**********************************************************************
|
|
|
- Elisa Redondo Chávez
- hace 9 años
- Vistas:
Transcripción
1 Representar las leyes de variación del momento flector, el esfuerzo cortante y el esfuerzo normal en la viga de la figura, acotando los valores más característicos. Hallar además la epresión analítica del momento flector y el esfuerzo cortante en función de. El origen está en O. O q o = 6000 kg/m P = 6000 kg M = 000 kg m (otas en metros) ********************************************************************** En primer lugar resolvemos la estática. omo no hay solicitaciones horizontales, tampoco habrá componentes horizontales en las reacciones. Por lo tanto sólo tenemos dos incógnitas, R y R (ver figura 1). q o = 6000 kg/m P = 6000 kg M = 000 kg m O α R (a) (b) (c) R (otas en metros) Figura 1 Las cargas continuas se tratan como áreas. sí, la carga q, por estar distribuida triangularmente da lugar a una carga total q acumulada, vertical y hacia abajo, de valor igual al área de un triángulo de base 3 m y altura q o = 6000 kg/m. : q acumulada = = 9000 kg. Para el cálculo de momentos, q acumulada estará aplicada en el c.d.g. de dicho triángulo, es decir, a una distancia igual a 1 m. Por lo tanto: ΣM = R. 5 = 0 R = 5600 kg.
2 ΣF y = 0 R + R 6000 q acumulada = 0 R = 9400 kg. Las leyes de cortante y momento flector quedarán definidas en tres tramos: O, y. Para el cálculo de dichas leyes nos fijaremos en la parte de viga que queda en el sentido de las flechas desde las secciones de corte (a), (b) y (c) respectivamente, para cada uno de los tramos (ver figura 1). Para poder determinar T y Mf en cada sección, necesitamos conocer para cada valor de la carga vertical y hacia abajo acumulada en el tramo OX, así como la coordenada en que puede ésta suponerse aplicada (c.d.g. del área, como ya dijimos). La ley de distribución de la carga q en función de puede epresarse: 6000 q ( ) = qo tg α = 6000 = 000 ( 3 ) kg/m. 3 En cualquier sección tal que 0 < < 3 m. la carga distribuida q ocupa un área trapezoidal, por lo tanto es factible de ser tratada como una carga continua triangular q t, más una carga continua uniforme q u (ver figura ). q o q() = + q to q t () q u q = q ( u ) = 000 ( 3 ) kg/m. q = q q = 000 kg. to o u La carga acumulada en cada tramo OX de los tipos q u y q t será: q = q = u acumulada u kg. 1 qt acumulada= qto = 1000 kg. Para el cálculo de momentos q u-acumulada estará aplicada en / y q t-acumulada en /3. Las leyes T y Mf resultan: (a) 0 < < 1 m. T = -q u-acumulada - q t-acumulada = kg Mf = q u acumulada q t acumulada = kg m.
3 (b) 1 < < 3 m. T = q q + R = u acumulada t acumulada = kg. Mf = q u acumulada q t acumulada + R ( 1) = 3 = kg m. (c) 3 < < 3.5 m. T = 5600 kg. Mf = 5600 (. 35 ) = kg m. La representación gráfica de las leyes anteriores es: Esfuerzo cortante (kg). Momento flector (kg m).
4 Nota: Veamos otra forma de obtener el diagrama de momentos flectores. Partiendo del diagrama de cuerpo libre de la barra O: q o = 6000 kg/m P = 6000 kg M = 000 kg m O α 9400 kg kg (otas en metros) la forma del diagrama de momentos flectores será: Mf O Mf + Los valores característicos de dicho diagrama son Mf y Mf +, y estos son fácilmente calculables si nos quedamos con la parte de viga que hay a la derecha de los puntos y + respectivamente. Mf + = = 800 kg m. Mf = q( = 1) 3 = 667 kg m.
5 Resultando, en kg m: 667 O 800
6 14.1. En la estructura de la figura, representar las leyes de variación de la fuerza normal, la fuerza cortante y el momento flector para q = 100 kg/m (la unidad de longitud de los kg/m se entiende en proyección horizontal). q q q q a a a a ********************************************************************** En primer lugar debemos obtener el valor de las reacciones en los apoyos. omo no hay solicitaciones horizontales y el único que sería capaz de absorberlas sería el apoyo izquierdo, no habrá reacciones horizontales; como la estructura es simétrica, las dos reacciones verticales serán iguales (ver figura 1). E a a s D a a R R Figura 1 Estableciendo el equilibrio de fuerzas verticales (tengamos en cuenta que q es carga por unidad de longitud en proyección horizontal), obtenemos: R q a = 0 R = q a kg. Debido a la simetría las leyes de variación de fuerza normal (N), cortante (T) y momento flector (Mf), serán las mismas para las dos barras que forman la estructura; nos limitaremos a calcularlas para la barra, pues en ED serán análogas.
7 Quedándonos con las solicitaciones que hay a la izquierda de en la barra, fijándonos en la figura y teniendo en cuenta el criterio de signos que empleamos para definir los esfuerzos: ' = ( ) = N R q a q a ' = ( ) = T R q a q a kg. kg. R - q a 45 T M N 1 3 M' = R a q a = q a kg m. Figura Igualmente para (figura 3): N 45 T R N = R = q a kg. T = R = q a kg. Figura 3 nálogamente, quedándonos con las solicitaciones que hay a la derecha de en la barra (figura 4): N q a = ( q a) = kg. T = ( q a) = 1 M = q a q a kg. kg m. N 45 q a T M Figura 4
8 partir de las epresiones obtenidas anteriormente y del tipo de solicitaciones que tienen lugar (carga repartida uniformemente y reacciones en apoyos), los diagramas asociados a las leyes de variación de fuerza normal (N), cortante (T) y momento flector (M), en función de la longitud a lo largo de la directriz de la viga ( s en la figura 1), resultan de la forma: Esfuerzo normal (kg). s q a Esfuerzo cortante (kg). q a s Momento flector (kg m). 1 q a s 3 q a
9 onsiderando q = 100 kg/m y a = m, los valores numéricos característicos de los diagramas anteriores resultan: N = kg. M = 600 kg m. T = 8.8 kg. M = -00 kg m.
10 15.- Representar las Leyes de Variación del momento flector, el esfuerzo cortante, el esfuerzo normal y el momento torsor en la estructura de la figura, acotando los valores más característicos: y 1000 N abrazadera rueda sobre carril otas en mm. z ********************************************************************** En primer lugar resolvemos la estática. Puesto que la rueda apoya sobre suelo rugoso, encontraremos en dos componentes de reacción, una según la vertical y otra según la horizontal, paralela al eje, que se identifica con la fuerza de rozamiento. La unión en se hace a través de una abrazadera. Esta abrazadera impide el movimiento según un eje paralelo a z por el punto ( al que llamaremos z ), y a lo largo del eje y, así como los giros alrededor de estos mismos ejes. No obstante, no impide que la pieza en L pueda girar alrededor del eje que pasando por es paralelo al ( lo llamaremos ), y tampoco que pueda deslizar a lo largo de él. on las consideraciones anteriores, el diagrama de cuerpo libre de la barra en L queda: y R y 1000 N M z M y R z z R z R y Figura 1
11 Seguimos ahora los siguientes pasos (la unidad de longitud que utilizaremos será el metro): 1º) ΣF = 0 R 500 = 0 R =. º) ΣF z = 0 R z = 0 N. 3º) ΣM = R y 0. 4 = 0 R y =. 4º) ΣM y = R 04. M = 0 M y y = 100 N m. 5º) ΣF y = 0 R R = 0 R y =. y 6º) ΣM z = 0 R 03. M = 0 M Z = 150 N m. z y El diagrama de cuerpo libre de la barra queda: y 1000 N 100 N m 150 N m z z Figura Para las leyes de momentos flectores (Mf), momento torsor (Mt), esfuerzos cortantes (T) y normales (N), utilizaremos el sistema de referencia XYZ de la figura 3, en la que de nuevo podemos apreciar las solicitaciones a que queda sometida la barra en L,. Para obtener las leyes pedidas debemos tener en cuenta que éstas quedarán definidas en tres tramos,, D y D. La división del tramo D en dos se debe a que por el cambio de orientación de esta pieza en L en el codo, los esfuerzos normales en pasan a ser cortantes en dirección Y en D, y los momentos flectores en X, momentos torsores.
12 Y 1000 N (c) 100 N m (b) D 150 N m X (a) Z Figura 3 El cálculo de las epresiones de cada una de las leyes pedidas en cada uno de los tres tramos mencionados se hará con la parte de estructura que va desde las secciones de corte (a), (b) y (c) respectivamente, en el sentido de las flechas (ver figura 3 ). El criterio de signos que adoptaremos no corresponderá con el admitido por convenio, que hemos utilizado en los ejercicios anteriores; en este caso está relacionado con el sistema de referencia de la figura 3. (a) TRMO. 0 < y < 0.3 m. X: T = y + Mf = 0 Mf 500 y N m. = Y: N = 0 N =. Mt= 0 Z: T z = 0 T z =. Mf z = 0 (b) TRMO D. 0 < < 0. m.
13 Por el principio de acción y reacción, y a partir de los resultados obtenidos para el tramo anterior, tendría un diagrama de cuerpo libre como el de la figura 4. Y 1000 N X 100 N m (c) (b) D 150 N m N m. Z Figura 4 X: N = Mt = 0 Mt = 150 N m. Y: Ty = 0 T y = Mf y = 0 Mf = y 500 N m. Z: T z = 0 T z = Mf z = 0 Mf 500 N m. z = (c) TRMO D. 0. < < 0.4 m. X: N = Mt = 0 Mt = 150 N m. Y: T y = 0 T y = Mf y = 0 Mf y = 100 N. Z: T z = 0
14 500 (. 0 4 ) + Mf z = 0 Mf = 500 z (. 0 4 ) N m. Nota: Tengamos en cuenta que estos valores son los correspondientes a la sección de corte cuando nos quedamos con la parte derecha de la estructura, que son iguales y contrarios (por el principio de acción y reacción), a los que aparecerían en la sección de corte si hubiésemos considerado la parte izquierda. En la representación gráfica que se mostrará a continuación, para referir todos los valores a las secciones de corte que consideran la parte izquierda de la pieza en L (como hemos hecho en los tramos y D), los valores del tramo D aparecen cambiados de signo respecto a los que se muestran en las epresiones anteriores. Para realizar la representación gráfica de las leyes descritas, los tramos D y D se han unido en una sola. TRMO : Esfuerzo cortante en Z (T z ) y esfuerzo normal (N), en N. y Momento flector en X (Mf ) en N m. y
15 TRMO : No eisten esfuerzos normales. Esfuerzo cortante en Y (T y ), en N. D Esfuerzo cortante en Z (T z ), en N. D Momento flector en Y (Mf y ), en N m. D
16 Momento flector en Z (Mf z ), en N m. D Momento torsor (Mt), en N m. D
17 16.1- La varilla doblada está situada en el plano XZ, soportada por cojinetes en y y por un cable en. Está sometida a las fuerzas que se indican en la figura. 150 Y 50 D F =00N NOT.- El cojinete resiste empuje aial. Z able E F 3 =300N X F 1 =100N otas en mm. Representar las leyes de variación de las acciones internas en el tramo D---E. (Signos según el sistema de ejes habitual situado en la cara frontal de la rebanada). ********************************************************************** En primer lugar calculamos las reacciones que ejercen los cojinetes y el cable sobre la varilla. Y D y y F =00N Z y z F 3 =300N E X F 1 =100N Planteando las ecuaciones de equilibrio obtenemos: M i = 0 Fi = y = = 133,33N = 133, , y z y y z y z = 300 y = ,66 = = 483,33N 100 = 333,33 483,33 = 150N = z = = 400N 100 z = = 700N + F1 = 0 = 100N
18 continuación mostraremos las diferentes fuerzas que actúan sobre el tramo de varilla en estudio, tanto las ejercidas por los otros tramos de varilla como las fuerzas eteriores y reacciones de los cojinetes. 133N 150 N 0 Nm 100 N 300 N 700 N 00 N 400 N 0 Nm 300 N 100 N 10 Nm Normales N (N.) (-) X (cm) -100 Ty Ty (N.) (+) (-) X (cm) -00
19 Tz (N.) Tz 400 (+) (-) X (cm) M (Nm.) M (-) X (cm) -0 My My (Nm.) 40 (+) X (cm)
20 Mz (Nm.) Mz 35 7 (-) X (cm)
ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f
ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f 1) Se utiliza una barra de acero de sección rectangular para transmitir cuatro cargas axiales, según se indica en la figura.
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.
1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático.
1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 2. El bloque A, cuyo peso es de 90N, se sostiene en la posición mostrada. Determinar el peso del
FISICA I HOJA 4 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 4. ESTÁTICA FORMULARIO
4. ESTÁTIC FORMULRIO 4.1) La viga de la figura, que pesa 1.000 kg. y tiene 8 m de larga, hace de carril aéreo. Sobre ella desliza un colgador en el que colocamos 2.000 kg. de carga. Calcular la tensión
**********************************************************************
1..- a) Dimensionar la sección de la viga sabiendo que está compuesta por dos tablones dispuestos como se indica en la figura (se trata de hallar a). Tensión admisible de la madera: σ adm, tracción = 50
6. Mosaicos y movimientos. en el plano
6. Mosaicos y movimientos en el plano Ámbito científico 1. Mosaicos 2. Módulos planos 3. Diseña mosaicos 4. Ejemplos de mosaicos 5. Ejemplos de tramas 6. Mosaicos semiregulares I 7. Libro de espejos 8.
PROBLEMAS DE OPTIMIZACIÓN
1 PROBLEMAS DE OPTIMIZACIÓN Planteamiento y resolución de los problemas de optimización Se quiere construir una caja, sin tapa, partiendo de una lámina rectangular de cm de larga por de ancha. Para ello
Obra: Pista de patinaje sobre hielo
Obra: Pista de patinaje sobre hielo Cubierta colgante pesada que cubre una luz libre de 95 metros. Su estructura está conformada por cables colocados cada 2 metros con apoyos a distinta altura. Completan
Anexo 1 ( Momentos de segundo orden )
.1 neo 1 ( Momentos de segundo orden ) 1. Momento de inercia En muchas de las fórmulas empleadas en ingeniería aparecen epresiones analíticas de la forma ρ d, siendo ρ la distancia de un elemento diferencial
Solución: (esfuerzos en KN) 200 kn. 400 kn. 300 kn. 100 kn. 5 m A C. 2 x 5m = 10 m. 1 cm 1,2 cm 1 cm
Problema 1. n la celosía de la figura, calcular los esfuerzos en todas las barras y reacciones en los apoyos, debido a la actuación simultánea de todas las acciones indicadas (cargas exteriores y asientos
Estática. Equilibrio de un cuerpo rígido
Estática 5 Equilibrio de un cuerpo rígido Objectivos Escribir las ecuaciones de equilibrio de un cuerpo rígido. Concepto de diagrama de cuerpo libre para un cuerpo rígido. Resolver problemas de equilibrio
Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago
Guía dinámica. En general, los problemas de dinámica se resuelven aplicando 3 pasos: 1º Dibuje un diagrama de cuerpo libre para cada cuerpo involucrado en el sistema. Es decir, identifique todas las fuerzas
Datos: a = 1 2m q = 800 kg/m E = kg/cm 2. ************************************************************************
.- En la viga de la figura: a) Determinar las reacciones. b) Dimensionar la sección de la viga con perfil IPN, de forma ue la flecha en el extremo del voladizo no exceda de 5 mm. c) Hallar la flecha máxima
a) La ecuación del plano que pasa por el punto ( 1, 1, 0 ). (3 puntos) b) La ecuación del plano que es paralelo a la recta r.
PROBLEMAS DE SELECTIVIDAD. BLOQUE GEOMETRÍA 1. En el espacio se dan las rectas Obtener a) El valor de para el que las rectas r y s están contenidas en un plano. (4 puntos) b) La ecuación del plano que
Capítulo 2 Estática Página 1
apítulo 2 Estática Página 1. Problemas para el apítulo 2 PROLEM 1 ados los vectores: = 5 unidades; = 10 unidades; = 2 unidades; = 8 unidades. Sumar usando la regla del paralelogramo haciendo uso de una
Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad
Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad Curso Fisica I 1. Una barra de masa M y de largo L se equilibra como se indica en la figura 1. No hay roce. Determine el ángulo
EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector
EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 4.- ESTATICA. 3.1.- Centro de gravedad de un cuerpo. Un cuerpo de masa M, se puede considerar compuesto por multitud de partículas
Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué?
Ecuaciones de la forma y = m. Haga las gráficas de y = y = y = y = y y y y y y a. Como son las rectas b. Cuales son simétricas respecto al origen c. La recta y que tipo de simetría presenta respecto a
Volumen de Sólidos de Revolución
60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido
Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x
Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que
01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 =
01 - LEY DE COULOMB Y CAMPO ELÉCTRICO DISTRIBUCIONES DISCRETAS DE CARGAS 1. Tres cargas están a lo largo del eje x, como se ve en la figura. La carga positiva q 1 = 15 [µc] está en x = 2 [m] y la carga
Tema 7: Geometría Analítica. Rectas.
Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos
CENTRO DE GRAVEDAD DE UN SÓLIDO
CENTRO DE GRAVEDAD DE UN SÓLIDO El centro de gravedad de un sólido es el punto imaginario en el que podemos considerar concentrada toda la masa del mismo. Por tanto, es el punto donde podemos considerar
Ejercicios para resolver semana del 11 al 15 de febrero de 2013 EQUILIBRIO DE CUERPO RÍGIDO 3D
1.- La losa de concreto tiene un peso de 5500 lb. Determinar la tensión eistente en cada uno de los tres cables paralelos soportantes cuando la losa es mantenida en el plano horiontal, como se muestra.
EJERCICIOS DE GEOMETRÍA
EJERCICIOS DE GEOMETRÍA 1. Se consideran las rectas r x 2 = 0 x 2z = 1, s y + 3 = 0 y + z = 3 a) Estudiar la posición relativa de r y s. b) Hallar la mínima distancia entre ambas. Se pide: Sol: Se cruzan
E.T.S.I. Caminos, Canales y Puertos I.C.C.P. Universidad de Granada
E.T.S.I. aminos, anales y Puertos I...P. Universidad de Granada ONVO. SEPTIEMBRE TEORÍA DE ESTRUTURAS 16 SEPTIEMBRE 2013 TEORÍA Tiempo: 1 hora. APELLIDOS: FIRMA: NOMBRE: DNI: La Teoría representa 1/3 de
Solución: Para calcular la pendiente, despejamos la y: La ordenada en el origen es n. 3 Puntos de corte con los ejes: 1 Eje Y 0, 3
EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas de la recta 6y 0. Represéntala gráficamente. Para calcular la pendiente, despejamos la y: 6y 0
Chapter 1. Fuerzas. Por ejemplo: Si empujas una nevera, al empujarla se ejerce una fuerza. Esta fuerza se representa así:
Chapter 1 Fuerzas En Estática es muy usual tener un cuerpo u objeto que tiene varias fuerzas aplicadas. Es por esto que solucionar un problema de estática en pocas palabras quiere decir calcular cuánto
Ecuaciones Lineales en Dos Variables
Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma
EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO
EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO 1. Objetivo El objetivo de esta aplicación es ilustrar cómo se pueden integrar las ecuaciones diferenciales
PROBLEMAS ESTÁTICA FARMACIA
PBLEMAS ESÁICA AMACIA PBLEMA 1 La figura muestra el diagrama de fuerzas sobre la cadera izquierda de una persona de 70 kg puesta en pie que apoya todo su peso sobre el pie izquierdo (ha encogido la pierna
1RA PRÁCTICA CALIFICADA (CINEMÁTICA DE UNA PARTÍCULA Y CUERPO RÍGIDO)
1RA PRÁCTICA CALIFICADA (CINEMÁTICA DE UNA PARTÍCULA Y CUERPO RÍGIDO) DINÁMICA (IC 244) ALUMNOS : CARITAS BARRIENTOS, Ronald ROBLES ROCHA, Hamilton TORRES PÉREZ, Walter A. TORO VELARDE, William DOCENTE
Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA
Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una
Estudio de funciones mediante límites y derivadas
Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un
f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).
TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:
3. Método de cálculo.
Método de cálculo 7. Método de cálculo. Como método de cálculo vamos a seguir el método de los desplazamientos, en el que las incógnitas son los desplazamientos de los nudos de la estructura. Y para estudiar
Estática de Vigas. 20 de mayo de 2006
Estática de Vigas 0 de mayo de 006 Los elementos estructurales que vamos a estudiar en este capítulo estarán sometidos a fuerzas o distribuciones aplicadas lateral o transversalmente a sus ejes y el objetivo
Wilfrido Massieu ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 5
INSTITUTO POLITÉCNICO NACIONAL Centro De Estudios Científicos Y Tecnológicos Wilfrido Massieu LABORATORIO DE FÍSICA I ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 5 1. NOMBRE: FUERZAS CONCURRENTES
TALLER # 1 ESTÁTICA. Figura 1
TALLER # 1 ESTÁTICA 1. Una barra homogénea de 00N de peso y longitud L se apoya sobre dos superficies como se muestra en la figura 1. Determinar: a. El valor de la fuerza F para mantener la barra en la
Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido
Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende
EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES.
EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES. LA TORCA (O MOMENTUM) alrededor de un eje, debida a una fuerza, es una medida de la efectividad de la fuerza para que esta produzca
Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS
XII APLICACIÓN: CÁLCULO DE ÁREAS El estudiante, hasta este momento de sus estudios, está familiarizado con el cálculo de áreas de figuras geométricas regulares a través del uso de fórmulas, como el cuadrado,
2.1.- Una fuerza P de 8 lb se aplica a la palanca de cambios mostrada en la figura. Determine el momento de P con respecto a B cuando es igual a 25.
2.1.- Una fuerza P de 8 lb se aplica a la palanca de cambios mostrada en la figura. Determine el momento de P con respecto a B cuando es igual a 25. 2.2.- Para la palanca de cambios mostrada, determine
25. SISTEMA DIÉDRICO.- EL PLANO.
25. SISTEMA DIÉDRICO.- EL PLANO. 25.1. Representación del Plano. Trazas del plano Se llaman trazas de un plano a las rectas que resultan de la intersección de este plano con los planos de proyección. Por
IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A
IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 2011 específico1 [2'5 puntos] Un alambre de 100 m de longitud se divide
TERCERA EVALUACIÓN. Física del Nivel Cero A Abril 20 del 2012
TERCERA EVALUACIÓN DE Física del Nivel Cero A Abril 20 del 2012 VERSION CERO (0) NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 100 puntos, consta de 25 preguntas de opción múltiple
1- Dar la ecuación ordinaria de la circunferencia de centro C( - 8; 2) y r = 5. Graficar. R: (x +8) 2 + (y 2) 2 = 25
SECCIONES CONICAS CIRCUNFERENCIA 1- Dar la ecuación ordinaria de la circunferencia de centro C( - 8; 2) r = 5. Graficar. R: ( +8) 2 + ( 2) 2 = 25 2- Dar la ecuación general de la circunferencia de centro
UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro)
UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) 1. ESTADÍSTICA: CLASES Y CONCEPTOS BÁSICOS En sus orígenes históricos, la Estadística estuvo ligada a cuestiones de Estado (recuentos, censos,
FUNCIONES y = f(x) ESO3
Las correspondencias entre conjunto de valores o magnitudes se pueden expresar de varias formas: con un enunciado, con una tabla, con una gráfica, o con una fórmula o expresión algebraica o analítica.
Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.
Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más
Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r
Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano
PSU Matemática NM-4 Guía 23: Isometrías. Nombre: Curso: Fecha: -
Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM- Guía : Isometrías Nombre: Curso: Fecha: - Contenido: Isometrías. Aprendizaje Esperado: Analiza traslaciones
SEGUNDO TALLER DE REPASO
SEGUNDO TALLER DE REPASO ASIGNATURA: BIOFÍSICA TEMA: DINÁMICA 1. Una fuerza le proporciona a una masa de 4.5kg, una aceleración de 2.4 m/s 2. Calcular la magnitud de dicha fuerza en Newton y dinas. Respuestas:
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: DIBUJO TÉCNICO II INSTRUCCIONES GENERALES Y CALIFICACIÓN Después
TEMA 0: REPASO DE FUNCIONES
TEMA 0: REPASO DE FUNCIONES Recordamos que una función real de variable real es una aplicación de un subconjunto de los números reales A en el conjunto de los números reales de forma que a cada elemento
IES EL PILES SELECTIVIDAD OVIEDO DPTO. MATEMÁTICAS Geometría
P.A.U. de. (Oviedo). (junio 994) Dados los puntos A (,0, ), B (,, ), C (,6, a), se pide: i) hallar para qué valores del parámetro a están alineados, ii) hallar si existen valores de a para los cuales A,
Problemas de exámenes de Geometría
1 Problemas de exámenes de Geometría 1. Consideramos los planos π 1 : X = P+λ 1 u 1 +λ 2 u 2 y π 2 : X = Q+µ 1 v 1 +µ 2 v 2. Cuál de las siguientes afirmaciones es incorrecta? a) Si π 1 π 2 Ø, entonces
TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R
TEMA PE9 PE.9.1. Los campos magnéticos de los que estamos rodeados continuamente representan un riesgo potencial para la salud, en Europa se han establecido recomendaciones para limitar la exposición,
Leyes de esfuerzos y funciones de desplazamiento a lo largo de una barra
Lees de esfuerzos funciones de desplazamiento a lo largo de una barra Apellidos, nombre Basset Salom, Luisa ([email protected]) Departamento Centro Mecánica de Medios Continuos Teoría de Estructuras Escuela
1. Coordenadas en el plano. (Sistema de coordenadas, ejes de coordenadas, abcisas, ordenadas, cuadrantes)
Bloque 7. VECTORES. ECUACIONES DE LA RECTA. (En el libro Tema 9, página 159) 1. Coordenadas en el plano. 2. Definiciones: vector libre, módulo, dirección, sentido, vectores equipolentes, vector fijo, coordenadas
Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica
Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica 1. a) Marcar en un eje los puntos a(1);b( 2) y c(4). b) Hallar los puntos simétricos respecto al origen
TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL
TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS
1.1 Estructuras isostáticas e hiperestáticas; cálculo de los diagramas de características en vigas, momento flector y esfuerzo de corte
Trabajo Práctico Cálculo de Vigas. 1 Introducción 1.1 Estructuras isostáticas e hiperestáticas; cálculo de los diagramas de características en vigas, momento flector y esfuerzo de corte Como se explicó
PROFR.: JULIO C. JIMÉNEZ RAMÍREZ GRUPOS: TODOS LOS ALUMNOS IRREGULARES EPOEM No.16 TRUNO: VESPETINO
Ecuación vectorial de la recta Ecuaciones paramétricas de la recta Ecuación continua de la recta Pendiente Ecuación punto-pendiente de la recta Ecuación general de la recta Ecuación explícita de la recta
PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre MECÁNICA.
PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre 2005. MECÁNICA. C1) Determina la resultante del sistema de fuerzas coplanarias mostrado en la figura inferior izquierda.
Movimiento armónico. Péndulos físico y de torsión.
Movimiento armónico. Péndulos físico y de torsión. Objetivo eterminar el radio de giro de un péndulo físico y la aceleración de la gravedad. eterminar el módulo de rigidez de un hilo metálico mediante
Examen de TEORIA DE MAQUINAS Diciembre 99 Nombre...
Examen de TEORIA DE MAQUINAS Diciembre 99 Nombre... La figura muestra una leva de disco con seguidor de traslación, radial, de rodillo. La leva es un círculo de radio R=20 mm, articulado al elemento fijo
UNIVERSIDAD NACIONAL SANTIAGO ANTÚNEZ DE MAYOLO FACULTAD DE INGENIERÍA CIVIL CURSO: FISICA I
UNIVERSIDAD NACIONAL SANTIAGO ANTÚNEZ DE MAYOLO FACULTAD DE INGENIERÍA CIVIL CURSO: FISICA I ESTATICA: EQUILIBRIO DE PARTICULAS Y CUERPOS RIGIDOS AUTOR: Mag. Optaciano L. Vásquez García HUARAZ - PERÚ 2010
FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional
FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- Estadística variable unidimensional 1. Conceptos de Estadística 2. Distribución de frecuencias 2.1. Tablas de valores con variables continuas 3. Parámetros
FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico
1(10) Ejercicio nº 1 Dos cargas eléctricas iguales, situadas en el vacío a 0,2 milímetros de distancia, se repelen con una fuerza de 0,01 N. Calcula el valor de estas cargas. Ejercicio nº 2 Hallar a qué
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS
Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES
MECANICA I Carácter: Obligatoria
UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL MECANICA I Carácter: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ingeniería Estructural CODIGO SEMESTRE DE CREDITO HT
CAPÍTULO III EL ACERO ESTRUCTURAL EN EL HORMIGON ARMADO
CAPÍTULO III EL ACERO ESTRUCTURAL EN EL HORMIGON ARMADO 3.1 INTRODUCCION: El acero es una aleación basada en hierro, que contiene carbono y pequeñas cantidades de otros elementos químicos metálicos. Generalmente
CM2 ENRICH CREUS CARNICERO Nivel 2
CM ENRICH CREUS CARNICERO Nivel Unidad Cónicas Conocimientos previos CONOCIMIENTOS PREVIOS PARA CÓNICAS Antes de comenzar con el Trabajo Práctico, necesitás repasar algunas cuestiones como: ) graficar
IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Sobrantes de 011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 del 011 [ 5 puntos] Queremos hacer junto a la carretera un cercado rectangular
a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3.
6 Aplicando la definición de derivada, calcula la derivada de las siguientes funciones en los puntos que se indican: a) f() en Aplicando la definición de derivada, calcula f () en las funciones que se
SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES
SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la
SISTEMA DIÉDRICO: ALFABETO DEL PLANO
SISTEMA DIÉDRICO: ALFABETO DEL PLANO Definiciones y representación Las trazas de un plano son las rectas de intersección de dicho plano con los planos de proyección H y V. Existen, por lo tanto y en general,
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.
PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia
Capítulo 8. DEFORMACIONES EN LAS VIGAS
Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 8. DEFORMACIONES EN LAS VIGAS 1. APLICACIÓN DEL CÁLCULO DE LAS DEFORMACIONES A LA RESOLUCIÓN DE ESTRUCTURAS
Péndulo físico. m.g. Figura 1: Péndulo físico. cm = centro de masa del sistema; d cm = distancia del punto de suspensión al centro de masa.
Péndulo físico x Consideraciones generales En la Figura 1 está representado un péndulo físico, que consiste de un cuerpo de masa m suspendido de un punto de suspensión que dista una distancia d de su centro
7.FUNCIÓN REAL DE VARIABLE REAL
7.FUNCIÓN REAL DE VARIABLE REAL 7.1 CONCEPTOS PREVIOS Dados dos conjuntos A={ 1,, 3,...} y B={y 1, y, y 3,...}, el par ordenado ( m, y n ) indica que el elemento m del conjunto A está relacionado con el
TEMA 4 REPRESENTACION DE OBJETOS.VISTAS
TEMA 4 REPRESENTACION DE OBJETOS.VISTAS INDICE 1. INTRODUCCION... 2 2. SISTEMAS DE REPRESENTACION... 2 2.1 PROYECCIONES... 3 2.2 TIPO DE PROYECCIONES... 3 2.3 ELEMENTOS DE LOS SISTEMAS DE REPRESENTACION...
EJERCICIOS RESUELTOS DE CÁLCULO DE ÁREAS POR INTEGRACIÓN
EJERCICIOS RESUELTOS DE CÁLCULO DE ÁREAS POR INTEGRACIÓN.- Calcular el área encerrada por la función: y = 9, el eje OX, y las rectas = f 9 Se trata de un triángulo de base y altura 9 9 El área sombreada
Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad.
LUGARES GEOMÉTRICOS. CÓNICAS. 9.1 LUGARES GEOMÉTRICOS Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. Llamando X(,) a las coordenadas del punto genérico aplicando analíticamente
GUIA Nº5: Cuerpo Rígido
GUIA Nº5: Cuerpo Rígido Problema 1. La figura muestra una placa que para el instante representado se mueve de manera que la aceleración del punto C es de 5 cm/seg2 respecto de un sistema de referencia
Equilibrio y Movimiento de los objetos
Fundamentos para programación y robótica Módulo 3: Fundamentos de mecánica Capítulo 2: Equilibrio y Movimiento de los objetos. Objetivos: o Conocer del equilibrio de los objetos o Conocer del movimiento
2º BACH. SISTEMA DIÉDRICO [ABATIMIENTOS, CAMBIOS DE PLANOS, GIROS Y ÁNGULOS]
2º BACH. SISTEMA DIÉDRICO [ABATIMIENTOS, CAMBIOS DE PLANOS, GIROS Y ÁNGULOS] ABATIMIENTOS ABATIMIENTO DE UN PUNTO CONTENIDO EN UN PLANO. Sobre el P.H. Sobre el P.V. 1 ABATIMIENTO DE UNA RECTA CONTENIDA
5º Tema.- Ampliación de análisis cinemático de mecanismos planos mediante métodos analíticos.
Universidad de Huelva ESCUELA POLITECNICA SUPERIOR Departamento de Ingeniería Minera, Mecánica y Energética Asignatura: Ingeniería de Máquinas [570004027] 5º curso de Ingenieros Industriales 5º Tema.-
ESTADISTICA Y PROBABILIDAD ESTADÍSTICA
ESTADÍSTICA La estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comprobaciones y sacar conclusiones. Un estudio estadístico consta
Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta
Geometría Analítica Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas Isidro Huesca Zavaleta La Integración de dos Ciencias La Geometría Analítica nació de la integración de dos ciencias
DEPARTAMENTO DE ELECTROMECANICA INGENIERIA ELECTROMECANICA 1 TRABAJO PRACTICO Nº 2 SISTEMA DE FUERZAS EQUIVALENTES
DEPRTMENTO DE ELECTROMECNIC INGENIERI ELECTROMECNIC 1 EJERCICIO Nº1 TRJO PRCTICO Nº 2 SISTEM DE FUERZS EQUIVLENTES Si el peso ubicado en el punto tiene un valor de 20 KN, determine el valor de la carga
CINEMÁTICA: CONCEPTOS BÁSICOS
CINEMÁTICA: CONCEPTOS BÁSICOS 1. MOVIMIENTO Y SISTEMA DE REFERENCIA. Sistema de referencia. Para decidir si algo o no está en movimiento necesitamos definir con respecto a qué, es decir, se necesita especificar
DILATACIÓN PREGUNTAS PROBLEMAS
DILATACIÓN 1. Qué es la temperatura? PREGUNTAS PROBLEMAS 1. Dos barras idénticas de fierro (α = 12 x 10-6 /Cº) de 1m de longitud, fijas en uno de sus extremos se encuentran a una temperatura de 20ºC si
UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA
C u r s o : Matemática Material N 8 GUÍA TEÓRICO PRÁCTICA Nº 5 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando
MATEMÁTICAS 2º DE ESO
MATEMÁTICAS 2º DE ESO LOE TEMA VII: FUNCIONES Y GRÁFICAS Coordenadas cartesianas. Concepto de función. Tabla y ecuación. Representación gráfica de una función. Estudio gráfico de una función. o Continuidad
