Vigas Hiperestáticas
|
|
|
- Rafael Rubio Lagos
- hace 9 años
- Vistas:
Transcripción
1 Vigas Hiperestáticas November 11, 7 En el tipo de vigas que vamos a analizar en esta sección, el número de incógnitas es mayor que el número de ecuaciones. Por tanto, hemos de buscar algún método que nos permita establecer tantas relaciones independientes, como ecuaciones necesitemos para calcular las reacciones. Las relaciones geométricas con el momento flector 1, o los Teoremas de Castigliano que explicaremos a continuación, son los métodos que utilizaremos para encontrar las ecuaciones necesarias para resolver las vigas hiperestáticas. 1 Teoremas de Castigliano Sea un cuerpo elástico en R 3 sobre el que actúan un conjunto de fuerzas generalizadas X 1,..., X n aplicadas sobre los puntos del sólido A 1,..., A n y llamamos U T (X 1,..., X n ) a la energía potencial elástica o potencial interno. Entonces la relación entre la deformación δ i del punto A i y X i viene dada por : I II δ i = U T X i (1) X i = U T δ i () 1 ecuación1 Las fuerzas generalizadas se refieren tanto a las fuerzas como a los momentos de las fuerzas. En el caso de las primeras, X i = F i, la deformación δ i = y i es la distancia entre dos puntos, antes y después de la deformación, como se muestra en la figura 1. Si X i = M i es un momento aplicado en i, entonces δ i = dy i, es decir la tangente dx de la deformación en el punto de aplicación del momento. 1
2 Figure 1: deformación 1.1 Ejemplo 1: Sistema isoestático En la figura 1 se muestra una viga de longitud L empotrada en su parte izquierda, y sometida a una carga F en su extremo. Vamos a calcular la deformación inducida utilizando el primer teorema de Castigliano. La energía potencial elástica almacenada en la viga puede calcularse mediante la expresión: M(x) dx U T = (3) EI x= En este caso el momento flector es M(x) =F (x L) Según el primer teorema de Castigliano, δ i = U T F = 1 EI F dx, por lo que: δ i = F EI (x L) dx y por tanto la deformación δ i = y i es, y i = FL3 3EI
3 Sistemas hiperestáticos Se dice que un sistema tiene grado de hipersestaticidad G, cuando son necesarias G ecuaciones extras, además de las correspondientes a las condiciones de equilibrio 3..1 Sistemas de primer orden.1.1 Ejemplo 1 En la viga de la figura, el vínculo B introduce una nueva incógnita en el sistema de ecuaciones estáticas: ÿ F = Ra + R b = ρ o L, (4) Figure : ejemplo ÿ M = L (R b R a ) M a =, (5) x= L como se deduce del diagrama de cuerpo libre de la figura 3. Para calcular las reacciones en los vínculos, podemos volver a utilizar el primer teorema de Castigliano. En este caso podemos utilizar el desplazamiento o su derivada 4. Primer método; La deformación δ i en A es igual a cero, 3 En equilibrio estático: δ i = U T = M M dx =, (6) x= Nÿ F i =, i=1 Mÿ M j =, Si N + M es el número de ecuaciones independientes y V es el número de incógnitas (en nuestro caso, reacciones en vínculos), G = V N M. 4 En los empotramientos δ e =y δ e/ x = j=1 3
4 Figure 3: DCL Esta última expresión nos permite conocer una nueva relación entre las incógnitas (R a,r b,m a ). Pero antes tenemos que calcular el momento flector y su deriva respecto a R a en el único tramo de la viga. M(x) =M a + R a x ρ ox, (7) M(x) = + x, (8) La expresión 8, utilizando la relación 5 para conocer la derivada parcial de M a respecto a R a, queda como: M(x) = x + L 3 4 Rb 1, y de 4, obtenemos: M(x) = x L, Por tanto, ya podemos integrar la expresión 6: de donde obtenemos: x= A M a + R a x ρ ox B (x L) dx =, M a + R al 3 = ρ ol 1, (9) Las relaciones 4, 5 y 9 permiten conocer las reacciones en los vínculos. Solicitación 5 Segundo método; La derivada de la deformación también se anula en el empotramiento, 5 solicitar: (Del lat. sollicitāre). Real Academia Española RAE dδ a dx = U T = M M dx =, (1) x= 4
5 En este caso particular es fácil demostrar que M(x)/ = cte M(x)/, y por tanto: A L cte M a + R a x ρ ox B (x L) dx =, x= igual que antes..1. Ejemplo Igual que en el caso anterior, la viga de la figura 4 tiene grado de hiperestaticidad uno. Las Figure 4: Ejemplo ecuaciones de equilibrio establecen las relaciones entre los vínculos: Figure 5: DCL ÿ F = Ra + R b + 3ρ o =, ÿ M = M a R a =, (11) x= En el primer tramo: M(x) = M a + R a x ρ ox 3 18, (1) 5
6 como se deduce de la figura 6, Para calcular M(x)/ tendremos en cuenta que: Figure 6: Primer Tramo = 1, como podemos deducir de la ecuación 11. Una vez que hemos calculado el momento, utilizamos dδ a /dx =en el empotramiento, Esto es así porque M 3 dx = dx =en el segundo tramo. La integral da como resultado, (M a R a ) + ρ o 9 M a + 4R a 3 16ρ o 9 =, R a 3 + M a = 4ρ o 9, y el sistema de ecuaciones resuelto: R a = ρ o 3 (N) M a = ρ o 15 (Nm) R b = ρ o 15 (N) Es importante saber interpretar los signos negativos de estas expresiones. El resultado es correcto, pues al ser negativos R a y M a actúan en sentido contrario al supuesto en la figura 5. 6
7 Figure 7: Doble empotramiento Figure 8: Primer tramo. Sistemas de orden En el primer tramo: M(x) =R a x M a ρ ox, (13) si además si suponemos que R a = R b, entonces R a = ρ o L/, Figure 9: DCL M(x) = M a + ρ ox (L x), 7
8 Nos basta con una ecuación para relacionar M a y ρ o ; U T = 1 EI dx, M(x)dx =, M a = ρ ol 4 1, (14) También podríamos comprobar que mediante la condición de desplazamiento nulo ena, llegamos al mismo resultado 6. dx, xm(x)dx =, (15)..1 Reducción de un sistema de quinto orden Figure 1: DCL Si en la viga 7 introducimos un vínculo a L/ de uno de los empotramientos, tendremos tres incógnitas y solo una ecuación. Sólo R a y R b están relacionadas. Por tanto, podemos utilizar dos de las siguientes relaciones: δ a = δ b =, dδ a dx = dδ a dx =, La expresión para el momento en primer tramo es la misma que en la ecuación 13 además solo hemos de integrar de a L/ 7 ; A U L/ T = R a x M a ρ ox B dx =, (16) U T R b = A L/ R a x M a x ρ ox 3 B dx =, (17) 6 En este caso, además de considerar R a y M a como variables independientes, R a tiene que aparecer explícitamente en el integrando de la ecuación 15, como se aclara en el siguiente ejemplo 7 Demuéstrelo 8
9 Este mismo razonamiento nos hubiera llevado a la misma solución que en el apartado anterior. Ejercicio propuesto: Demuestre como llegar a la ecuación 17 Utilice las ecuaciones 16 y 17 para encontrar la solución 14 del ejercicio anterior. 9
Estática de Vigas. 20 de mayo de 2006
Estática de Vigas 0 de mayo de 006 Los elementos estructurales que vamos a estudiar en este capítulo estarán sometidos a fuerzas o distribuciones aplicadas lateral o transversalmente a sus ejes y el objetivo
Folio EST VIGAS HIPERESTATICAS. Folio: EST Fecha: Noviembre/2000. Autores: Arqto. Verónica Veas B. Arqto.
Folio EST 0-0 VIGAS HIPERESTATICAS Materia: Estructura II Folio: Fecha: EST -0 Noviembre/000 Autores: Arqto. Verónica Veas B. Arqto. Jing Chang Lou Folio EST -0 MORFOLOGÍA ESTRUCTURAL I.- INTRODUCCION
Resistencia de Materiales. Estructuras. Tema 11. Inestabilidad en barras. Pandeo. Barra Empotrada-Empotrada.
Resistencia de Materiales. Estructuras Tema 11. Inestabilidad en barras. Pandeo Módulo 6 Barra Empotrada-Empotrada. En los módulos anteriores se ha estudiado el caso del pandeo en la barra articulada-articulada,
Tema 7: FLEXIÓN: HIPERESTATICIDAD. Problemas resueltos
Tema 7: FLEXIÓN: HIPERESTTIIDD Problemas resueltos Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 008 7.1.-En la viga de la figura calcular las reacciones en los apoyos M M R R m 1 m Ecuaciones
Mecánica de Materiales I
Tema 5 - Defleión en Vigas Mecánica de Materiales I Tema 5 Defleión en vigas Tema 5 - Defleión en vigas Sección - Ecuación diferencial de la elástica Ecuación diferencial de la elástica Para comenzar este
Resolución de estructuras con el Método de Flexibilidades
Resolución de estructuras con el Método de Flexibilidades pellidos, nombre asset Salom, Luisa ([email protected]) Departamento entro Mecánica de Medios ontinuos y Teoría de Estructuras Escuela Técnica
Práctico 10: Desplazamientos en vigas isostáticas
Práctico 10: Desplazamientos en vigas isostáticas Ejercicio 1: Una columna telescópica de tres tramos está empotrada en la base y sometida a una carga de 5kN (compresión) en su etremo superior. a longitud
Y ahora qué? INDICE Introducción Comparación de desplazamientos (viga conjugada) Vigas continuas Pórticos y cuadros.
Y ahora qué? INDICE 10.1 Introducción. 10.2 Comparación de desplazamientos (viga conjugada). 10.3 Vigas continuas. 10.4 Pórticos y cuadros. PROBLEMAS ESTATICAMENTE DETERMINADOS: pueden resolverse sólo
LÍNEAS DE INFLUENCIA. Introducción. Definición de Líneas de Influencia.
LÍNES DE INFLUENCI Introducción En general los alumnos hasta el momento han estudiado estructuras cuyas cargas actuantes tienen puntos de aplicación fijos o dicho de otro modo son cargas estacionarias.
Resistencia de materiales
Resistencia de materiales April 3, 009 En ingeniería se denomina viga a un elemento constructivo lineal que trabaja principalmente a exión. La teoría de vigas es una parte de la resistencia de materiales
Estructuras de Edificación: Tema 20 - La pieza recta
Resumen Estructuras de Edificación: Tema 20 - La pieza recta David Herrero Pérez Departamento de Estructuras y Construcción Universidad Politécnica de Cartagena Grado en Ingeniería de Edificación Segundo
Contenido. CAPÍTULO 1 Introducción 3. CAPÍTULO 2 Cargas estructurales 17 PARTE I ESTRUCTURAS ESTÁTICAMENTE DETERMINADAS DEDICATORIA PREFACIO.
Contenido DEDICATORIA PREFACIO v vii PARTE I ESTRUCTURAS ESTÁTICAMENTE DETERMINADAS CAPÍTULO 1 Introducción 3 1.1 Análisis y diseño estructural 3 1.2 Historia del análisis estructural 4 1.3 Principios
Práctico 10: Desplazamientos en vigas isostáticas
Práctico 0: Desplazamientos en vigas isostáticas Ejercicio : Una columna telescópica de tres tramos está empotrada en la base y sometida a una carga de 5kN (compresión) en su etremo superior. a longitud
ESTRUCTURAS EL METODO GENERAL
ESTRUCTURAS EL METODO GENERAL MODULO INSTRUCCIONAL MI-E4 Ing.N.VILLASECA C. Trabajo elaborado bajo la coordinación, orientación y supervisión del Autor, con la participación de: Responsable : Ing. N.Villaseca
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.
Datos: a = 1 2m q = 800 kg/m E = kg/cm 2. ************************************************************************
.- En la viga de la figura: a) Determinar las reacciones. b) Dimensionar la sección de la viga con perfil IPN, de forma ue la flecha en el extremo del voladizo no exceda de 5 mm. c) Hallar la flecha máxima
Método de las Fuerzas: Estructura hiperestática con tensor
Método de las Fuerzas: Estructura hiperestática con tensor Determinar los esfuerzos de M Q y N para la siguiente estructura, aplicando el método de las fuerzas. Datos: P = 2 tn q = tn m Ω t = 6 cm 2 E
ANALISIS DE VIGAS ESTATICAMENTE INDETERMINADAS
NISIS DE VIGS ESTTICENTE INDETERINDS.. DEFINICIÓN. Se denomina de esta manera a una barra sujeta a carga lateral; perpendicular a su eje longitudinal, en la que el número de reacciones en los soportes
Capítulo 8. DEFORMACIONES EN LAS VIGAS
Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 8. DEFORMACIONES EN LAS VIGAS 1. APLICACIÓN DEL CÁLCULO DE LAS DEFORMACIONES A LA RESOLUCIÓN DE ESTRUCTURAS
Ecuaciones diferenciales de Equilibrio
Ecuaciones diferenciales de Equilibrio 28 de marzo de 2006 1. Elasticidad en una dimensión 1.1. Esfuerzo σ y carga lineal b(x) Para examinar un cuerpo desde el contínuo, que es la primera hipótesis (a),
ESTRUCTURAS I F.A.D.U. / UdelaR AÑO 2018
ESTRUCTURAS I F.A.D.U. / UdelaR AÑO 2018 REPASO DE EQUILIBRIO ESTÁTICO La estructura de una obra arquitectónica debe encontrarse en equilibrio estático: la estructura se mantiene quieta con respecto a
El Principio de las Fuerzas Virtuales
El Principio de las Fuerzas Virtuales Apellidos, nombre Basset Salom, uisa ([email protected]) Departamento Centro Mecánica de Medios Continuos y Teoría de Estructuras Escuela Técnica Superior de Arquitectura
8 m. Se trata de una estructura simétrica con carga antisimétrica, por lo tanto, resolveremos sólo la parte antisimétrica.
. eterminar los esfuerzos en todas las barras de la celosía de la figura cuando en el punto hay una carga horizontal de 0kN eterminar además las componentes horizontal y vertical del desplazamiento de
< momento aplicado sobre un nudo; < carga repartida; < carga concentrada. Movimientos y deformaciones impuestos:
Viga continua con múltiples patologías 1/5 Figura 1 Viga continua con multiples patologías Problema de viga continua Vamos a calcular todos los esfuerzos, reacciones y curvaturas, y a dibujar la deformada
Calcular la energía de deformación de la viga de rigidez constante EI, simplemente apoyada, indicada en la figura.
11.29.- Calcular la energía de deformación de la viga de rigidez constante EI, simplemente apoyada, indicada en la figura. 30-6-98 11.30.- Calcular en Julios el potencial interno de una viga en voladizo
Sistemas hiperestáticos
Lección 14 Sistemas hiperestáticos Contenidos 14.1. Método de las fuerzas para el cálculo de sistemas hiperestáticos............................. 180 14.2. Sistemas hiperestáticos sometidos a flexión........
El modelo de barras: cálculo de esfuerzos
Lección 6 El modelo de barras: cálculo de esfuerzos Contenidos 6.1. Definición de barra prismática............... 78 6.2. Tipos de uniones........................ 78 6.3. Estructuras isostáticas y estructuras
Hoja 5: cortantes y momentos
Cátedra de Matemática Matemática Facultad de Arquitectura Universidad de la República 2013 Primer semestre Hoja 5: cortantes y momentos Versión: 28/04/2013 Ejercicio 1 La pieza de la figura tiene una longitud
ELASTICIDAD POR FLEXIÓN: UNA EXPERIENCIA DE LABORATORIO ADAPTABLE A LOS DISTINTOS NIVELES EDUCATIVOS
III Taller Iberoamericano de Enseñanza sobre Educación en Ciencia e Ingeniería de Materiales (TIECIM 0) EASTICIDAD POR FEXIÓN: UNA EXPERIENCIA DE ABORATORIO ADAPTABE A OS DISTINTOS NIVEES EDUCATIVOS T.
ERM2M - Elasticidad y Resistencia de Materiales II
Unidad responsable: 820 - EUETIB - Escuela Universitaria de Ingeniería Técnica Industrial de Barcelona Unidad que imparte: 737 - RMEE - Departamento de Resistencia de Materiales y Estructuras en la Ingeniería
E.T.S. Ingenieros de Caminos, Canales y Puertos
E.T.S. Ingenieros de aminos, anales y Puertos Universidad de Granada ONVOATORIA JUNIO TEORÍA DE ESTRUTURAS 1 JULIO 2013 TEORÍA Tiempo: 1 hora. APELLIDOS: FIRMA: NOMBRE: DNI: La Teoría representa 1/3 de
EXAMEN FINAL: PRIMER PARCIAL RESISTENCIA DE MATERIALES
EXAMEN FINAL: PRIMER PARCIAL RESISTENCIA DE MATERIALES Curso 2015-2016 3er curso del Grado en Ingeniería de Organización Industrial Apellidos, Nombre: Compañía: Sección: Cuestión 1 Cuestión 2 Cuestión
CIV302 A y B 5 II-2013 G. Elias Belmonte C. 05/08/ /12/ /07/2013. Tema Objetivo Actividades de Enseñanza Recursos Didácticos
CARTA DESCRIPTIVA (PLANIFICACION DIDACTICA) Materia Grupo Nivel Semestre Docente Fecha de Inicio del calendario acad. Fecha de conclusión calendario acad. Fecha de Elaboración de la carta CIV302 A y B
Determinar los diagramas de esfuerzos en la estructura de la figura. a) Descomposición de la fuerza exterior aplicada en el extremo de la barra BE.
esistencia de materiales. roblemas resueltos roblema. eterminar los diagramas de esfuerzos en la estructura de la figura. 45 o 600 800 m m m m m esolución: F F H V 600 600 600 600 a) escomposición de la
ANÁLISIS DE ESTRUCTURAS INDETERMINADAS POR EL MÉTODO DE LAS FLEXIBILIDADES
ANÁLISIS DE ESTRUCTURAS INDETERMINADAS POR EL MÉTODO DE LAS FLEXIBILIDADES Introducción El método de las flexibilidades, también conocido como método de las deformaciones consistentes, o el método de la
Mecánica de Sólidos. UDA 2: Miembros Cargados Axialmente.
Mecánica de Sólidos UDA 2: Miembros Cargados Axialmente. UDA 2: Estructuras sometidas a Cargas Axiales Principio de Saint Venant Debido a la carga, la barra se deforma como lo indican las línes dibujadas
60kN/m 50kNm 50kNm. 60kN/m. 50kNm D D D CC. C C 2 2 m 5 m
Ejercicio 6.1 Para las vigas de la figura: a) Bosquejar cualitativamente el diagrama momento flector, el diagrama del giro y el diagrama de la deformada. b) Determinar la flecha en C y el ángulo de giro
Energía debida al esfuerzo cortante. J. T. Celigüeta
Energía debida al esfuerzo cortante J. T. Celigüeta Energía debida al esfuerzo cortante Tensión y deformación de cortante: Energía acumulada: τ QA τ QA = γ = = Ib G GIb b Q * QA QA Q A A Ucort = τγdv =
ESTRUCTURAS ESTRUCTURAS HIPERESTATICAS
ESTRUCTURAS I ESTRUCTURAS HIPERESTATICAS F.A.D.U. / UdelaR AÑO 2018 repaso de EQUILIBRIO ESTÁTICO Al analizar estructuras edilicias, estamos estudiando estructuras que se encuentran en equilibrio estático
RESISTENCIA DE MATERIALES II CURSO EXAMEN DE SEPTIEMBRE
RESISTENCIA DE MATERIAES II CURSO 008-09 EXAMEN DE SETIEMBRE -9-009 Fecha de publicación de la preacta: de Octubre Fecha de revisión: 7 de Octubre.- ( puntos) as vigas carril de un puente grúa están fabricadas
IX. Vibración de sistemas continuos
Objetivos:. Determinar expresiones para la energía cinética y potencial de sistemas continuos: barras y vigas.. Emplear métodos variacionales para deducir la ecuación de unidimensional: barras (axial)
Ejercicios de repaso
Ejercicios de repaso Ejercicio 0.1 a) Hallar la resultante del sistema de fuerzas de la figura. (Indicar valor y recta de aplicación) b) Sustituir el sistema dado por dos fuerzas cuyas rectas de acción
El Principio de las Fuerzas Virtuales: ejemplo de aplicación
El Principio de las Fuerzas Virtuales: ejemplo de aplicación pellidos, nombre asset Salom, Luisa ([email protected]) Departamento entro Mecánica de Medios ontinuos y Teoría de Estructuras Escuela Técnica
RESISTENCIA DE MATERIALES II
RESISTENCIA DE MATERIALES II CURSO 00- EXAMEN DE JULIO 7-7-0 Fecha de publicación de la preacta: 8 de Julio Fecha de revisión: 6 de Julio a las 0 horas PROBLEMA El apoo B de la estructura de la figura
El esfuerzo axil. Contenidos
Lección 8 El esfuerzo axil Contenidos 8.1. Distribución de tensiones normales estáticamente equivalentes a esfuerzos axiles.................. 104 8.2. Deformaciones elásticas y desplazamientos debidos
CAPÍTULO IX FUERZA CORTANTE Y MOMENTO FLECTOR EN VIGAS. i) Cargas concentradas. Son fuerzas aplicadas en puntos determinados de la viga.
Resistencia de ateriales. Capítulo IX. Esfuerzo cortante momento flector. Tipos de vigas CÍTUO IX FUERZ CORTNTE Y OENTO FECTOR EN IGS Eisten varias formas de ejercer fuerzas sobre una viga. i) Cargas concentradas.
RESISTENCIA DE MATERIALES
UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL RESISTENCIA DE MATERIALES CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ingeniería Estructural CODIGO SEMESTRE
Obtención del movimiento en un punto de una estructura hiperestática mediante el Principio de las Fuerzas Virtuales
Obtención del movimiento en un punto de una estructura hiperestática mediante el Principio de las Fuerzas Virtuales pellidos, nombre Basset Salom, Luisa ([email protected]) Departamento entro Mecánica
ESTRUCTURAS II. Julio Flórez López
ESTRUCTURAS II Julio Flórez López Ingeniería Estructural: Asegurar la integridad de piezas mecánicas y edificaciones bajo la acción de solicitaciones termo-mecánicas Diseño Estructural: Determinar las
TEMA 3: ENLACES Y EQUILIBRIO
TEMA 3: ENLACES Y EQUILIBRIO ESTRUCTURAS I ANTONIO DELGADO TRUJILLO ENRIQUE DE JUSTO MOSCARDÓ PURIFICACIÓN ALARCÓN RAMÍREZ Departamento de Mecánica de Medios Continuos, Teoría de Estructuras e Ingeniería
La transformada de Laplace como aplicación en la resistencia de materiales
Docencia La transformada de Laplace como aplicación en la resistencia de materiales Agustín Pacheco Cárdenas y Javier Alejandro Gómez Sánchez Facultad de Ingeniería, UAQ; Depto. Ciencias Básicas, ITQ Facultad
ANÁLISIS ESTRUCTURAL.
ANÁLISIS ESTRUCTURAL. Subárea: Análisis estructural CONTENIDO OBJETIVOS REFERENCIA BIBLIOGRAFICA 1. FUNDAMENTOS Y PRINCIPIOS Hipótesis fundamentales. Análisis de primer y segundo orden. Principio de superposición
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA ESTRUCTURAL
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA ESTRUCTURAL ASIGNATURA: RESISTENCIA DE MATERIALES CÓDIGO: 1102 UNIDADES: 6 Teoría: 5 horas/semana REQUISITOS: 1101,0254-0255
I.PROGRAMA DE ESTUDIOS. Unidad 1. Conceptos básicos de la teoría de las estructuras
I.PROGRAMA DE ESTUDIOS Unidad 1 Conceptos básicos de la teoría de las estructuras 1.1.Equilibrio 1.2.Relación fuerza desplazamiento 1.3.Compatibilidad 1.4.Principio de superposición 1.5.Enfoque de solución
Tabla breve del Contenido
Tabla breve del Contenido PARTE UNO: ESTRUCTURAS ESTÁTICAMENTE DETERMINADAS CAPÍTULO 1 Introducción 3 CAPÍTULO 2 Cargas estructurales 16 CAPÍTULO 3 Sistema de cargas y comportamiento 43 CAPÍTULO 4 Reacciones
ELASTICIDAD Y RESISTENCIA DE MATERIALES CURSO EXAMEN FINAL. SEGUNDO PARCIAL Condición de contorno: u (x = 0) = 0
ASTICIDAD Y RSISTNCIA D MATRIAS CURSO 999- XAMN FINA. SGUNDO PARCIA 7-6- CUSTIONS.- a barra del enunciado es hiperestática, equivale a: Ω Ω X N Condición de contorno: u ( ) Como el etremo no se desplaza,
MÉTODO ALGEBRÁICO PARA DETERMINAR LA DEFORMACIÓN POR DEFLEXIÓN EN VIGAS ESTÁTICAMENTE INDETERMINADAS
ISSN 007-1957 MÉTODO ALGEBRÁICO PARA DETERMINAR LA DEFORMACIÓN POR DEFLEXIÓN EN VIGAS ESTÁTICAMENTE INDETERMINADAS Juan José Martínez Cosgalla Escuela Superior de Ingeniería Mecánica y Eléctrica, Instituto
Unidad Resistencia de Materiales. Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S
Unidad Resistencia de Materiales Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S MÓDULO III: FLEXIÓN INTRODUCCION En los capítulos anteriores las fuerzas internas eran conocidas o constantes
TEMARIO ANALISIS ESTRUCTURAL
TEMARIO ANALISIS ESTRUCTURAL 1. FUNDAMENTOS Y PRINCIPIOS Objetivos. Hipótesis fundamentales. Análisis de primer y segundo orden. Principio de superposición de causas y efectos. Estática de cuerpos rígidos
15.5. Torsión uniforme en barras prismáticas de sección de
Lección 15 Torsión uniforme Contenidos 15.1. Distribución de tensiones tangenciales estáticamente equivalentes a un momento torsor................ 186 15.2. Torsión uniforme en barras prismáticas de sección
Módulo 2. Deflexiones en vigas
Módulo 2 Deflexiones en vigas Introducción Todos los cuerpos reales se deforman bajo la aplicación de una carga, elástica o plásticamente. Un cuerpo puede ser tan insensible a la deformación que el supuesto
Estructuras de Edificación: Tema 21 - El método del equilibrio en estructuras de nudos rígidos.
Estructuras de Edificación: Tema 21 - El método del equilibrio en estructuras de nudos rígidos. David Herrero Pérez Departamento de Estructuras y Construcción Universidad Politécnica de Cartagena Grado
TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10
TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10 1 Es sabido que los materiales con comportamiento dúctil fallan por deslizamiento entre los planos donde se produce la rotura.
Problema 1 (10 puntos)
RESISTENCIA DE MATERIALES CURSO 2015-16 Convocatoria de Julio 5/7/2016 echa de publicación de la preacta: 21/7/2016 echa de revisión del examen: 28/7/2016 a las 16:00 Problema 1 (10 puntos) La estructura
Tema 9: SOLICITACIONES COMBINADAS
Tema 9: SOLIITIONES OMINDS V M T N x L M V Problemas Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 2008 9.1.-En la viga de la figura calcular por el Teorema de los Trabajos Virtuales: 1)
Aplicación del Principio de Conservación de la Energía y del Teorema de la Carga Unidad para la obtención de movimientos
Aplicación del Principio de Conservación de la Energía y del Teorema de la Carga Unidad para la obtención de movimientos Apellidos, nombre Basset Salom, Luisa ([email protected]) Departamento Centro Mecánica
ESTRUCTURAS RETICULADAS
ESTRUTURS RETIULS Prof. arlos Navarro epartamento de ecánica de edios ontinuos y Teoría de Estructuras En el cálculo estructuras reticuladas suele despreciarse las deformaciones inducidas por los esfuerzos
Energía potencial en la barra prismática. Potencial elástico. Métodos energéticos.
Energía potencial en la barra prismática. INDICE 14.1 Introducción. 14.2 Trabajo producido por las Fueras Externas. 14.3 otencial Elástico Energía otencial. 14.4 Teorema de Reciprocidad. 14.5 rincipio
Tema 7: Estática del sólido rígido
Tema 7: Estática del sólido rígido FISICA I, 1º, Grado en Ingeniería Civil Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla Índice Introducción Sólido rígido
PROBLEMA 1 (10 puntos)
RESISTENCIA DE MATERIALES EXAMEN FINAL / PRUEBA DE EVALUACIÓN CONTINUA 3 CURSO 017-18 17-01-018 PROBLEMA 1 (10 puntos) Fecha de publicación de la preacta: de febrero de 018 Fecha de revisión del examen:
5. ESFUERZOS INTERNOS EN VIGAS
5. ESFUERZOS INTERNOS EN VIGAS 5.. Introducción En este capítulo se estudiarán las fuerzas internas que existen al interior de un sólido (más específicamente en vigas) y que son las que mantienen unidas
Curso: RESISTENCIA DE MATERIALES 1
Curso: RESISTENCIA DE MATERIALES 1 Módulo 3: TEORÍA DE VIGAS Luis Segura ([email protected]) º Semestre - 015 Universidad de la República - Uruguay Módulo 3 Teoría de vigas º Semestre 015 Luis Segura
Sociedad Mexicana de Ingeniería Estructural
FÓRMULAS PARA EL CÁLCULO DE ELEMENTOS MECÁNICOS DE VIGAS HIPERESTÁTICAS Miguel Angel Castillo Mata 1 y Ángel Ponce Córdova 2 RESUMEN Con el continuo desarrollo de la tecnología de los programas de cómputo,
Equilibrio. 1. Los sólidos prismáticos. I. Romero ETSI Industriales, Universidad Politécnica de Madrid 8 de septiembre de 2016
Equilibrio I. Romero ETSI Industriales, Universidad Politécnica de Madrid [email protected] 8 de septiembre de 2016 En este capítulo se estudia el equilibrio de una clase de cuerpos, los prismáticos,
UNIDAD DIDÁCTICA I: RESISTENCIA DE MATERIALES
Centro: ESCUELA DE INGENIERÍA Estudios: I.T.A. EXPLOTACIONES AGROPECUARIAS Asignatura. Construcciones Agrarias Curso Académ.: 2008/09 Curso: 2º Cuatrimestre: 2º Carácter: TRONCAL Créditos teóri.: 1,5 Créditos
SISTEMAS HIPERESTÁTICOS DE NUDOS RÍGIDOS
SISTEMAS HIPERESTÁTICOS DE NUDOS RÍGIDOS ÍNDICE 1. Hiperestatismo 2. Concepto de rigidez 3. Métodos de análisis Pendiente deformación Cross Rigideces HIPERESTATISMO Hipostático Isostático Hiperestático
Powered by TCPDF (www.tcpdf.org)
Powered by TCPDF (www.tcpdf.org) > Ecuación de Transformación para la Deformación Plana. Relaciona el tensor de deformaciones de un punto con la medida de una galga en ese punto con un ángulo φ del eje
Estática. Fuerzas Internas
Estática 7 Fuerzas Internas Objectivos Método de las secciones para determinar las cargas internas o solicitaciones en un miembro. Describir la tensión interna de corte o cizalla y el momento interno de
Problemas de la Lección 6: Flexión. Tensiones
: Flexión. Tensiones Problema 1: Para las siguientes vigas hallar los diagramas de esfuerzos cortantes y momentos flectores. Resolver cada caso para los siguientes datos (según convenga) P = 3000 kg ;
RM - Resistencia de los Materiales
Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2017 205 - ESEIAAT - Escuela Superior de Ingenierías Industrial, Aeroespacial y Audiovisual de Terrassa 712 - EM - Departamento
El sólido prismático
1/ 21 El sólido prismático Ignacio Romero [email protected] Escuela Técnica Superior de Ingenieros Industriales Universidad Politécnica de Madrid Resistencia de Materiales, Curso 2015/16 1. Modelos
TEMA 4: PROBLEMAS RESUELTOS DE DEFORMACIÓN ANGULAR
Problemas eformación ngular T : PROLS RSULTOS ORÓN NGULR.. plicando el método de la deformación angular obtener el diagrama de momentos flectores y dibujar aproximadamente la deformada de la estructura
PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO
PROBEMAS DE RESISTENCIA DE MATERIAES MÓDUO 5: FEXIÓN DE VIGAS CURSO 016-17 5.1( ).- Halle, en MPa, la tensión normal máxima de compresión en la viga cuya sección y diagrama de momentos flectores se muestran
