras. Pandeo. Barra Empotrada-Empotrada.

Resistencia de Materiales. Estructuras. Tema 11. Inestabilidad en barras. Pandeo. Barra Empotrada-Empotrada. Resistencia de Materiales. Estructuras Tema 11. Inestabilidad en barras. Pandeo Módulo 6 Barra Empotrada-Empotrada. En los módulos anteriores se ha estudiado el caso del pandeo en la barra articulada-articulada,

Más detalles

Tema 7: FLEXIÓN: HIPERESTATICIDAD. Problemas resueltos

Tema 7: FLEXIÓN: HIPERESTATICIDAD. Problemas resueltos Tema 7: FLEXIÓN: HIPERESTTIIDD Problemas resueltos Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 008 7.1.-En la viga de la figura calcular las reacciones en los apoyos M M R R m 1 m Ecuaciones

Más detalles

Mecánica de Materiales I

Mecánica de Materiales I Tema 5 - Defleión en Vigas Mecánica de Materiales I Tema 5 Defleión en vigas Tema 5 - Defleión en vigas Sección - Ecuación diferencial de la elástica Ecuación diferencial de la elástica Para comenzar este

Más detalles

Resolución de estructuras con el Método de Flexibilidades

Resolución de estructuras con el Método de Flexibilidades Resolución de estructuras con el Método de Flexibilidades pellidos, nombre asset Salom, Luisa ([email protected]) Departamento entro Mecánica de Medios ontinuos y Teoría de Estructuras Escuela Técnica

Más detalles

Práctico 10: Desplazamientos en vigas isostáticas

Práctico 10: Desplazamientos en vigas isostáticas Práctico 10: Desplazamientos en vigas isostáticas Ejercicio 1: Una columna telescópica de tres tramos está empotrada en la base y sometida a una carga de 5kN (compresión) en su etremo superior. a longitud

Más detalles

Y ahora qué? INDICE Introducción Comparación de desplazamientos (viga conjugada) Vigas continuas Pórticos y cuadros.

Y ahora qué? INDICE Introducción Comparación de desplazamientos (viga conjugada) Vigas continuas Pórticos y cuadros. Y ahora qué? INDICE 10.1 Introducción. 10.2 Comparación de desplazamientos (viga conjugada). 10.3 Vigas continuas. 10.4 Pórticos y cuadros. PROBLEMAS ESTATICAMENTE DETERMINADOS: pueden resolverse sólo

Más detalles

LÍNEAS DE INFLUENCIA. Introducción. Definición de Líneas de Influencia.

LÍNEAS DE INFLUENCIA. Introducción. Definición de Líneas de Influencia. LÍNES DE INFLUENCI Introducción En general los alumnos hasta el momento han estudiado estructuras cuyas cargas actuantes tienen puntos de aplicación fijos o dicho de otro modo son cargas estacionarias.

Más detalles

Resistencia de materiales

Resistencia de materiales Resistencia de materiales April 3, 009 En ingeniería se denomina viga a un elemento constructivo lineal que trabaja principalmente a exión. La teoría de vigas es una parte de la resistencia de materiales

Más detalles

Estructuras de Edificación: Tema 20 - La pieza recta

Estructuras de Edificación: Tema 20 - La pieza recta Resumen Estructuras de Edificación: Tema 20 - La pieza recta David Herrero Pérez Departamento de Estructuras y Construcción Universidad Politécnica de Cartagena Grado en Ingeniería de Edificación Segundo

Más detalles

Contenido. CAPÍTULO 1 Introducción 3. CAPÍTULO 2 Cargas estructurales 17 PARTE I ESTRUCTURAS ESTÁTICAMENTE DETERMINADAS DEDICATORIA PREFACIO.

Contenido. CAPÍTULO 1 Introducción 3. CAPÍTULO 2 Cargas estructurales 17 PARTE I ESTRUCTURAS ESTÁTICAMENTE DETERMINADAS DEDICATORIA PREFACIO. Contenido DEDICATORIA PREFACIO v vii PARTE I ESTRUCTURAS ESTÁTICAMENTE DETERMINADAS CAPÍTULO 1 Introducción 3 1.1 Análisis y diseño estructural 3 1.2 Historia del análisis estructural 4 1.3 Principios

Más detalles

Práctico 10: Desplazamientos en vigas isostáticas

Práctico 10: Desplazamientos en vigas isostáticas Práctico 0: Desplazamientos en vigas isostáticas Ejercicio : Una columna telescópica de tres tramos está empotrada en la base y sometida a una carga de 5kN (compresión) en su etremo superior. a longitud

Más detalles

ESTRUCTURAS EL METODO GENERAL

ESTRUCTURAS EL METODO GENERAL ESTRUCTURAS EL METODO GENERAL MODULO INSTRUCCIONAL MI-E4 Ing.N.VILLASECA C. Trabajo elaborado bajo la coordinación, orientación y supervisión del Autor, con la participación de: Responsable : Ing. N.Villaseca

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.

Más detalles

Datos: a = 1 2m q = 800 kg/m E = kg/cm 2. ************************************************************************

Datos: a = 1 2m q = 800 kg/m E = kg/cm 2. ************************************************************************ .- En la viga de la figura: a) Determinar las reacciones. b) Dimensionar la sección de la viga con perfil IPN, de forma ue la flecha en el extremo del voladizo no exceda de 5 mm. c) Hallar la flecha máxima

Más detalles

Método de las Fuerzas: Estructura hiperestática con tensor

Método de las Fuerzas: Estructura hiperestática con tensor Método de las Fuerzas: Estructura hiperestática con tensor Determinar los esfuerzos de M Q y N para la siguiente estructura, aplicando el método de las fuerzas. Datos: P = 2 tn q = tn m Ω t = 6 cm 2 E

Más detalles

ANALISIS DE VIGAS ESTATICAMENTE INDETERMINADAS

ANALISIS DE VIGAS ESTATICAMENTE INDETERMINADAS NISIS DE VIGS ESTTICENTE INDETERINDS.. DEFINICIÓN. Se denomina de esta manera a una barra sujeta a carga lateral; perpendicular a su eje longitudinal, en la que el número de reacciones en los soportes

Más detalles

Capítulo 8. DEFORMACIONES EN LAS VIGAS

Capítulo 8. DEFORMACIONES EN LAS VIGAS Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 8. DEFORMACIONES EN LAS VIGAS 1. APLICACIÓN DEL CÁLCULO DE LAS DEFORMACIONES A LA RESOLUCIÓN DE ESTRUCTURAS

Más detalles

Ecuaciones diferenciales de Equilibrio

Ecuaciones diferenciales de Equilibrio Ecuaciones diferenciales de Equilibrio 28 de marzo de 2006 1. Elasticidad en una dimensión 1.1. Esfuerzo σ y carga lineal b(x) Para examinar un cuerpo desde el contínuo, que es la primera hipótesis (a),

Más detalles

ESTRUCTURAS I F.A.D.U. / UdelaR AÑO 2018

ESTRUCTURAS I F.A.D.U. / UdelaR AÑO 2018 ESTRUCTURAS I F.A.D.U. / UdelaR AÑO 2018 REPASO DE EQUILIBRIO ESTÁTICO La estructura de una obra arquitectónica debe encontrarse en equilibrio estático: la estructura se mantiene quieta con respecto a

Más detalles

El Principio de las Fuerzas Virtuales

El Principio de las Fuerzas Virtuales El Principio de las Fuerzas Virtuales Apellidos, nombre Basset Salom, uisa ([email protected]) Departamento Centro Mecánica de Medios Continuos y Teoría de Estructuras Escuela Técnica Superior de Arquitectura

Más detalles

8 m. Se trata de una estructura simétrica con carga antisimétrica, por lo tanto, resolveremos sólo la parte antisimétrica.

8 m. Se trata de una estructura simétrica con carga antisimétrica, por lo tanto, resolveremos sólo la parte antisimétrica. . eterminar los esfuerzos en todas las barras de la celosía de la figura cuando en el punto hay una carga horizontal de 0kN eterminar además las componentes horizontal y vertical del desplazamiento de

Más detalles

< momento aplicado sobre un nudo; < carga repartida; < carga concentrada. Movimientos y deformaciones impuestos:

< momento aplicado sobre un nudo; < carga repartida; < carga concentrada. Movimientos y deformaciones impuestos: Viga continua con múltiples patologías 1/5 Figura 1 Viga continua con multiples patologías Problema de viga continua Vamos a calcular todos los esfuerzos, reacciones y curvaturas, y a dibujar la deformada

Más detalles

Calcular la energía de deformación de la viga de rigidez constante EI, simplemente apoyada, indicada en la figura.

Calcular la energía de deformación de la viga de rigidez constante EI, simplemente apoyada, indicada en la figura. 11.29.- Calcular la energía de deformación de la viga de rigidez constante EI, simplemente apoyada, indicada en la figura. 30-6-98 11.30.- Calcular en Julios el potencial interno de una viga en voladizo

Más detalles

Sistemas hiperestáticos

Sistemas hiperestáticos Lección 14 Sistemas hiperestáticos Contenidos 14.1. Método de las fuerzas para el cálculo de sistemas hiperestáticos............................. 180 14.2. Sistemas hiperestáticos sometidos a flexión........

Más detalles

El modelo de barras: cálculo de esfuerzos

El modelo de barras: cálculo de esfuerzos Lección 6 El modelo de barras: cálculo de esfuerzos Contenidos 6.1. Definición de barra prismática............... 78 6.2. Tipos de uniones........................ 78 6.3. Estructuras isostáticas y estructuras

Más detalles

Hoja 5: cortantes y momentos

Hoja 5: cortantes y momentos Cátedra de Matemática Matemática Facultad de Arquitectura Universidad de la República 2013 Primer semestre Hoja 5: cortantes y momentos Versión: 28/04/2013 Ejercicio 1 La pieza de la figura tiene una longitud

Más detalles

ELASTICIDAD POR FLEXIÓN: UNA EXPERIENCIA DE LABORATORIO ADAPTABLE A LOS DISTINTOS NIVELES EDUCATIVOS

ELASTICIDAD POR FLEXIÓN: UNA EXPERIENCIA DE LABORATORIO ADAPTABLE A LOS DISTINTOS NIVELES EDUCATIVOS III Taller Iberoamericano de Enseñanza sobre Educación en Ciencia e Ingeniería de Materiales (TIECIM 0) EASTICIDAD POR FEXIÓN: UNA EXPERIENCIA DE ABORATORIO ADAPTABE A OS DISTINTOS NIVEES EDUCATIVOS T.

Más detalles

ERM2M - Elasticidad y Resistencia de Materiales II

ERM2M - Elasticidad y Resistencia de Materiales II Unidad responsable: 820 - EUETIB - Escuela Universitaria de Ingeniería Técnica Industrial de Barcelona Unidad que imparte: 737 - RMEE - Departamento de Resistencia de Materiales y Estructuras en la Ingeniería

Más detalles

E.T.S. Ingenieros de Caminos, Canales y Puertos

E.T.S. Ingenieros de Caminos, Canales y Puertos E.T.S. Ingenieros de aminos, anales y Puertos Universidad de Granada ONVOATORIA JUNIO TEORÍA DE ESTRUTURAS 1 JULIO 2013 TEORÍA Tiempo: 1 hora. APELLIDOS: FIRMA: NOMBRE: DNI: La Teoría representa 1/3 de

Más detalles

EXAMEN FINAL: PRIMER PARCIAL RESISTENCIA DE MATERIALES

EXAMEN FINAL: PRIMER PARCIAL RESISTENCIA DE MATERIALES EXAMEN FINAL: PRIMER PARCIAL RESISTENCIA DE MATERIALES Curso 2015-2016 3er curso del Grado en Ingeniería de Organización Industrial Apellidos, Nombre: Compañía: Sección: Cuestión 1 Cuestión 2 Cuestión

Más detalles

CIV302 A y B 5 II-2013 G. Elias Belmonte C. 05/08/ /12/ /07/2013. Tema Objetivo Actividades de Enseñanza Recursos Didácticos

CIV302 A y B 5 II-2013 G. Elias Belmonte C. 05/08/ /12/ /07/2013. Tema Objetivo Actividades de Enseñanza Recursos Didácticos CARTA DESCRIPTIVA (PLANIFICACION DIDACTICA) Materia Grupo Nivel Semestre Docente Fecha de Inicio del calendario acad. Fecha de conclusión calendario acad. Fecha de Elaboración de la carta CIV302 A y B

Más detalles

Determinar los diagramas de esfuerzos en la estructura de la figura. a) Descomposición de la fuerza exterior aplicada en el extremo de la barra BE.

Determinar los diagramas de esfuerzos en la estructura de la figura. a) Descomposición de la fuerza exterior aplicada en el extremo de la barra BE. esistencia de materiales. roblemas resueltos roblema. eterminar los diagramas de esfuerzos en la estructura de la figura. 45 o 600 800 m m m m m esolución: F F H V 600 600 600 600 a) escomposición de la

Más detalles

ANÁLISIS DE ESTRUCTURAS INDETERMINADAS POR EL MÉTODO DE LAS FLEXIBILIDADES

ANÁLISIS DE ESTRUCTURAS INDETERMINADAS POR EL MÉTODO DE LAS FLEXIBILIDADES ANÁLISIS DE ESTRUCTURAS INDETERMINADAS POR EL MÉTODO DE LAS FLEXIBILIDADES Introducción El método de las flexibilidades, también conocido como método de las deformaciones consistentes, o el método de la

Más detalles

Mecánica de Sólidos. UDA 2: Miembros Cargados Axialmente.

Mecánica de Sólidos. UDA 2: Miembros Cargados Axialmente. Mecánica de Sólidos UDA 2: Miembros Cargados Axialmente. UDA 2: Estructuras sometidas a Cargas Axiales Principio de Saint Venant Debido a la carga, la barra se deforma como lo indican las línes dibujadas

Más detalles

60kN/m 50kNm 50kNm. 60kN/m. 50kNm D D D CC. C C 2 2 m 5 m

60kN/m 50kNm 50kNm. 60kN/m. 50kNm D D D CC. C C 2 2 m 5 m Ejercicio 6.1 Para las vigas de la figura: a) Bosquejar cualitativamente el diagrama momento flector, el diagrama del giro y el diagrama de la deformada. b) Determinar la flecha en C y el ángulo de giro

Más detalles

Energía debida al esfuerzo cortante. J. T. Celigüeta

Energía debida al esfuerzo cortante. J. T. Celigüeta Energía debida al esfuerzo cortante J. T. Celigüeta Energía debida al esfuerzo cortante Tensión y deformación de cortante: Energía acumulada: τ QA τ QA = γ = = Ib G GIb b Q * QA QA Q A A Ucort = τγdv =

Más detalles

ESTRUCTURAS ESTRUCTURAS HIPERESTATICAS

ESTRUCTURAS ESTRUCTURAS HIPERESTATICAS ESTRUCTURAS I ESTRUCTURAS HIPERESTATICAS F.A.D.U. / UdelaR AÑO 2018 repaso de EQUILIBRIO ESTÁTICO Al analizar estructuras edilicias, estamos estudiando estructuras que se encuentran en equilibrio estático

Más detalles

RESISTENCIA DE MATERIALES II CURSO EXAMEN DE SEPTIEMBRE

RESISTENCIA DE MATERIALES II CURSO EXAMEN DE SEPTIEMBRE RESISTENCIA DE MATERIAES II CURSO 008-09 EXAMEN DE SETIEMBRE -9-009 Fecha de publicación de la preacta: de Octubre Fecha de revisión: 7 de Octubre.- ( puntos) as vigas carril de un puente grúa están fabricadas

Más detalles

IX. Vibración de sistemas continuos

IX. Vibración de sistemas continuos Objetivos:. Determinar expresiones para la energía cinética y potencial de sistemas continuos: barras y vigas.. Emplear métodos variacionales para deducir la ecuación de unidimensional: barras (axial)

Más detalles

Ejercicios de repaso

Ejercicios de repaso Ejercicios de repaso Ejercicio 0.1 a) Hallar la resultante del sistema de fuerzas de la figura. (Indicar valor y recta de aplicación) b) Sustituir el sistema dado por dos fuerzas cuyas rectas de acción

Más detalles

El Principio de las Fuerzas Virtuales: ejemplo de aplicación

El Principio de las Fuerzas Virtuales: ejemplo de aplicación El Principio de las Fuerzas Virtuales: ejemplo de aplicación pellidos, nombre asset Salom, Luisa ([email protected]) Departamento entro Mecánica de Medios ontinuos y Teoría de Estructuras Escuela Técnica

Más detalles

RESISTENCIA DE MATERIALES II

RESISTENCIA DE MATERIALES II RESISTENCIA DE MATERIALES II CURSO 00- EXAMEN DE JULIO 7-7-0 Fecha de publicación de la preacta: 8 de Julio Fecha de revisión: 6 de Julio a las 0 horas PROBLEMA El apoo B de la estructura de la figura

Más detalles

El esfuerzo axil. Contenidos

El esfuerzo axil. Contenidos Lección 8 El esfuerzo axil Contenidos 8.1. Distribución de tensiones normales estáticamente equivalentes a esfuerzos axiles.................. 104 8.2. Deformaciones elásticas y desplazamientos debidos

Más detalles

CAPÍTULO IX FUERZA CORTANTE Y MOMENTO FLECTOR EN VIGAS. i) Cargas concentradas. Son fuerzas aplicadas en puntos determinados de la viga.

CAPÍTULO IX FUERZA CORTANTE Y MOMENTO FLECTOR EN VIGAS. i) Cargas concentradas. Son fuerzas aplicadas en puntos determinados de la viga. Resistencia de ateriales. Capítulo IX. Esfuerzo cortante momento flector. Tipos de vigas CÍTUO IX FUERZ CORTNTE Y OENTO FECTOR EN IGS Eisten varias formas de ejercer fuerzas sobre una viga. i) Cargas concentradas.

Más detalles

RESISTENCIA DE MATERIALES

RESISTENCIA DE MATERIALES UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL RESISTENCIA DE MATERIALES CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ingeniería Estructural CODIGO SEMESTRE

Más detalles

Obtención del movimiento en un punto de una estructura hiperestática mediante el Principio de las Fuerzas Virtuales

Obtención del movimiento en un punto de una estructura hiperestática mediante el Principio de las Fuerzas Virtuales Obtención del movimiento en un punto de una estructura hiperestática mediante el Principio de las Fuerzas Virtuales pellidos, nombre Basset Salom, Luisa ([email protected]) Departamento entro Mecánica

Más detalles

ESTRUCTURAS II. Julio Flórez López

ESTRUCTURAS II. Julio Flórez López ESTRUCTURAS II Julio Flórez López Ingeniería Estructural: Asegurar la integridad de piezas mecánicas y edificaciones bajo la acción de solicitaciones termo-mecánicas Diseño Estructural: Determinar las

Más detalles

TEMA 3: ENLACES Y EQUILIBRIO

TEMA 3: ENLACES Y EQUILIBRIO TEMA 3: ENLACES Y EQUILIBRIO ESTRUCTURAS I ANTONIO DELGADO TRUJILLO ENRIQUE DE JUSTO MOSCARDÓ PURIFICACIÓN ALARCÓN RAMÍREZ Departamento de Mecánica de Medios Continuos, Teoría de Estructuras e Ingeniería

Más detalles

La transformada de Laplace como aplicación en la resistencia de materiales

La transformada de Laplace como aplicación en la resistencia de materiales Docencia La transformada de Laplace como aplicación en la resistencia de materiales Agustín Pacheco Cárdenas y Javier Alejandro Gómez Sánchez Facultad de Ingeniería, UAQ; Depto. Ciencias Básicas, ITQ Facultad

Más detalles

ANÁLISIS ESTRUCTURAL.

ANÁLISIS ESTRUCTURAL. ANÁLISIS ESTRUCTURAL. Subárea: Análisis estructural CONTENIDO OBJETIVOS REFERENCIA BIBLIOGRAFICA 1. FUNDAMENTOS Y PRINCIPIOS Hipótesis fundamentales. Análisis de primer y segundo orden. Principio de superposición

Más detalles

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA ESTRUCTURAL

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA ESTRUCTURAL UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA ESTRUCTURAL ASIGNATURA: RESISTENCIA DE MATERIALES CÓDIGO: 1102 UNIDADES: 6 Teoría: 5 horas/semana REQUISITOS: 1101,0254-0255

Más detalles

I.PROGRAMA DE ESTUDIOS. Unidad 1. Conceptos básicos de la teoría de las estructuras

I.PROGRAMA DE ESTUDIOS. Unidad 1. Conceptos básicos de la teoría de las estructuras I.PROGRAMA DE ESTUDIOS Unidad 1 Conceptos básicos de la teoría de las estructuras 1.1.Equilibrio 1.2.Relación fuerza desplazamiento 1.3.Compatibilidad 1.4.Principio de superposición 1.5.Enfoque de solución

Más detalles

Tabla breve del Contenido

Tabla breve del Contenido Tabla breve del Contenido PARTE UNO: ESTRUCTURAS ESTÁTICAMENTE DETERMINADAS CAPÍTULO 1 Introducción 3 CAPÍTULO 2 Cargas estructurales 16 CAPÍTULO 3 Sistema de cargas y comportamiento 43 CAPÍTULO 4 Reacciones

Más detalles

ELASTICIDAD Y RESISTENCIA DE MATERIALES CURSO EXAMEN FINAL. SEGUNDO PARCIAL Condición de contorno: u (x = 0) = 0

ELASTICIDAD Y RESISTENCIA DE MATERIALES CURSO EXAMEN FINAL. SEGUNDO PARCIAL Condición de contorno: u (x = 0) = 0 ASTICIDAD Y RSISTNCIA D MATRIAS CURSO 999- XAMN FINA. SGUNDO PARCIA 7-6- CUSTIONS.- a barra del enunciado es hiperestática, equivale a: Ω Ω X N Condición de contorno: u ( ) Como el etremo no se desplaza,

Más detalles

MÉTODO ALGEBRÁICO PARA DETERMINAR LA DEFORMACIÓN POR DEFLEXIÓN EN VIGAS ESTÁTICAMENTE INDETERMINADAS

MÉTODO ALGEBRÁICO PARA DETERMINAR LA DEFORMACIÓN POR DEFLEXIÓN EN VIGAS ESTÁTICAMENTE INDETERMINADAS ISSN 007-1957 MÉTODO ALGEBRÁICO PARA DETERMINAR LA DEFORMACIÓN POR DEFLEXIÓN EN VIGAS ESTÁTICAMENTE INDETERMINADAS Juan José Martínez Cosgalla Escuela Superior de Ingeniería Mecánica y Eléctrica, Instituto

Más detalles

Unidad Resistencia de Materiales. Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S

Unidad Resistencia de Materiales. Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S Unidad Resistencia de Materiales Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S MÓDULO III: FLEXIÓN INTRODUCCION En los capítulos anteriores las fuerzas internas eran conocidas o constantes

Más detalles

TEMARIO ANALISIS ESTRUCTURAL

TEMARIO ANALISIS ESTRUCTURAL TEMARIO ANALISIS ESTRUCTURAL 1. FUNDAMENTOS Y PRINCIPIOS Objetivos. Hipótesis fundamentales. Análisis de primer y segundo orden. Principio de superposición de causas y efectos. Estática de cuerpos rígidos

Más detalles

15.5. Torsión uniforme en barras prismáticas de sección de

15.5. Torsión uniforme en barras prismáticas de sección de Lección 15 Torsión uniforme Contenidos 15.1. Distribución de tensiones tangenciales estáticamente equivalentes a un momento torsor................ 186 15.2. Torsión uniforme en barras prismáticas de sección

Más detalles

Módulo 2. Deflexiones en vigas

Módulo 2. Deflexiones en vigas Módulo 2 Deflexiones en vigas Introducción Todos los cuerpos reales se deforman bajo la aplicación de una carga, elástica o plásticamente. Un cuerpo puede ser tan insensible a la deformación que el supuesto

Más detalles

Estructuras de Edificación: Tema 21 - El método del equilibrio en estructuras de nudos rígidos.

Estructuras de Edificación: Tema 21 - El método del equilibrio en estructuras de nudos rígidos. Estructuras de Edificación: Tema 21 - El método del equilibrio en estructuras de nudos rígidos. David Herrero Pérez Departamento de Estructuras y Construcción Universidad Politécnica de Cartagena Grado

Más detalles

TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10

TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10 TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10 1 Es sabido que los materiales con comportamiento dúctil fallan por deslizamiento entre los planos donde se produce la rotura.

Más detalles

Problema 1 (10 puntos)

Problema 1 (10 puntos) RESISTENCIA DE MATERIALES CURSO 2015-16 Convocatoria de Julio 5/7/2016 echa de publicación de la preacta: 21/7/2016 echa de revisión del examen: 28/7/2016 a las 16:00 Problema 1 (10 puntos) La estructura

Más detalles

Tema 9: SOLICITACIONES COMBINADAS

Tema 9: SOLICITACIONES COMBINADAS Tema 9: SOLIITIONES OMINDS V M T N x L M V Problemas Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 2008 9.1.-En la viga de la figura calcular por el Teorema de los Trabajos Virtuales: 1)

Más detalles

Aplicación del Principio de Conservación de la Energía y del Teorema de la Carga Unidad para la obtención de movimientos

Aplicación del Principio de Conservación de la Energía y del Teorema de la Carga Unidad para la obtención de movimientos Aplicación del Principio de Conservación de la Energía y del Teorema de la Carga Unidad para la obtención de movimientos Apellidos, nombre Basset Salom, Luisa ([email protected]) Departamento Centro Mecánica

Más detalles

ESTRUCTURAS RETICULADAS

ESTRUCTURAS RETICULADAS ESTRUTURS RETIULS Prof. arlos Navarro epartamento de ecánica de edios ontinuos y Teoría de Estructuras En el cálculo estructuras reticuladas suele despreciarse las deformaciones inducidas por los esfuerzos

Más detalles

Energía potencial en la barra prismática. Potencial elástico. Métodos energéticos.

Energía potencial en la barra prismática. Potencial elástico. Métodos energéticos. Energía potencial en la barra prismática. INDICE 14.1 Introducción. 14.2 Trabajo producido por las Fueras Externas. 14.3 otencial Elástico Energía otencial. 14.4 Teorema de Reciprocidad. 14.5 rincipio

Más detalles

Tema 7: Estática del sólido rígido

Tema 7: Estática del sólido rígido Tema 7: Estática del sólido rígido FISICA I, 1º, Grado en Ingeniería Civil Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla Índice Introducción Sólido rígido

Más detalles

PROBLEMA 1 (10 puntos)

PROBLEMA 1 (10 puntos) RESISTENCIA DE MATERIALES EXAMEN FINAL / PRUEBA DE EVALUACIÓN CONTINUA 3 CURSO 017-18 17-01-018 PROBLEMA 1 (10 puntos) Fecha de publicación de la preacta: de febrero de 018 Fecha de revisión del examen:

Más detalles

5. ESFUERZOS INTERNOS EN VIGAS

5. ESFUERZOS INTERNOS EN VIGAS 5. ESFUERZOS INTERNOS EN VIGAS 5.. Introducción En este capítulo se estudiarán las fuerzas internas que existen al interior de un sólido (más específicamente en vigas) y que son las que mantienen unidas

Más detalles

Curso: RESISTENCIA DE MATERIALES 1

Curso: RESISTENCIA DE MATERIALES 1 Curso: RESISTENCIA DE MATERIALES 1 Módulo 3: TEORÍA DE VIGAS Luis Segura ([email protected]) º Semestre - 015 Universidad de la República - Uruguay Módulo 3 Teoría de vigas º Semestre 015 Luis Segura

Más detalles

Sociedad Mexicana de Ingeniería Estructural

Sociedad Mexicana de Ingeniería Estructural FÓRMULAS PARA EL CÁLCULO DE ELEMENTOS MECÁNICOS DE VIGAS HIPERESTÁTICAS Miguel Angel Castillo Mata 1 y Ángel Ponce Córdova 2 RESUMEN Con el continuo desarrollo de la tecnología de los programas de cómputo,

Más detalles

Equilibrio. 1. Los sólidos prismáticos. I. Romero ETSI Industriales, Universidad Politécnica de Madrid 8 de septiembre de 2016

Equilibrio. 1. Los sólidos prismáticos. I. Romero ETSI Industriales, Universidad Politécnica de Madrid 8 de septiembre de 2016 Equilibrio I. Romero ETSI Industriales, Universidad Politécnica de Madrid [email protected] 8 de septiembre de 2016 En este capítulo se estudia el equilibrio de una clase de cuerpos, los prismáticos,

Más detalles

UNIDAD DIDÁCTICA I: RESISTENCIA DE MATERIALES

UNIDAD DIDÁCTICA I: RESISTENCIA DE MATERIALES Centro: ESCUELA DE INGENIERÍA Estudios: I.T.A. EXPLOTACIONES AGROPECUARIAS Asignatura. Construcciones Agrarias Curso Académ.: 2008/09 Curso: 2º Cuatrimestre: 2º Carácter: TRONCAL Créditos teóri.: 1,5 Créditos

Más detalles

SISTEMAS HIPERESTÁTICOS DE NUDOS RÍGIDOS

SISTEMAS HIPERESTÁTICOS DE NUDOS RÍGIDOS SISTEMAS HIPERESTÁTICOS DE NUDOS RÍGIDOS ÍNDICE 1. Hiperestatismo 2. Concepto de rigidez 3. Métodos de análisis Pendiente deformación Cross Rigideces HIPERESTATISMO Hipostático Isostático Hiperestático

Más detalles

Powered by TCPDF (www.tcpdf.org)

Powered by TCPDF (www.tcpdf.org) Powered by TCPDF (www.tcpdf.org) > Ecuación de Transformación para la Deformación Plana. Relaciona el tensor de deformaciones de un punto con la medida de una galga en ese punto con un ángulo φ del eje

Más detalles

Estática. Fuerzas Internas

Estática. Fuerzas Internas Estática 7 Fuerzas Internas Objectivos Método de las secciones para determinar las cargas internas o solicitaciones en un miembro. Describir la tensión interna de corte o cizalla y el momento interno de

Más detalles

Problemas de la Lección 6: Flexión. Tensiones

Problemas de la Lección 6: Flexión. Tensiones : Flexión. Tensiones Problema 1: Para las siguientes vigas hallar los diagramas de esfuerzos cortantes y momentos flectores. Resolver cada caso para los siguientes datos (según convenga) P = 3000 kg ;

Más detalles

RM - Resistencia de los Materiales

RM - Resistencia de los Materiales Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2017 205 - ESEIAAT - Escuela Superior de Ingenierías Industrial, Aeroespacial y Audiovisual de Terrassa 712 - EM - Departamento

Más detalles

El sólido prismático

El sólido prismático 1/ 21 El sólido prismático Ignacio Romero [email protected] Escuela Técnica Superior de Ingenieros Industriales Universidad Politécnica de Madrid Resistencia de Materiales, Curso 2015/16 1. Modelos

Más detalles

TEMA 4: PROBLEMAS RESUELTOS DE DEFORMACIÓN ANGULAR

TEMA 4: PROBLEMAS RESUELTOS DE DEFORMACIÓN ANGULAR Problemas eformación ngular T : PROLS RSULTOS ORÓN NGULR.. plicando el método de la deformación angular obtener el diagrama de momentos flectores y dibujar aproximadamente la deformada de la estructura

Más detalles

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO PROBEMAS DE RESISTENCIA DE MATERIAES MÓDUO 5: FEXIÓN DE VIGAS CURSO 016-17 5.1( ).- Halle, en MPa, la tensión normal máxima de compresión en la viga cuya sección y diagrama de momentos flectores se muestran

Más detalles