Problemas resueltos Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SAL.)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Problemas resueltos Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SAL.)"

Transcripción

1 Tema 6: FLEXÓN: DEFORONES + Problemas resueltos Prof.: Jaime Santo Domingo Santillana P.S.-Zamora (U.SL.) - 008

2 6..-La viga de la figura es una PE-60 está sometida a la carga concentrada indicada de 0 kn. alcular por el étodo de la Ecuación Diferencial de la Línea Elástica: ) Ecuación de la Línea Elástica ) Giros de las secciones etremas ) Flecha máima Datos: E,0 5 N/mm R 0 kn m m R álculo de reacciones: Ecuaciones de equilibrio F 0 R + R 0 0 R.4 0. R R,5 kn 7,5kN ) Ecuación de la línea elástica: (fórmula general de la ecuación diferencial de la línea d elástica): d 0,5. d.,5. d d.,5. + d., ,5. 0.( ) 7,5 + 0 d. 7,5. 0 d d. 7, d. 7, álculo de las constantes condiciones de contorno: d d operando se obtiene : d 0 d 4 6, 5 0 4, 5 5 sustituendo estos valores : 4 0 d., , 5 d ( )., , 5. ( ) 4 d., d ( )., , 5. 5 ( )

3 ) Giros de las secciones : d 6, 5 ϑ ( para 0) 0, 04rad 5 8 d siendo: E Kg / cm ( PE 60) 869 cm d, , 5 ϑ ( para 4) 0,0 rad 5 8 d, ) Flecha máima d d d d +,76 m 0 : ma 0 0, , 5 ±, 5 m ( fuera del tramo) 4 : ma 0 0, , 5 6, 4 m ( fuera del tramo), 5., 76 5., , 5., 76 5 ma (, 76 m ) 0, 05,5, m cm

4 6..-En la viga de la figura se pide determinar por el étodo de los Teoremas de ohr: ) Giros de las secciones ) Flecha máima Datos: E,0 5 N/mm, 770 cm 4 0 kn 0 kn R R m m m álculo de las reacciones: por simetría de cargas de estructura: R R 0 kn 0 kn 0 kn θ tag en θ O O O m 0 kn 0 kn,5 m,5 m m 0 O - por simetría de estructura de c arg as ϑ 0 tagϑ 0 ( horiontal) S 0., 5 ϑ ϑ ϑ ( comoϑ 0) ϑ 0, 0077 rad 5 8, S 0.,5 ϑ ϑ ϑ ( comoϑ 0) ϑ 0, 0077 rad 5 8, así pues: ϑ 0, 0077 rad ϑ 0, 0077 rad

5 Q 0.,5.0, 75 0, 0058m 0,58cm, ( < 0 está por debajo dela tan genteen) 0,58 cm 0,58 cm O O O O (..0..) + ( 0.,5., 75) QO 0, 056 m,56 cm, ( < 0 O está por debajo dela tan genteen) O,56 0,58 0,946 cm 0,946 cm O O 0 0, cm X O 946

6 6..-La viga de la figura es una PE-60. alcular por el étodo de los Teoremas de hor: ) Giros de las secciones ) Flecha en ) Flecha máima Dato: E,0 5 N/mm R R 0 kn m m álculo de reacciones: Ecuaciones de equilibrio: F 0 R 0 + R 0 R. 0.4 R R 0kN 40kN h D - 0 D D θ tag en D tag en D D ) Giros en : θ h..( 0).. Q 0, 0466 m ( punto por debajo tan gente en ), , 0466 ϑ. ϑ 0,008 rad ( sentido antihorario, ver figura).. ( 0 S ) ϑ 0,08 ϑ ϑ ϑ ϑ 0, 065rad, ϑ 0, 008rad ϑ 0, 065 rad

7 ) Flecha en :..( 0).( +.) +..( 0).(.) Q 0, 0548m, < 0 está por debajo dela tan gente en siendo : h h 0,0548 0,08 0,0 m, cm ϑ.4 0, ,08 m, cm ) Flecha máima: tramo : siendo D un punto enel que : ϑ 0 ( ver figura) X D D localicemos ese punto D : D S ϑd ϑ ϑd ( comoϑd 0) ϑ sustituendo valores :. D. hd. D.0. D 0,008, D ± m, , hd ( por semejana de tríangulos, ver figura : hd 0. D ) D D ma., 7.0., 7.., 7 D Q 0, 0095 m 0,95 cm, < 0 está por debajo de la tan gente en D (, 7 m 0,95 cm 0,95 cm D D D D Luego comparando valores, la flecha máima en toda la viga será:, cm

8 6.4.-En la viga de la figura se pide: ) Dimensionamiento de la sección a resistencia, empleando criterio plástico ) Dimensionamiento a rigide, empleando la condición: ma L/00 ) Giros de las secciones (alcularlos por los dos étodos estudiados) 4) Flechas en (alcularlas por los dos étodos estudiados) Datos: PE, f 75 N/mm ; γ,; γ,5; E,0 5 N/mm R,5 kn 5 kn knm m m álculo de reacciones: Ecuaciones de equilibrio: F 0 R, , 5kN 0, ,5 kn. m ) Dimensionamiento de la sección a resistencia: tracemos los diagramas de esfueros: + 7 5,5 9,5 V 6,5 6-0 V,5. 0 V,5 V 9, , 5 6, 5. 6,5...,5. 6,5 V,5., 5 V 7 V , 5...,5.( ). 9. 4

9 Dimensionamiento con criterio plástico: ma * pl, d pl d ma 6,5 kn. m W. f 75 sustituendo valores :6, 5.0.,5 W. W 89,.0 mm, entrando en tablas PE PE 60 comprobación a cor tan te V : V,5 kn f * d V Vpl, d v. 6 pl pl siendo : ( area del alma) h. t ( PE 60) mm v 75, sustituendo valores :,5.0., operando :5,5.0 5, 47.0 sí cumple a cor tan te! además : V 5,5.0 < 0,5. V 0,5.5, , 75.0 * pl no es necesario combinar momento flector con fuera cor tan te w ) Dimensionamiento a rigide: X L / 00 tag en Q X (. +,5. 6,5). d.( ) + ( ). d.( ) 0 5 8, , 47 9, 47 L cm PE,., X sí pues para que se cumpla con los dos dimensionamientos: 4 94, 6 80 PE-80

10 ) 4) Giros Flechas en :.- étodo de la Ecuación diferencial de la línea elástica: 0. +, 5. 6, 5 d..., 5. 6, 5 + E d d.., , 5. + d 4..,5. + 6, d E d d d ondiciones de contorno: d d d d d d 0 0, 5 0, 47 4 sustituendo las constantes en las ecuaciones anteriores: 0, ,5. d 5 8 d, ,5 6, , , 5 d 5 8 d, , , 5. 0,47 ϑ d d 0 0 para 0,0099 rad para 0,00m ϑ d d para 0,0050 rad para 0,007 m ϑ 0, 0099rad ϑ 0, 0050rad

11 0,cm 0, cm 7.- étodo de los Teoremas de ohr: R θ,50 kn 5 kn kn/m tag en m m θ 6,5 6 - S ϑ ϑ ϑ ( como ϑ 0) ϑ ϑ (. +,5. 6,5). d 0, , 0099 rad S ϑ ϑ ϑ ( como ϑ 0) ϑ (. +,5. 6,5). d + ( ). d 0 ϑ 0, 0050 rad, Q (. +,5. 6,5). d.( ) 0, ( < 0 el punto está por debajo dela tan genteen ) Q (,5 6,5). d.( ) ( 9 4). d.( , , 00m 0, 00m ) 0,007 m ( < 0 el punto está por debajo dela tan genteen ) 0, 007 m ϑ 0,0099 rad ϑ 0,cm 0,0050 rad 0,7 cm

12 6.6.-En la viga de la figura de sección rectangular de 0 cm 40 cm se pide calcular la flecha en la sección Datos: E,0 4 N/mm 60 kn SEON 60 kn m m 40 cm 0 cm Descompongamos la fuera de 6000 Kg en la dirección de los ejes principales,: 0 tag α α 5,º 5 F F. senα 60. sen5,º 48 Kg F F.cosα 60.cos 5,º 6 Kg R R 48 kn R R 6 kn m m 48 kn 40 cm α 0 cm 60 kn 6 kn álculo de las reacciones: Ecuaciones de equilibrio: F 0 R + R 48 F 0 R + R 6 0 R R.5 6. resolviendo : R 9, kn R 8,8 kn R 4, 4 kn R, 6 kn Los momentos de inercia de la sección serán: con lo cual:, kn. m 4 8, kn. m cm cm 4

13 Diagramas de esfueros: 8,8 kn 9, kn 48 kn 4,4 kn 6 kn m m + 57,6 4, -,6 kn 0 9, , 6 4, , 5 8,8.(5 ) 57, 6 5 0,6.(5 ) 4, 5 0 Por el método de la ecuación diferencial de la elástica: Flechas en plano : 0 9,. 5 8,8.(5 ) 44 8,8. d d. 9,... 8,8. 44 E d d d d. 9,. +. 8, d d. 9, , condiciones de contorno : d d d d operando : 67, 0 8, ,. + 67,. 0 6 ( ) m 0, 4 cm 600

14 4800 Kg 4800 Kg Flechas en plano : 0 4, 4. 5, 6.(5 ) 08 +, 6. d d. 4,4...,6. 08 E + d d d d. 4, 4. +., d d. 4, , condiciones de contorno : d d d d operando : 50, 4 0, , 4. 50, ( ) m 0, 46 cm 8900 alculemos, por el método de los Teoremas de ohr: 4,4 kn 6 kn,6 kn () Si abatimos el plano horiontal hacia el vertical la figura quedará: tag. en 4,4 kn h,6 kn () θ 6 kn

15 4800 Kg 0 4, 4. 5, 6.(5 ) 5 [ ]. d.(5 ) ( 4, 4. ). d.(5 ) +, 6.(5 ). d.(5 ) Q , 0 ( punto por debajo tan gente en ) 0, 0 tagϑ θ 0, 0067 rad ϑ 0, 0067 rad 5 5 h ( ver figura) h tagθ. ϑ. 0, , 0080m. d.( ) Q ( 4, 4. ). d.( ) ( el punto está por debajo dela tan genteen ) h 0, , 004 0, 00458m 0, 004m 0, 46cm ( ) ( ) ( ) ( ) + 0,4 + 0, 46 0, 57 cm 0, 46 tagβ β 5,5º 0,4 48 kn 6 kn () β ()

Tema 7: FLEXIÓN: HIPERESTATICIDAD. Problemas resueltos

Tema 7: FLEXIÓN: HIPERESTATICIDAD. Problemas resueltos Tema 7: FLEXIÓN: HIPERESTTIIDD Problemas resueltos Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 008 7.1.-En la viga de la figura calcular las reacciones en los apoyos M M R R m 1 m Ecuaciones

Más detalles

Tema 5 : FLEXIÓN: TENSIONES

Tema 5 : FLEXIÓN: TENSIONES Tema 5 : FLEXIÓN: TENSIONES σ MAX (COMPRESIÓN) G n n σ MAX (TRACCIÓN) Problemas Prof.: Jaime Santo Domingo Santillana E.P.S.Zamora (U.SAL.) 008 5.1.Representar los diagramas de fueras cortantes de momentos

Más detalles

Tema 6: FLEXIÓN: DEFORMACIONES

Tema 6: FLEXIÓN: DEFORMACIONES Tema 6: Fleión: Deformaciones Tema 6: FLEXÓN: DEFORCONES + Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 008 1 Tema 6: Fleión: Deformaciones 6.1.- NTRODUCCÓN Las deformaciones ha que limitarlas

Más detalles

Tema 5 : FLEXIÓN: TENSIONES

Tema 5 : FLEXIÓN: TENSIONES Tea 5 : FLEXÓN: TENSONES σ X (COPRESÓN) G n n σ X (TRCCÓN) Probleas resueltos Prof.: Jaie Santo Doingo Santillana E.P.S.Zaora (U.SL.) 008 5..Representar los diagraas de fueras cortantes de oentos flectores

Más detalles

Solución: (esfuerzos en KN) 200 kn. 400 kn. 300 kn. 100 kn. 5 m A C. 2 x 5m = 10 m. 1 cm 1,2 cm 1 cm

Solución: (esfuerzos en KN) 200 kn. 400 kn. 300 kn. 100 kn. 5 m A C. 2 x 5m = 10 m. 1 cm 1,2 cm 1 cm Problema 1. n la celosía de la figura, calcular los esfuerzos en todas las barras y reacciones en los apoyos, debido a la actuación simultánea de todas las acciones indicadas (cargas exteriores y asientos

Más detalles

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO PROBEMAS DE RESISTENCIA DE MATERIAES MÓDUO 5: FEXIÓN DE VIGAS CURSO 016-17 5.1( ).- Halle, en MPa, la tensión normal máxima de compresión en la viga cuya sección y diagrama de momentos flectores se muestran

Más detalles

Práctico 10: Desplazamientos en vigas isostáticas

Práctico 10: Desplazamientos en vigas isostáticas Práctico 10: Desplazamientos en vigas isostáticas Ejercicio 1: Una columna telescópica de tres tramos está empotrada en la base y sometida a una carga de 5kN (compresión) en su etremo superior. a longitud

Más detalles

Tema 4 : TRACCIÓN - COMPRESIÓN

Tema 4 : TRACCIÓN - COMPRESIÓN Tema 4 : TRCCIÓN - COMPRESIÓN F σ G O σ σ z N = F σ σ σ y Problemas Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 008 4.1.-Calcular el incremento de longitud que tendrá un pilar de hormigón

Más detalles

60 o 60 o. RESISTENCIA DE MATERIALES II CURSO EXAMEN DE JUNIO 30/5/ h 15 min

60 o 60 o. RESISTENCIA DE MATERIALES II CURSO EXAMEN DE JUNIO 30/5/ h 15 min RESISTEI DE MTERIES II URSO 1-1 EXME DE JUIO /5/1 1 h 15 min echa de publicación de la preacta: /6/1 echa y hora de la revisión del examen: 1/6/1 a las 9: 1. Un perfil IPE de m de longitud, empotrado en

Más detalles

ANALISIS DE VIGAS ESTATICAMENTE INDETERMINADAS

ANALISIS DE VIGAS ESTATICAMENTE INDETERMINADAS NISIS DE VIGS ESTTICENTE INDETERINDS.. DEFINICIÓN. Se denomina de esta manera a una barra sujeta a carga lateral; perpendicular a su eje longitudinal, en la que el número de reacciones en los soportes

Más detalles

Flexión Compuesta. Flexión Esviada.

Flexión Compuesta. Flexión Esviada. RESISTENCIA DE MATERIALES. ESTRUCTURAS BOLETÍN DE PROBLEMAS Tema 6 Flexión Compuesta. Flexión Esviada. Problema 1 Un elemento resistente está formado por tres chapas soldadas, resultando la sección indicada

Más detalles

Tema 9: SOLICITACIONES COMBINADAS

Tema 9: SOLICITACIONES COMBINADAS Tema 9: SOTONES ONDS V T N V Problemas resueltos Prof.: Jame Santo Domngo Santllana E.P.S.-Zamora (U.S.) - 8 9..-En la vga de la fgura calcular por el Teorema de los Trabajos Vrtuales: ) Flecha en ) Gro

Más detalles

400 kn. A 1 = 20 cm 2. A 2 = 10 cm kn

400 kn. A 1 = 20 cm 2. A 2 = 10 cm kn Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDD DE JÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación

Más detalles

Práctico 10: Desplazamientos en vigas isostáticas

Práctico 10: Desplazamientos en vigas isostáticas Práctico 0: Desplazamientos en vigas isostáticas Ejercicio : Una columna telescópica de tres tramos está empotrada en la base y sometida a una carga de 5kN (compresión) en su etremo superior. a longitud

Más detalles

TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10

TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10 TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10 1 Es sabido que los materiales con comportamiento dúctil fallan por deslizamiento entre los planos donde se produce la rotura.

Más detalles

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS Tecnología. Enunciados Ejercicios. ESTÁTICA-ESTRUCTURAS. Página 0 σ: tensiones (kp/cm 2 ) ε: deformaciones (alargamientos unitarios) σ t = σ adm : tensión de

Más detalles

Cálculo cinemático de una estructura isostática

Cálculo cinemático de una estructura isostática Cálculo cinemático de una estructura isostática pellidos, nombre asset Salom, Luisa (lbasset@mes.up.es) Departamento Centro Mecánica de Medios Continuos y Teoría de Estructuras Escuela Técnica Superior

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1 Si la sección de un perfil metálico es la que aparece en la figura, suponiendo que la chapa que une los círculos es de espesor e inercia despreciables, determina la relación entre las secciones A 1 y A

Más detalles

F F. ! x (m)

F F. ! x (m) Examen de diciembre, 5-VI-7. Análisis de Estructuras I NOMBRE FIRMA: CÁLCULO PLÁSTICO: PROBLEMA Tiempo: h 5 m. La estructura de nudos rígidos de la figura se comporta según el modelo rígido-plástico. Calcúlese:

Más detalles

Estructuras de acero: Problemas Pilares

Estructuras de acero: Problemas Pilares Estructuras de acero: Problemas Pilares Dimensionar un pilar de 4 m de altura mediante un perfil, sabiendo que ha de soportar una carga axial de compresión F de 400 una carga horiontal P de 0, que estos

Más detalles

EJERCICIOS COMPLEMENTARIOS DE ELASTICIDAD AÑO ACADÉMICO

EJERCICIOS COMPLEMENTARIOS DE ELASTICIDAD AÑO ACADÉMICO EJERCICIOS COMPLEMENTARIOS DE ELASTICIDAD AÑO ACADÉMICO 2011-2012 Prob 1. Sobre las caras de un paralepípedo elemental que representa el entorno de un punto de un sólido elástico existen las tensiones

Más detalles

Análisis de Tensiones.

Análisis de Tensiones. RESISTENCIA DE MATERIALES. ESTRUCTURAS BOLETÍN DE PROBLEMAS Tema 8 Análisis de Tensiones. Problema 1 Se tiene una estructura perteneciente a un graderío que soporta una carga de 1 tonelada en el punto

Más detalles

S Cargas Longit tramo Superficie Q p. prop P Forjado Sobrecarga Viento 3, ,3 0,2 0,2

S Cargas Longit tramo Superficie Q p. prop P Forjado Sobrecarga Viento 3, ,3 0,2 0,2 S Cargas Longit tramo Superficie Q p. prop P Forjado Sobrecarga Viento 3,5 189 0,3 0, 0, Según el articulo 4.3.5 de la EHE para el armado minimo de una viga según cuantia geometrica, debe ser, dada la

Más detalles

Resistencia de Materiales. Estructuras. Tema 11. Inestabilidad en barras. Pandeo. Barra Empotrada-Empotrada.

Resistencia de Materiales. Estructuras. Tema 11. Inestabilidad en barras. Pandeo. Barra Empotrada-Empotrada. Resistencia de Materiales. Estructuras Tema 11. Inestabilidad en barras. Pandeo Módulo 6 Barra Empotrada-Empotrada. En los módulos anteriores se ha estudiado el caso del pandeo en la barra articulada-articulada,

Más detalles

Ingeniería Estructural. Inestabilidad elástica

Ingeniería Estructural. Inestabilidad elástica Ingeniería Estructural Inestabilidad elástica 1 andeo de pieas rectas Imaginemos una hoja de sierra σ 50 Ma Sección transversal 1mm 0.5mm a hoja de sierra resistiría una carga de compresión de 310 N Sin

Más detalles

60kN/m 50kNm 50kNm. 60kN/m. 50kNm D D D CC. C C 2 2 m 5 m

60kN/m 50kNm 50kNm. 60kN/m. 50kNm D D D CC. C C 2 2 m 5 m Ejercicio 6.1 Para las vigas de la figura: a) Bosquejar cualitativamente el diagrama momento flector, el diagrama del giro y el diagrama de la deformada. b) Determinar la flecha en C y el ángulo de giro

Más detalles

Mecánica de Sólidos. UDA 4: Fuerza Cortante y Momento Flexionante en Vigas

Mecánica de Sólidos. UDA 4: Fuerza Cortante y Momento Flexionante en Vigas Mecánica de Sólidos UDA 4: Fuerza Cortante y Momento Flexionante en Vigas Generalidades: FLEXIÓN Y ESFUERZO Ocurre flexión cuando un elemento de sección constante y simétrica respecto al plano donde ocurre

Más detalles

Ejemplo: Uso del perfil IPE como correa simplemente apoyada

Ejemplo: Uso del perfil IPE como correa simplemente apoyada Ref. Documento SX01a-ES-EU Hoja 1 de 10 Eurocódigo Ref Hecho por Mladen Lukic Fecha Ene 006 Revisado por Alain Bureau Fecha Ene 006 Ejemplo: Uso del perfil IPE como correa simplemente Este ejemplo proporciona

Más detalles

Unidad Resistencia de Materiales. Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S

Unidad Resistencia de Materiales. Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S Unidad Resistencia de Materiales Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S MÓDULO III: FLEXIÓN INTRODUCCION En los capítulos anteriores las fuerzas internas eran conocidas o constantes

Más detalles

1. Hallar por el método de Cross los diagramas de momento flector y de esfuerzo

1. Hallar por el método de Cross los diagramas de momento flector y de esfuerzo 1. allar por el método de ross los diagramas de momento flector y de esfuerzo cortante, así como las reacciones de la estructura de la figura, empleando el método de superposición en las barras cargadas.

Más detalles

bir=bpcrbowl=`loq^kqb

bir=bpcrbowl=`loq^kqb OPENCOURSEWARE INGENIERIA CIVIL I.T. Obras Públicas / Ing. Caminos bir=bpcrbowl=`loq^kqb iìáë=_~ μå_ä òèìéò mêçñéëçê=`çä~äçê~ççê af`lmfr (c) 2010-11 Luis Bañón Blázquez. Universidad de Alicante página

Más detalles

Ejercicio de ejemplo - Diagramas de solicitaciones. Se plantea el problema de hallar los diagramas de solicitaciones de la siguiente ménsula:

Ejercicio de ejemplo - Diagramas de solicitaciones. Se plantea el problema de hallar los diagramas de solicitaciones de la siguiente ménsula: Ejercicio de ejemplo - Diagramas de solicitaciones Se plantea el problema de hallar los diagramas de solicitaciones de la siguiente ménsula: 1- Reacciones: En primer lugar determinamos el valor de las

Más detalles

El modelo de barras: cálculo de esfuerzos

El modelo de barras: cálculo de esfuerzos Lección 6 El modelo de barras: cálculo de esfuerzos Contenidos 6.1. Definición de barra prismática............... 78 6.2. Tipos de uniones........................ 78 6.3. Estructuras isostáticas y estructuras

Más detalles

********************************************************************** En primer lugar hallaremos la excentricidad de la carga:

********************************************************************** En primer lugar hallaremos la excentricidad de la carga: 31.- Calcular la flecha máima la σ máima que resultan con el modelo de soporte esbelto sometido a carga ecéntrica. E =,1 10 6 kg/cm m. P=10000 kg. M=5000 kgm Sección pn 0 soldados a tope en las alas **********************************************************************

Más detalles

Estructuras de acero: Problemas Correas

Estructuras de acero: Problemas Correas Estructuras de acero: Problemas Correas Se pretenden calcular las correas de una nave situada en Albacete, de 18 m de lu, 5 m de altura de pilares, con un 0% de pendiente de cubierta. La separación de

Más detalles

LAS FUERZAS y sus efectos

LAS FUERZAS y sus efectos LAS FUERZAS y sus efectos Definición de conceptos La Dinámica es una parte de la Física que estudia las acciones que se ejercen sobre los cuerpos y la manera en que estas acciones influyen sobre el movimiento

Más detalles

Mecánica de Sólidos. UDA 3: Torsión en Ejes de Sección Circular

Mecánica de Sólidos. UDA 3: Torsión en Ejes de Sección Circular Mecánica de Sólidos UDA 3: Torsión en Ejes de Sección Circular 1 Definición y Limitaciones Se analizarán los efectos que produce la aplicación de una carga de torsión sobre un elemento largo y recto como

Más detalles

MECANICA APLICADA I. EXAMEN FINAL PRIMER EJERCICIO TIEMPO: Deducir a partir de las siguientes ecuaciones y = αch

MECANICA APLICADA I. EXAMEN FINAL PRIMER EJERCICIO TIEMPO: Deducir a partir de las siguientes ecuaciones y = αch MENI PLI I. EXMEN FINL. 07-06-99. PIME EJEIIO TIEMPO: 50 x x x 1. educir a partir de las siguientes ecuaciones y = αch, ch sh = 1 α α α las expresiones de la longitud y la tensión de la catenaria ( puntos)..

Más detalles

Resistencia de Materiales FLEXIÓN PLANA I: (Cálculo de tensiones)

Resistencia de Materiales FLEXIÓN PLANA I: (Cálculo de tensiones) Resistencia de ateriales FLEXIÓN PLANA I: (Cálculo de tensiones) Resistencia de ateriales FLEXIÓN PLANA I: (Cálculo de tensiones). Introducción. Lees diagramas en vigas isostáticas. Tensiones en la barra

Más detalles

Estructuras de acero: Problemas Correas

Estructuras de acero: Problemas Correas Estructuras de acero: Problemas Correas Se pretenden calcular las correas de una nave situada en Albacete, de 18 m de lu, 5 m de altura de pilares, con un % de pendiente de cubierta. La separación de los

Más detalles

PROBLEMAS RESUELTOS DE FUERZAS EN VIGAS Y CABLES

PROBLEMAS RESUELTOS DE FUERZAS EN VIGAS Y CABLES UNIVERSI NIONL EL LLO FULT E INGENIERÍ ELÉTRI Y ELETRÓNI ESUEL PROFESIONL E INGENIERÍ ELÉTRI URSO : MEÁNI E SÓLIOS I PROFESOR : Ing. JORGE MONTÑO PISFIL PROLEMS RESUELTOS E FUERZS EN VIGS Y LES PROLEM

Más detalles

PROBLEMA 1 (3p.) Esquema

PROBLEMA 1 (3p.) Esquema Examen Cimentaciones 5º Ing. Industrial Junio 007 PROBLEMA (3p.) Consideramos la cimentación de un pilar de medianería de un edificio de viviendas con los siguientes datos de partida: Transmite al cimiento

Más detalles

Mecánica de Materiales II: Flexión en Vigas Asimétricas

Mecánica de Materiales II: Flexión en Vigas Asimétricas Mecánica de Materiales : Fleión en Vigas Asimétricas Andrés G. Clavijo V., Contenido ntroducción Vigas asimétricas a fleión Ejes principales de nercia Circulo de Mohr Vigas a fleión de nercia Viga de sección

Más detalles

(ε c ) max. y b. (ε t ) max. Fig.11. Distribución de deformaciones unitarias por flexión en sección compuesta por dos materiales.

(ε c ) max. y b. (ε t ) max. Fig.11. Distribución de deformaciones unitarias por flexión en sección compuesta por dos materiales. 6. Vigas (Elementos) Compuestos por dos o más Materiales Las ecuaciones obtenidas en la Sección 3 se basan en la hipótesis que el material que forma la sección del elemento, además de ser lineal-elástico,

Más detalles

La carga uniforme que actuará sobre esta cercha:

La carga uniforme que actuará sobre esta cercha: c 1,75 m La carga uniorme que actuará sobre esta cercha: Siendo: 1 Pr p luz P r carga por nudo real, es decir, la que es debida al peso real de la cercha. P total c arg as verticales + conducciones + P

Más detalles

CARGAS NO APLICADAS EN NUDOS

CARGAS NO APLICADAS EN NUDOS Capítulo 9 Cargas no aplicadas en los nudos 9.1- Cargas en el interior de un tramo Hasta ahora sólo se consideraron casos en que las cargas eteriores están aplicadas sobre los nudos; en el caso que actúen

Más detalles

Los cables flexibles y las cadenas se usan para soportar y transmitir cargas entre miembros.

Los cables flexibles y las cadenas se usan para soportar y transmitir cargas entre miembros. Los cables fleibles y las cadenas se usan para soportar y transmitir cargas entre miembros. En los puentes en suspensión, estos llevan la mayor parte de las cargas. En el análisis de fuerzas, el peso de

Más detalles

PIEZAS SOMETIDAS A FLEXIÓN

PIEZAS SOMETIDAS A FLEXIÓN PIEZAS SOETIDAS A FLEXIÓN PROBLEA Nº Seleccionar en acero S55 una sección adecuada para la viga en ménsula que se muestra en la igura, siguiendo las indicaciones del EC. La pieza deberá ser capaz de soportar

Más detalles

Las ecuaciones del equilibrio se aplican a los pasadores de las uniones. En cada nudo se consideran las fuerzas

Las ecuaciones del equilibrio se aplican a los pasadores de las uniones. En cada nudo se consideran las fuerzas ísica. UT. rmaduras Pilar ceituno antero 5. rmaduras 5.1.- efinición de armadura Una estructura de barras unidas por sus etremos de manera que constituan una unidad rígida recibe el nombre de armadura.

Más detalles

PROBLEMAS DE RESISTENCIA DE MATERIALES: Nivel básico

PROBLEMAS DE RESISTENCIA DE MATERIALES: Nivel básico MTERI DIDÁCTICO INGENIERÍ 8 PROEMS DE RESISTENCI DE MTERIES: Nivel básico Eduardo Martíne de Pisón scacíbar PROEMS DE RESISTENCI DE MTERIES Nivel básico Ingeniería grícola MTERI DIDÁCTICO Ingenierías

Más detalles

Problemas de Placas Rectangulares. Método de Navier

Problemas de Placas Rectangulares. Método de Navier ESTRUCTURAS II. E.T.S.I.C.C.P., UNIVERSIDAD DE GRANADA. CURSO 2005-2006 Problemas de Placas Rectangulares. Método de Navier Problema 1 La placa rectangular, de lados a y b, y espesor t, simplemente apoyada

Más detalles

Calcular el momento en el apoyo central, y dibujar los diagramas de esfuerzos. 6 m

Calcular el momento en el apoyo central, y dibujar los diagramas de esfuerzos. 6 m Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDAD DE JAÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación

Más detalles

TITULACIÓN: INGENIERO TÉCNICO DE MINAS (PRIMERA PARTE)

TITULACIÓN: INGENIERO TÉCNICO DE MINAS (PRIMERA PARTE) EXAMEN DE TEORÍA DE ESTRUCTURAS 03-09-2009 E.T.S.I. MINAS U.P.M. TITULACIÓN: INGENIERO TÉCNICO DE MINAS (PRIMERA PARTE) Duración: 1 hora 15 minutos Fecha de publicación de las calificaciones provisionales:

Más detalles

5. ESFUERZOS INTERNOS EN VIGAS

5. ESFUERZOS INTERNOS EN VIGAS 5. ESFUERZOS INTERNOS EN VIGAS 5.. Introducción En este capítulo se estudiarán las fuerzas internas que existen al interior de un sólido (más específicamente en vigas) y que son las que mantienen unidas

Más detalles

Tema 10 : PANDEO. Problemas resueltos. N cr (1) (2) Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SAL.) = z 2

Tema 10 : PANDEO. Problemas resueltos. N cr (1) (2) Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SAL.) = z 2 Tema 1 : PDEO L (1) () π. E. I = L Problemas resueltos Pro.: Jame Santo Domngo Santllana E.P.S.-Zamora (U.SL.) - 8 1.1.- Un plar, de 3 m de longtud, se encuentra sometdo a una carga F de compresón centrada.

Más detalles

**********************************************************************

********************************************************************** 13.1.- Representar las leyes de variación del momento flector, el esfuerzo cortante y el esfuerzo normal en la viga de la figura, acotando los valores más característicos. Hallar además la epresión analítica

Más detalles

TEMA 4: PROBLEMAS RESUELTOS DE DEFORMACIÓN ANGULAR

TEMA 4: PROBLEMAS RESUELTOS DE DEFORMACIÓN ANGULAR Problemas eformación ngular T : PROLS RSULTOS ORÓN NGULR.. plicando el método de la deformación angular obtener el diagrama de momentos flectores y dibujar aproximadamente la deformada de la estructura

Más detalles

PROBLEMAS RESUELTOS DE TEORÍA DE MÁQUINAS Y MECANISMOS

PROBLEMAS RESUELTOS DE TEORÍA DE MÁQUINAS Y MECANISMOS Josep-luis Suñer artínez Francisco José Rubio ontoya Vicente ata Amela José Albelda Vitoria Juan Ignacio Cuadrado Iglesias PROBEAS RESUETOS E TEORÍA E ÁQUINAS ECANISOS EITORIA UNIVERSITAT POITÈCNICA E

Más detalles

4.-CALCULOS CONSTRUCTIVOS.

4.-CALCULOS CONSTRUCTIVOS. 4.-CALCULOS CONSTRUCTIVOS. Partimos de los siguientes datos: - Localización de la nave: Polígono Industrial Fuente-Techada, término municipal de Orgaz (Toledo). - Longitud de la nave: 49 m - Luz de la

Más detalles

Viga reticulada plana de tubos rectangulares con costura. Uniones directas de barras de alma a cordones.

Viga reticulada plana de tubos rectangulares con costura. Uniones directas de barras de alma a cordones. EJEMPLO Nº 4 Viga reticulada plana de tubos rectangulares con costura Uniones directas de barras de alma a cordones Aplicación de los Capítulos 1,, 3, 4, 5, 7 y 9 Enunciado Dimensionar la viga V de la

Más detalles

TEMA 11: ESTRUCTURA DE BARRAS

TEMA 11: ESTRUCTURA DE BARRAS TEMA 11: ESTRUCTURA DE BARRAS ESTRUCTURAS 1 ENRIQUE DE JUSTO MOSCARDÓ ANTONIO DELGADO TRUJILLOh ANTONIA FERNÁNDEZ SERRANO MARÍA CONCEPCIÓN BASCÓN HURTADO Departamento de Mecánica de Medios Continuos, Teoría

Más detalles

Se tiene un muro de hormigón que sostiene un relleno granular cuyas características son conocidas. Utilizando la teoría de Rankine, se pide:

Se tiene un muro de hormigón que sostiene un relleno granular cuyas características son conocidas. Utilizando la teoría de Rankine, se pide: Tema 8.Empujes del terreno. PVIII-1 EJERCICIO 1 Se tiene un muro de hormigón que sostiene un relleno granular cuyas características son conocidas. Utilizando la teoría de Rankine, se pide: 1. Diagrama

Más detalles

Tema 2. Problemas de equilibrio.

Tema 2. Problemas de equilibrio. Tema 2. Problemas equilibrio. Profesorado Grupo : María Tirado Miranda Grupo : Jorge Portí urán Grupo : rtur Schmitt 17. Una varilla de longitud 2R pesop descansa sobre una superficie lisa cilíndrica de

Más detalles

Equilibrio y cinemática de sólidos y barras (2)

Equilibrio y cinemática de sólidos y barras (2) Equilibrio y cinemática de sólidos y barras (2) Fuerzas aiales distribuidas y sección variable Índice Ejercicios de recapitulación Fuerzas aiales distribuidas Equilibrio Deformación Ejemplos Barras de

Más detalles

ANEJO Nº 5.- CÁLCULOS MECÁNICOS ÍNDICE

ANEJO Nº 5.- CÁLCULOS MECÁNICOS ÍNDICE ANEJO Nº 5.- CÁLCULOS MECÁNICOS ÍNDICE 1.- CÁLCULO MECÁNICO DE LAS CONDUCCIONES... 2 APÉNDICE Nº 1. CÁLCULO MECÁNICO DE LAS CONDUCCIONES - 1 - 1.- CÁLCULO MECÁNICO DE LAS CONDUCCIONES El objetivo del presente

Más detalles

Sabiendo que las constantes del material son E = Kg/cm 2 y ν = 0.3, se pide:

Sabiendo que las constantes del material son E = Kg/cm 2 y ν = 0.3, se pide: Elasticidad resistencia de materiales Tema 2.3 (Le de Comportamiento) Nota: Salvo error u omisión, los epígrafes que aparecen en rojo no se pueden hacer hasta un punto más avanzado del temario Problema

Más detalles

Introducción a las Estructuras

Introducción a las Estructuras Introducción a las Estructuras Capítulo doce: Ejemplo 10 Ejemplo diez. Se pide: Calcular las solicitaciones y dimensionar todos los elementos que componen el entrepiso de madera que se muestra en la planta

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 10.- SOLUCIONES CONSTRUCTIVAS EN CONSTRUCCIONES METALICAS Esta unidad de trabajo la vamos a desarrollar desde un punto de vista

Más detalles

UNIVERSIDAD DE BUENOS AIRES Facultad de Ingeniería Departamento de Estabilidad. Estabilidad I / 64.01

UNIVERSIDAD DE BUENOS AIRES Facultad de Ingeniería Departamento de Estabilidad. Estabilidad I / 64.01 Ejercicio 1 Deducir analíticamente las funciones M y Q de las vigas simplemente apoyadas de las figuras. Aplicar el método de las secciones. Ejercicio 1.1 Ejercicio 1.2 Ejercicio 1.3 Ejercicio 1.4 Ejercicio

Más detalles

TEMA 9: LA SEGURIDAD EN LAS ESTRUCTURAS

TEMA 9: LA SEGURIDAD EN LAS ESTRUCTURAS TEMA 9: LA SEGURIDAD EN LAS ESTRUCTURAS VERIFICACIONES DE TENSIONES Y DEFORMACIONES ESTRUCTURAS I ANTONIO DELGADO TRUJILLO ENRIQUE DE JUSTO MOSCARDÓ PURIFICACIÓN ALARCÓN RAMÍREZ Departamento de Mecánica

Más detalles

6. ESTRUCTURAS RETICULADAS PLANAS.

6. ESTRUCTURAS RETICULADAS PLANAS. 6. ESTRUTURS RETIULS LNS. Se califica a una estructura plana de barras de reticulada cuando por estar las barras que confluyen en un mismo nodo empotradas entre sí formando un ángulo constructivo invariable,

Más detalles

T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA-

T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA- T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA- 1. Dadas las siguientes vigas, A) clasificarlas según su sustentación en : empotradas, simplemente

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre MECÁNICA.

PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre MECÁNICA. PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre 2005. MECÁNICA. C1) Determina la resultante del sistema de fuerzas coplanarias mostrado en la figura inferior izquierda.

Más detalles

ZAPATAS MEDIANERAS. Sin viga de fundación. Con viga de fundación áerea. Con viga de fundación enlazada

ZAPATAS MEDIANERAS. Sin viga de fundación. Con viga de fundación áerea. Con viga de fundación enlazada ZAPATAS MEDIANERAS Sin viga de fundación Con viga de fundación áerea Con viga de fundación enlazada ANALISIS ESTRUCTURAL DE ZAPATAS MEDIANERAS Por CARLOS MAURICIO AGUIRRE GALLEGO ALEJANDRO DARIO AMARIS

Más detalles

DIAGRAMAS DE INTERACCIÓN (PARTE II) RESISTENCIA DE SECCIONES RECTANGULARES CON ARMADURAS IGUALES EN SUS CUATRO LADOS SOMETIDAS A FLEXIÓN COMPUESTA

DIAGRAMAS DE INTERACCIÓN (PARTE II) RESISTENCIA DE SECCIONES RECTANGULARES CON ARMADURAS IGUALES EN SUS CUATRO LADOS SOMETIDAS A FLEXIÓN COMPUESTA DIAGRAMAS DE INTERACCIÓN (PARTE II) RESISTENCIA DE SECCIONES RECTANGULARES CON ARMADURAS IGUALES EN SUS CUATRO LADOS SOMETIDAS A FLEXIÓN COMPUESTA Diagramas de Interacción Parte II. Ejemplos de Aplicación

Más detalles

RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA ESFUERZOS COMBINADOS

RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA ESFUERZOS COMBINADOS RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA FLEXION Y AXIAL 2013 roberto.ortega.a@usach.cl RESISTENCIA DE MATERIALES I ICM FLEXION Y AXIAL 2013 roberto.ortega.a@usach.cl RESISTENCIA DE MATERIALES

Más detalles

ESTRUCTURAS RETICULADAS

ESTRUCTURAS RETICULADAS ESTRUTURS RETIULS Prof. arlos Navarro epartamento de ecánica de edios ontinuos y Teoría de Estructuras En el cálculo estructuras reticuladas suele despreciarse las deformaciones inducidas por los esfuerzos

Más detalles

VIII. MOMENTOS DE INERCIA

VIII. MOMENTOS DE INERCIA VIII. MOMENTOS DE INERCIA Recordemos que el momento estático es la suma de los productos de cada elemento de un cuerpo por su distancia a un eje. El momento de inercia, es cambio es la suma de los productos

Más detalles

Diseño y predimensionado de una celosía de cordones paralelos.

Diseño y predimensionado de una celosía de cordones paralelos. Diseño y predimensionado de una celosía de cordones paralelos. Apellidos, nombre Arianna Guardiola Víllora (aguardio@mes.upv.es) Departamento Centro Mecánica del Medio Continuo y Teoría de Estructuras

Más detalles

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 9.1.- Dos hilos metálicos, uno de acero y otro de aluminio, se cuelgan independientemente en posición vertical. Hallar la longitud

Más detalles

ESTABILIDAD II A (6402)

ESTABILIDAD II A (6402) 1 ESTABILIDAD II A (6402) GUIA DE TRABAJOS PRÁCTICOS COMPLEMENTARIOS DE SOLICITACIÓN POR TORSIÓN, FLEXIÓN, FLEXIÓN VARIABLE Y COMPUESTA Y CÁLCULO DE DESPLAZAMIENTOS POR TTV.: Por Ing. H.Eduardo Rofrano

Más detalles

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f 1) Se utiliza una barra de acero de sección rectangular para transmitir cuatro cargas axiales, según se indica en la figura.

Más detalles

DEPARTAMENTO DE ELECTROMECANICA INGENIERIA ELECTROMECANICA 1 TRABAJO PRACTICO Nº 2 SISTEMA DE FUERZAS EQUIVALENTES

DEPARTAMENTO DE ELECTROMECANICA INGENIERIA ELECTROMECANICA 1 TRABAJO PRACTICO Nº 2 SISTEMA DE FUERZAS EQUIVALENTES DEPRTMENTO DE ELECTROMECNIC INGENIERI ELECTROMECNIC 1 EJERCICIO Nº1 TRJO PRCTICO Nº 2 SISTEM DE FUERZS EQUIVLENTES Si el peso ubicado en el punto tiene un valor de 20 KN, determine el valor de la carga

Más detalles

E.T.S.I. Caminos, Canales y Puertos I.C.C.P. Universidad de Granada

E.T.S.I. Caminos, Canales y Puertos I.C.C.P. Universidad de Granada E.T.S.I. aminos, anales y Puertos I...P. Universidad de Granada ONVO. SEPTIEMBRE TEORÍA DE ESTRUTURAS 16 SEPTIEMBRE 2013 TEORÍA Tiempo: 1 hora. APELLIDOS: FIRMA: NOMBRE: DNI: La Teoría representa 1/3 de

Más detalles

E.T.S. Ingenieros de Caminos, Canales y Puertos. TEORÍA Tiempo: 1 h.

E.T.S. Ingenieros de Caminos, Canales y Puertos. TEORÍA Tiempo: 1 h. CONVOC. JUNIO TEORÍA DE ESTRUCTURAS 4 JULIO 2014 TEORÍA Tiempo: 1 h. APELLIDOS: FIRMA: NOMBRE: DNI: La Teoría representa 1/3 de la nota total del examen. Ejercicio 1 (2,5 ptos) Establecer la relación que

Más detalles

PIEZAS SOMETIDAS A FLEXIÓN

PIEZAS SOMETIDAS A FLEXIÓN PIEZAS SOETIDAS A FLEXIÓN PROBLEA Nº Comprobar si un perfil IPE300 en acero S75 sería una sección aecuaa para la viga continua con os vanos e 6m cargaa vinculaa como se muestra en la figura. Suponremos

Más detalles

Nudos Longitud (m) Inercia respecto al eje indicado. Longitud de pandeo (m) (3) Coeficiente de momentos

Nudos Longitud (m) Inercia respecto al eje indicado. Longitud de pandeo (m) (3) Coeficiente de momentos Barra N3/N4 Perfil: IPE 300, Perfil simple Material: Acero (S275) Z Y Inicial Nudos Final Longitud (m) Área (cm²) Características mecánicas I y I z I t N3 N4 5.000 53.80 8356.00 603.80 20.12 Notas: Inercia

Más detalles

ÁNGULOS, FUNCIONES TRIGONOMÉTRICAS ORIENTADOR: ESTUDIANTE: FECHA:

ÁNGULOS, FUNCIONES TRIGONOMÉTRICAS ORIENTADOR: ESTUDIANTE:   FECHA: DEPARTAMENTO DE MATEMÁTICAS ÁREA DE MATEMÁTICAS TEMA: PERÍODO: ORIENTADOR: ESTUDIANTE: E-MAIL: FECHA: ÁNGULOS, FUNCIONES TRIGONOMÉTRICAS SEGUNDO EJES TEMÁTICOS La recta numérica Suma de números enteros

Más detalles

15.5. Torsión uniforme en barras prismáticas de sección de

15.5. Torsión uniforme en barras prismáticas de sección de Lección 15 Torsión uniforme Contenidos 15.1. Distribución de tensiones tangenciales estáticamente equivalentes a un momento torsor................ 186 15.2. Torsión uniforme en barras prismáticas de sección

Más detalles

Estática. Equilibrio de un cuerpo rígido

Estática. Equilibrio de un cuerpo rígido Estática 5 Equilibrio de un cuerpo rígido Objectivos Escribir las ecuaciones de equilibrio de un cuerpo rígido. Concepto de diagrama de cuerpo libre para un cuerpo rígido. Resolver problemas de equilibrio

Más detalles

RM - Resistencia de los Materiales

RM - Resistencia de los Materiales Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2017 205 - ESEIAAT - Escuela Superior de Ingenierías Industrial, Aeroespacial y Audiovisual de Terrassa 712 - EM - Departamento

Más detalles

Introducción a las Estructuras

Introducción a las Estructuras Introducción a las Estructuras Capítulo once: Dimensionado UNO 1. Introducción. 1.1. Para el control de las elásticas. En este capítulo presentamos la metodología a seguir para establecer las dimensiones

Más detalles

Datos: a = 1 2m q = 800 kg/m E = kg/cm 2. ************************************************************************

Datos: a = 1 2m q = 800 kg/m E = kg/cm 2. ************************************************************************ .- En la viga de la figura: a) Determinar las reacciones. b) Dimensionar la sección de la viga con perfil IPN, de forma ue la flecha en el extremo del voladizo no exceda de 5 mm. c) Hallar la flecha máxima

Más detalles

Estructuras de acero: Problemas Correas

Estructuras de acero: Problemas Correas Estructuras de acero: Problemas Correas Se pretenden calcular las correas de una nave situada en Albacete, de 18 m de lu, 5 m de altura de pilares, con un 2% de pendiente de cubierta. La separación de

Más detalles

PROBLEMAS RESUELTOS EQUILIBRIO DE CUERPOS RÍGIDOS

PROBLEMAS RESUELTOS EQUILIBRIO DE CUERPOS RÍGIDOS PROBLEMAS RESUELTOS EQUILIBRIO DE CUERPOS RÍGIDOS 1. Una grúa móvil levanta una carga de madera que pesa W = 25 kn. El peso del mástil ABC y El peso combinado de la camioneta y el conductor son los indicados

Más detalles

a) Teoría: Teoría y problemas de examen para alumnos regulares y previos: Mecánica Técnica E. E. T. P. Nº 466

a) Teoría: Teoría y problemas de examen para alumnos regulares y previos: Mecánica Técnica E. E. T. P. Nº 466 Asignatura: Mecánica Técnica Teoría y problemas de examen para alumnos regulares y previos: a) Teoría: 1) Hipótesis de la Estática. 2) Definición de fuerza. Características. Unidades. 3) Resultante de

Más detalles

DEPARTAMENTO DE CIENCIAS MICROEXAMEN 1. ECUACIONES Y SISTEMAS. 3 x x MATEMÁTICAS 2º ESO EJERCICIOS REFUERZO. TEMAS 7 Y 8

DEPARTAMENTO DE CIENCIAS MICROEXAMEN 1. ECUACIONES Y SISTEMAS. 3 x x MATEMÁTICAS 2º ESO EJERCICIOS REFUERZO. TEMAS 7 Y 8 DEPARTAMENTO DE CIENCIAS MATEMÁTICAS º ESO EJERCICIOS REFUERZO. TEMAS 7 Y FECHA: NOMBRE: MICROEXAMEN. ECUACIONES Y SISTEMAS..) Resuelve las siguientes ecuaciones: a.) Ecuación de primer grado: b.) Ecuación

Más detalles

1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático.

1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 2. El bloque A, cuyo peso es de 90N, se sostiene en la posición mostrada. Determinar el peso del

Más detalles

Estructuras de Edificación: Tema 21 - El método del equilibrio en estructuras de nudos rígidos.

Estructuras de Edificación: Tema 21 - El método del equilibrio en estructuras de nudos rígidos. Estructuras de Edificación: Tema 21 - El método del equilibrio en estructuras de nudos rígidos. David Herrero Pérez Departamento de Estructuras y Construcción Universidad Politécnica de Cartagena Grado

Más detalles

Aplicación del Principio de las Fuerzas Virtuales a la resolución estática de estructuras hiperestáticas

Aplicación del Principio de las Fuerzas Virtuales a la resolución estática de estructuras hiperestáticas Aplicación del Principio de las Fuerzas Virtuales a la resolución estática de estructuras hiperestáticas Apellidos, nombre asset Salom, Luisa (lbasset@mes.upv.es) Departamento Centro Mecánica de Medios

Más detalles