Conducción en régimen transitorio
|
|
|
- Elisa Maestre Márquez
- hace 9 años
- Vistas:
Transcripción
1 Conducción en régimen transitorio 1.1. Ejemplo: Calefacción de una casa Se propone el estudio de la transferencia de calor entre una casa y el medio que la rodea en régimen estacionario y en régimen transitorio. La casa se modela bajo la forma de un paralelepípedo de base adiabática, de altura H, de longitud L, de ancho l; sus paredes y su techo, de espesor e = 20cm son constituidos de un material de conductividad térmica k = 2W m 1 K 1. La calefacción se asegura mediante una caldera cuya posición y dimensiones no influyen sobre la transferencia en estudio. La temperatura de cada pared, y del techo, se denota T (x, t) situando el origen de las coordenadas x = 0 al exterior de la casa y el plano interior definido por x = e. El coeficiente de intercambio por convección y radiación, en el interior de la casa, es uniforme y constante y vale h = 10W m 2 K Estudio del régimen estacionario a) Se supondrá en lo sucesivo que el coeficiente de transferencia por convección y radiación, en el exterior de la casa, es lo suficientemente grande como para que se pueda escribir que la temperatura de la pared T (x = 0 es igual a la temperatura atmosférica T a. Hallar un orden de magnitud para este coeficiente h e a partir del cual ésta hipótesis es justificada. b) En régimen estacionario, la temperatura en el interior de la casa es igual a T i = 20 C y la temperatura atmosférica es T a = 0 C. Introduciendo las variables adimensionales: X = x e θ s = T (X) T a T i T a B i = he k i) Expresar θ s en función de X y del número de Biot B i. Calcular la temperatura media de las paredes y la temperatura en x = e. 1
2 ii) Qué potencia térmica φ s consumirá la casa en régimen estacionario? c) La conductividad térmica de las paredes k fue estimada a partir del material de construcción k h = 1,7W m 1 K 1, de espesores e h = 20cm, así como también teniendo en cuenta superficies vidriadas, k v = 0,7W m 1 K 1, de espesores e b = 1,5cm. En base a los cálculos anteriores, qué porcentaje de superficie vidriada posee la casa? Estudio del régimen transitorio Se considera a la casa (paredes + aire contenido) a una temperatura inicial igual a la temperatura ambiente T a y se estudiará el régimen transitorio que conduce a la situación descripta en la sección anterior. a) Para obtener rápidamente un orden de magnitud de la energía térmica necesaria para la calefacción de la casa, se desprecia, para tiempos cortos, le flujo térmico hacia el exterior. En estas condiciones, qué flujo térmico Q m se necesita para llegar a la distribución de temperaturas θ s (X) establecida en la anterior sección? Comparar la energía entregada respectivamente, al aire y a las paredes a lo largo de este régimen transitorio. b) Se propone evaluar la energía térmica Q que se necesita realmente para la calefacción. Se supone, en adelante, que la temperatura en el interior de la casa es, en el instante t = 0, igual a T i y la temperatura de las paredes, igual a T a. La evolución de la temperatura T (x, t) en el interor de las paredes se calcula a partir de los parámetro adimensionales: θ(x, τ) = T (X, τ) T a T i T a τ = at e 2 La transferencia convectiva se efectúa siguiendo las mismas hipótesis que en el régimen estacionario. i) Escribir la ecuación de propagación de la energía térmica que relacionan las derivadas parciales de θ(x, τ). ii) Se establece que θ(x, τ) = θ s (X) + θ i (X, τ). En consecuencia, escribir la ecuación a derivadas parciales y las condiciones de contorno espacio temporales que debe satisfacer θ i (X, τ).
3 iii) Demostrar que es posible escribir θ i (X, τ) bajo la forma: θ i (X, τ) = A j sen(ω j X)exp( ωj 2 τ) j=1 Qué relación vincula ω j con el número de Biot? Qué relación permite calcular A j? Los valores resultantes de los coeficientes son: ω 1 = 2,02876 A 1 = 0,36459 ω 2 = 4,91318 A 2 = +0,07808 ω 3 = 7,97867 A 3 = 0,03699 ω 4 = 11,0855 A 1 = +0,01608 iv) Se estima que el régimen transitorio se termina cuando la temperatura en la pared en x = e es cercana a la del régimen estacionario en un medio grado, T s ± 0,5 C. Calcular el número de Fourier τ R y la duración t R del régimen transitorio que corresponde a esta definición. v) Deducir de las preguntas anteriores la energía térmica Q y la potencia φ m que han sido necesarias para calentar las paredes de la casa. Calcular las razones Q Q m y φ φ m. Datos numéricos: L = 10m l = 6m H = 4m De las paredes: ρ = 2000kg/m 3 C = 880J/(kgK) Relativas al aire: ρ = 1,3kg/m 3 C = 1000J/(kgK) Solución: Régimen estacionario a) Para que la resistencia convectiva exterior sea muy inferior a la resistencia por conducción o por convección del interior, se debe verificar: 1 h e e k o bien 1 h de donde, h e k e = h 10W/(m2 K) La hipótesis es discutible en términos prácticos.
4 b) i) En el régimen estacionario, θ S = BiX 1 + Bi Bi = 1, T m = 8,75 C, T (x = e) = 12,5 C ii) k dt dx = 75W/m2 = φ S = 14,1kW iii) Resistencia equivalente: Considerando la superficie de ladrillos y la de vidrio, S = S L + S v : S ( 1 h + e k ) 1 = S v ( 1 h + e v k v de donde: S L S = 0,11 es decir un 11 % de superficie vitrada Régimen transitorio a) Calefacción sin pérdidas: Aire: Q a = ρ a C a llh(t i T a ), ) 1 ( 1 + S L h + e ) 1 L k L Paredes: Q m = ρ L C L (2LH + 2lH + Ll)e(T m T a ), luego el calor total Q = Q }{{} a + Q m 252, 8MJ }{{} 1,88 % 98,11 % Deducimos que calentar una casa es, esencialmente, calentar sus paredes. b) i) ii) 2 θ X θ 2 τ = 0 2 θ i X θ i 2 τ = 0 Las condiciones para las ecuaciones, { θi (X, 0) = θ S (X) θ i (X, ) = 0 θ ( i (0, τ) ) = θ S (0) = 0 θi = Biθ i (1, τ) X 1,τ
5 iii) Se separan variables: ω j + Bi tanω j = 0 Bi X 1 + Bi = A j sen(ω j )X j A j = 2Bi senω j ωj 2 + Bi sen2 ω j iv) Sólo se conserva el primer término de la serie, luego: τ R = 0,5548 t R = 19500s 5,4h Se verifica que para τ 0,555, el primer término vale 0,0333 y el segundo, 1, v) La energía térmica necesaria para la calefacción: o bien, Q = Q = tr 0 tr Los dos cálculos resultan, { t R Q = hs(t i T a ) 1 + Bi e2 a 0 hs(t i T (e, t)dt ( ) T k Sdt x x=e,t j A j sen(ω j ) ω 2 j [ 1 exp( ω 2 j t R ) ]} Se comprueba que el cálculo efectuado sin considerar las pérdidas daba del orden de magnitud del cálculo final- Q = 347MJ = 1,33Q m
Convección Problemas de convección 1.1. PROBLEMAS DE CONVECCIÓN 1
1.1. PROBLEMAS DE CONVECCIÓN 1 Convección 1.1. Problemas de convección Problema 1 Una placa cuadrada de 0,1 m de lado se sumerge en un flujo uniforme de aire a presión de 1 bar y 20 C con una velocidad
Física II TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO
TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO Primer cuatrimestre 2012 Titular: Valdivia Daniel Jefe de Trabajos Prácticos: Gronoskis Alejandro Jefe de Trabajos Prácticos: Auliel María Inés TRANSFERENCIA
GUIA N o 2: TRANSMISIÓN DE CALOR Física II
GUIA N o 2: TRANSMISIÓN DE CALOR Física II Segundo Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería Sede Caseros II Buenos
TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR
TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR El calor: Es una forma de energía en tránsito. La Termodinámica y La Transferencia de calor. Diferencias. TERMODINAMICA 1er. Principio.Permite determinar
convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección
convección El modo de transferencia de calor por convección se compone de dos mecanismos de transporte, que son, la transferencia de energía debido al movimiento aleatorio de las moléculas (difusión térmica)
Laboratorio de Propiedades Termofísicas. Centro Nacional de Metrología
Medición de la conductividad térmica de materiales sólidos conductores Leonel Lira Cortés Laboratorio de Propiedades Termofísicas División Termometría, Área Eléctrica Centro Nacional de Metrología INTRODUCCION
CAPÍTULO 4 RESULTADOS Y DISCUSIÓN
CAPÍTULO 4 RESULTADOS Y DISCUSIÓN 4.1 Verificación del código numérico Para verificar el código numérico, el cual simula la convección natural en una cavidad abierta considerando propiedades variables,
PARCIAL DE FISICA II 7/6/2001 CASEROS II TEORICO: 1-Enunciar los Principios de la Termodinámica para sistemas cerrados y sistemas abiertos.
PARCIAL DE FISICA II 7/6/2001 CASEROS II ALUMNO: MATRICULA: 1-Enunciar los Principios de la Termodinámica para sistemas cerrados y sistemas abiertos. 2-Obtener la ecuación de las Adiabáticas. 3-Explicar
INFORME DE SIMULACIÓN
CIDEMCO-Tecnalia Área Anardi, nº 5 Apartado 134 P.O. Box E-20730 Azpeitia (Guipúzcoa) / Spain Tel.: +34 943 81 68 00 Fax: +34 943 81 60 74 Organismo notificado nº 1239 DPC 89/106/CEE www.cidemco.es [email protected]
T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera
1. ey de Fourier ué flujo de calor es necesario hacer pasar a través de una barra circular de madera de 5 cm de diámetro y 10 cm de longitud, cuya temperatura en los extremos es de 50 C y 10 C en sus extremos?
DEPARTAMENTO DE INGENIERÍA QUÍMICA. Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESTADO NO ESTACIONARIO
DEPARAMENO DE INGENIERÍA QUÍMICA Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESADO NO ESACIONARIO 1. INRODUCCIÓN El sistema al que se va a plantear el balance de energía calorífica consiste
DISEÑO DE CÁMARAS FRIGORÍFICAS
DISEÑO DE CÁMARAS FRIGORÍFICAS OBJETIVO Velocidad de extracción de Calor velocidad de ingreso de calor El aire en el interior debe ser mantenido a temperatura constante de diseño. El evaporador es diseñado
ECUACIONES DIMENSIONALES
ECUACIONES DIMENSIONALES 1. En la expresión x = k v n / a, x = distancia, v = velocidad, a = aceleración y k es una constante adimensional. Cuánto vale n para que la expresión sea dimensionalmente homogénea?
Magnitudes y Unidades. Cálculo Vectorial.
Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades
ASPECTOS GENERALES PARA LA SOLUCIÓN DE PROBLEMAS RELACIONADOS CON LA CONDUCCIÓN TRANSITORIA.
CONDUCCIÓN TRANSITORIA Aquí encontrarás Los métodos gráficos y el análisis teórico necesario para resolver problemas relacionados con la transferencia de calor por conducción en estado transitorio a través
Factor de forma para conducción bidimensional
Factor de fora para conducción bidiensional En la literatura es frecuente encontrar soluciones analíticas a soluciones de interés práctico en ingeniería. En particular, el factor de fora perite calcular
ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión. ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y
I ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y aplicaciones, 1ª edición, McGraw-Hill, 2006. Tabla A-9. II ANEXO
La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical
la cuerda es extensible La cuerda vibrante inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical y(x, t) la posición depende
III.- COLECTORES DE PLACA PLANA
III.- COLECTORES DE PLACA PLANA III..- INTRODUCCIÓN Un colector solar transforma la energía solar incidente en otra forma de energía útil. Difiere de un intercambiador de calor convencional en que en éstos
Física 2º Bach. Ondas 16/11/10
Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se
Módulo II Trasferencia del Calor
Módulo II Trasferencia del Calor Bibliografía Recomendada Fundamentals of Heat and Mass Transfer Incropera DeWitt Editorial Wiley Transferencia de Calor B. V. Karlekar Transferencia de Calor J. P. Holman
Ondas sonoras. FIS Griselda Garcia - 1er. Semestre / 23
Ondas sonoras Las ondas sonoras son ondas mecánicas longitudinales las partículas se mueven a lo largo de la línea de propagación. La propagación de una onda sonora provoca desviaciones de la densidad
FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN
FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN 1. Considere el siguiente potencial (pozo infinito): { 0 x a; y b y z c V(x)= sino Escribiendo
Análisis del patio en la ciudad de Santo Domingo. Del clima cálido-seco al clima cálido-húmedo.
Análisis del patio en la ciudad de Santo Domingo. Del clima cálido-seco al clima cálido-húmedo. Universidad Politécnica de Cataluña Escuela Técnica Superior de Arquitectura de Barcelona Departamento de
Cinética. 1. Introducción Cantidad de movimiento Teorema del centro de masas... 2
Índice Cinética 1. Introducción. Cantidad de movimiento.1. Teorema del centro de masas................................ 3. Momento cinético 3 3.1. Teorema de König relativo al momento cinético.....................
Eficiencia energética en conductos de climatización. Claire Plateaux
Eficiencia energética en conductos de climatización Claire Plateaux Introducción Informe Anual De Consumos Energéticos IDAE - 2009 Sector Residencial + Servicio : 27% del consumo total Acondicionamiento
Trabajo Práctico n 2. Robotización de un Puente Grúa. Presentación. Restricciones. Curso 2011
Trabajo Práctico n 2 Robotización de un Puente Grúa Presentación Este problema consiste en desarrollar un sistema de control automático que permita robotizar la operación de un puente grúa para la carga
INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2
INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN 13384-1.... 2 1.1.- DATOS DE PARTIDA.... 2 1.2.- CAUDAL DE LOS PRODUCTOS DE COMBUSTIÓN.... 2 1.3.- DENSIDAD MEDIA DE LOS HUMOS...
Transferencia de Calor Cap. 5. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D.
Transferencia de Calor Cap. 5 Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Métodos numéricos en la conducción de calor Muchos problemas que se encuentran en la practica comprenden configuraciones geométricas
EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS
INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin
1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica
TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica Trabajo Práctico N : PROCESOS Y CICLOS DE POTENCIA DE VAPOR Procesos con vapor ) En un cierto proceso industrial se comprimen
EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO
INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin
TRANSFERENCIA DE CALOR
Conducción Convección Radiación TRANSFERENCIA DE CALOR Ing. Rubén Marcano Temperatura es una propiedad que depende del nivel de interacción molecular. Específicamente la temperatura es un reflejo del nivel
FISICA II HOJA 3 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 3. ELECTRODINÁMICA FORMULARIO
FISIC II HOJ 3 ESCUEL POLITÉCNIC DE INGENIERÍ DE MINS Y ENERGI 3. ELECTRODINÁMIC FORMULRIO FISIC II HOJ 3 ESCUEL POLITÉCNIC DE INGENIERÍ DE MINS Y ENERGI 3.1) Para la calefacción de una habitación se utiliza
III.- COLECTORES DE PLACA PLANA
III.- COLECTORES DE PLACA PLANA III..- INTRODUCCIÓN Un colector solar transforma la energía solar incidente en otra forma de energía útil. Difiere de un intercambiador de calor convencional en que en éstos
ONDAS Y PERTURBACIONES
ONDAS Y PERTURBACIONES Fenómenos ondulatorios Perturbaciones en el agua (olas) Cuerda oscilante Sonido Radio Calor (IR) Luz / UV Radiación EM / X / Gamma Fenómenos ondulatorios Todos ellos realizan transporte
PRÁCTICA 2: CONDUCTIVIDAD TÉRMICA DE LOS METALES
PRÁCTICA 2: CONDUCTIVIDAD TÉRMICA DE LOS METALES 1. OBJETIVO En esta práctica se determina la conductividad térmica del cobre y del aluminio midiendo el flujo de calor que atraviesa una barra de cada uno
ESTUDIO DE LA TRANSFERENCIA DE CALOR DE UN PISO RADIANTE HIDRONICO SOLAR A UN ESPACIO
ESTUDIO DE LA TRANSFERENCIA DE CALOR DE UN PISO RADIANTE HIDRONICO SOLAR A UN ESPACIO Oscar E. Rodea García y Manuel D. Gordon Sánchez [email protected], [email protected] Universidad Autónoma Metropolitana
CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA
CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA Este documento enuncia de forma más detallada la formulación matemática que permite el estudio de campos eléctricos debido a distribuciones
Aislamiento térmico de redes de tuberías plásticas. Cálculo del espesor (según RITE )
Asociación española de fabricantes de tubos y accesorios plásticos InfoTUB N.13-005 diciembre 2013 Aislamiento térmico de redes de tuberías plásticas. Cálculo del espesor (según RITE) 1. Introducción Según
Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1)
Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : Se pide: v = x yē x + x tē y (3.1) a. A qué tipo de formalismo corresponde este análisis del escurrimiento, lagrangeano o eulereano?
GRADO EN INGENIERÍA MECÁNICA (GR. 1, 4) CURSO 2013-2014 Enunciados de problemas de Transmisión de Calor
Conducción de calor 11.1.- Calcula la distribución de temperatura de un muro de espesor L y conductividad térmica K sin generación interna de calor, cuando la superficie interna y externa mantienen temperaturas
6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N?
FÍSICA 2º DE BACHILLERATO PROBLEMAS DE ONDAS 1.- De las funciones que se presentan a continuación (en las que todas las magnitudes están expresadas en el S.I.), sólo dos pueden representar ecuaciones de
Física 2 Biólogos y Geólogos. Termometría-Sensores de temperatura
Física 2 Biólogos y Geólogos Curso de Verano 2007 Guía de laboratorio N 8 Termometría-Sensores de temperatura Objetivos Estudiar las características básicas de diferentes termómetros y sensores de temperatura.
[CONDUCTIVIDAD TÉRMICA]
Curso 2009-10 Conductividad Térmica D.Reyman U.A.M. Curso 2009-10 Curso2009-10 Página 1 Conductividad Térmica. Ley de Fourier Es un proceso de transporte en el que la energía migra en respuesta a un gradiente
VIBRACIONES Y ONDAS 1. 2.
VIBRACIONES Y ONDAS 1. 2. 3. 4. Un objeto se encuentra sometido a un movimiento armónico simple en torno a un punto P. La magnitud del desplazamiento desde P es x. Cuál de las siguientes respuestas es
CAPÍTULO 2. RESISTENCIAS PASIVAS
CAÍTULO 2. RESISTENCIAS ASIVAS 2.1. Introducción Son aquellas internas o externas a los elementos que constituyen un mecanismo, que de una forma u otra, se oponen al movimiento relativo de los mismos.
Eficiencia Energética en Edificaciones Sesión II. Andrea Lobato Cordero
Eficiencia Energética en Edificaciones Sesión II Andrea Lobato Cordero 06 octubre 2014 AGENDA CONDICIONES DE CONFORT ESTRATEGIAS BIOCLIMATICAS BALANCE ENERGETICO DE EDIFICIOS CONDICIONES DE CONFORT Los
67.31 Transferencia de Calor y Masa
Índice general 11.Intercambiadores de Calor 3 11.1. Introducción............................... 3 11.2. Clasificación............................... 3 11.3. Balance energético...........................
Unidad terminal de suelo frío con ventilación incorporada
Unidad terminal de suelo frío con ventilación incorporada F. Fernández Hernández, J.M. Cejudo López*, F. Domínguez Muñoz, A. Carrillo Andrés Grupo de Energética, ETSII-Universidad de Málaga, C/ Doctor
Funciones reales. Números complejos
Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica
FÍSICA Y QUÍMICA 4º ESO. MCU. Características. Magnitudes angulares. Ley del movimiento.
FÍSICA Y QUÍMICA 4º ESO Unidad 1. El movimiento Sistema de referencia. o Carácter relativo del movimiento. Conceptos básicos para describir el movimiento. o Trayectoria, posición, desplazamiento. o Clasificación
DINÁMICA DE LAS MARCAS DE FUEGO
DINÁMICA DE LAS MARCAS DE FUEGO Dentro de esta disciplina, la identificación y análisis correcto de estas señales de la combustión supone conocer que marcas producen los tres tipos de transmisión de calor,
Corriente, Resistencia y Fuerza Electromotriz
Corriente Corriente, Resistencia y Fuerza Electromotriz La unidad de corriente en MKS es:1 Ampere(A)=1 C s La dirección de la corriente es la dirección de movimiento de las cargas positivas Corriente Eléctrica
EJERCICIOS Y PROBLEMAS RESUELTOS SOBRE LA LEY DE OHM
Ejercicio resuelto Nº 1 La plancha de mi madre se ha roto. Podía alcanzar la temperatura de 60 o C cuando pasaba por el circuito de la plancha una intensidad de 15 Amperios. Pero se rompió y no calienta.
Derivadas e integrales
Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M [email protected], [email protected], [email protected] ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................
GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot)
UNIVERSIDAD PEDRO DE VALDIVIA TERMODINAMICA. GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot) 1. Deducir qué forma adopta la primera ley de la termodinámica aplicada a un gas ideal para
ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº 5 Recta y Plano Cursada 2014
ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº Recta Plano Cursada Desarrollo Temático de la Unidad La recta en el plano: su determinación. Distintas formas de la ecuación de la recta a partir de la
Tema II: Régimen transitorio
Tema II: égimen transitorio egímenes permanente y transitorio... 35 Notación del régimen transitorio... 36 Elementos pasivos en régimen transitorio... 37 Cálculo de condiciones iniciales y finales... 38
1 PRACTICA # 1 PROPIEDADES FISICAS DE LOS FLUIDOS
1 PRACTICA # 1 PROPIEDADE FIICA DE LO FLUIDO 1.1 DENIDAD Es una propiedad intensiva que se define como la masa (m) por unidad de volumen (V), y es denotada con la letra "ρ", donde: masa de la sustancia
INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B
INDUCCIÓN MAGNÉTICA 1) Un solenoide posee n vueltas por unidad de longitud, radio 1 y transporta una corriente I. (a) Una bobina circular grande de radio 2 > 1y N vueltas rodea el solenoide en un punto
ESTIMACIÓN DE LA EVAPOTRANSPIRACIÓN DE REFERENCIA. estándar de la ET0.
ESTIMACIÓN DE LA EVAPOTRANSPIRACIÓN DE REFERENCIA. Ecuación de Penman-Monteith como método de estimación estándar de la ET0. Introducción En 1948, Penman combinó los métodos de balance de energía con el
Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo
Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2015-1 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés
Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo
Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés
CALIFICACIÓN ENERGÉTICA DE VIVIENDAS EN CHILE
CALIFICACIÓN ENERGÉTICA DE VIVIENDAS EN CHILE FORMATO TIPO AT Formato de acreditación de Acondicionamiento Térmico Para la Calificación Energética de Viviendas (Metodología y declaración) ANTECEDENTES
TURBINAS DE VAPOR. Pedro Fernández Díez pfernandezdiez.es
TURBINAS DE VAPOR Pedro Fernández Díez I.- PARÁMETROS DE DISEÑO DE LAS TURBINAS DE FLUJO AXIAL I..- INTRODUCCIÓN Para estudiar las turbinas de flujo axial, se puede suponer que las condiciones de funcionamiento
Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).
Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado
La vivienda posee, además, tres porches, uno en la entrada principal, otro en la parte anexa a la cocina y el último junto al comedor.
CALCULO DE LA CARGA TERMICA DE CALEFACCION Chalet de 129m 2 de superficie útil ubicada en la comarca del Vallés Occidental, provincia de Barcelona. PORCHE N SALA DE ESTAR COMEDOR DOR.1 DOR.2 COCINA PORCHE
PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso
PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso 2014-15 1) (P Jun94) La ecuación del movimiento de un impulso propagándose a lo largo de una cuerda viene dada por, y = 10 cos(2x-
Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4
Práctico 4 Ejercicio 1 Considere el sistema de la figura, formado por masas puntuales m unidas entre sí por resortes de constante K y longitud natural a. lamemos y n al desplazamiento de la n-ésima masa
Las ventanas de aluminio con Ruptura de Puente Térmico.
Las ventanas de aluminio con Ruptura de Puente Térmico. El grupo Technoform. Fabricación y distribución de perfiles de poliamida para la RPT en cerramientos de aluminio. Fabricación de perfiles intercalarios
6 DINAMICA DEL CUERPO RIGIDO
6 DINAMICA DEL CUERPO RIGIDO 6. CINEMATICA 6.. Configuracion de un Cuerpo Rígido: Angulos de Euler Un cuerpo rígido se puede entender como una distribución continua de materia que se subdivide en pequeños
INFORME DE CÁLCULO DEL COEFICIENTE DE TRANSMITANCIA TÉRMICA DE VENTANAS DE MADERA DE PINO Y ALUMINIO DE REFERENCIA MAGMA
LGAI LGAI Technoloical Center, S.A. Campus AB s/n Apartado de Correos 18 E - 08193 Bellaterra (Barcelona) T +34 93 567 20 00 F +34 93 567 20 01 www.applus.com INFORME DE CÁLCLO DEL COEFICIENTE DE TRANSMITANCIA
Dr. Vladimir Arturo Reyes Herrera
Determinación de la Capacidad de las Torres de Viento para producir confort térmico en el interior de Edificaciones de Zonas Áridas y Semiáridas de México Dr. Vladimir Arturo Reyes Herrera INTRODUCCIÓN
Física General IV: Óptica
Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Física General IV: Óptica Práctico de Laboratorio N 1: Ondas en una Cuerda Elástica 1 Objetivo: Estudiar el movimiento oscilatorio
Como sistema, se deben considerar las pérdidas, que en general se pueden considerar:
Capítulo 8 Generadores de Vapor 8.- Generalidades: En ellos se efectúa le transferencia de calor (calor entregado Qe) desde la fuente caliente, constituida en este caso por los gases de combustión generados
PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO
PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración
Primer examen parcial del curso Física II, M
Primer examen parcial del curso Física II, 106015M Prof. Beatriz Londoño 11 de octubre de 2013 Tenga en cuenta: Escriba en todas las hojas adicionales su nombre! Hojas sin nombre no serán corregidas El
T( K) >500 N ioi /N* n i (cm -3 ) 0 1E5 7E7 7E7 7E7 7E7 1E10 6E12 3E14 1E19
Ejercicios relativos al semiconductor 1. Se dispone de una muestra de material semiconductor del que se conocen los siguientes datos a temperatura ambiente: kt = 0,025 ev n i = 1,5 10 10 cm -3 N A = 10
Física II MOVIMIENTO ONDULATORIO INGENIERIA DE SONIDO
INGENIERIA DE SONIDO Primer cuatrimestre 2012 Titular: Valdivia Daniel Jefe de Trabajos Prácticos: Gronoskis Alejandro Jefe de Trabajos Prácticos: Auliel María Inés Ley de Hooke - Ondas De ser necesario
DINÁMICA DE FLUIDOS (Septiembre 1999)
(Septiembre 1999) Teoría: 1.- Considérese un flujo plano. Dígase cómo se deformaría el cuadrado adjunto si: a) La vorticidad es nula b) No hay deformación pura. c) Voriticidad y deformación son ambas distintas
2. A continuación se presentan un grupo de polinomios y monomios:
República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Unidad Educativa Colegio Roraima Cátedra Matemática Profesora María Eugenia Benítez 2do año Guía 3 1. Efectúa los siguientes
Electromagnetismo (Todos. Selectividad Andalucía )
Electromagnetismo (Todos. Selectividad Andalucía 2001-2006) EJERCICIO 3. (2.5 puntos) Un núcleo toroidal tiene arrolladas 500 espiras por las que circulan 2 Amperios. Su circunferencia media tiene una
Ergonomía y Arquitectura ambiental en la vivienda. Universidad de Santiago de Chile * Escuela de Arquitectura LAB8 *
Ergonomía y Arquitectura ambiental en la vivienda. Universidad de Santiago de Chile * Escuela de Arquitectura LAB8 * 171109 Contextualización. Qué es la ergonomía y arquitectura ambiental? Ergonomía ambiental:
AGRADECIMIENTOS DEDICATORIA ABSTRACT
INDICE GENERAL AGRADECIMIENTOS DEDICATORIA RESUMEN ABSTRACT i ii iii iv CAPITULO 1 Descripción Del Problema. 1 Introducción 2 1.1 Antecedentes y motivación 3 1.2 Descripción del problema 3 1.3 Solución
Módulo Online. Energy Modeling DESIGNBUILDER
Módulo Online Energy Modeling DESIGNBUILDER Este PDF está alterado para utilizarse de muestra. Si se inscribe al curso tendrá acceso al contenido completo. http://www.arquitecturaysostenibilidad.com/es/cursos/4/informacio.html
UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA
UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIDAD III. HIDROCINEMÁTICA Introducción. La hidrocinemática o cinemática de los líquidos se ocupa del estudio de las partículas que integran
Plan. cuerpo gris factor de forma. Transferencia de Calor p. 1/2
Transferencia de Calor p. 1/2 Plan modos de conducción de calor conducción - ecuación del calor convección radiación estado estacionario, 1D resistencia térmica sistemas con generación de calor aletas,
TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA
TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA La termodinámica es la parte de la física que se ocupa de las relaciones existentes entre el calor y el trabajo. El calor es una
... ... Título de la publicación Condiciones de aceptación de Procedimientos alternativos a LIDER y CALENER
Título de la publicación Condiciones de aceptación de Procedimientos alternativos a LIDER y CALENER CONTENIDO Esta publicación ha sido redactada por AICIA- Grupo de Termotecnia de la Escuela Superior de
Introducción a la Ing. Aeroespacial
Introducción a la Ing. Aeroespacial Tema 3 El Campo Fluido Sergio Esteban Roncero Francisco Gavilán Jiménez Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos Escuela Técnica Superior de Ingeniería
La bombilla consume una potencia de 60 W y sabemos que la potencia viene dada por la ecuación:
Problema resuelto Nº 1 (Fuente Enunciado: IES VICTORIA KENT.ACL. : A. Zaragoza López) 1. Una bombilla lleva la inscripción 60 W, 220 V. Calcula: a) La intensidad de la corriente que circula por ella; la
Tema 7: Fundamentos de transferencia de calor
.- INRODUCCIÓN ema 7: Fundamentos de transferencia de calor La transferencia de calor es la ciencia ue trata de predecir el intercambio de energía ue puede tener lugar entre cuerpos materiales como resultado
Clasificación de sistemas
Capítulo 2 Clasificación de sistemas 2.1 Clasificación de sistemas La comprensión de la definición de sistema y la clasificación de los diversos sistemas, nos dan indicaciones sobre cual es la herramienta
Diseño, Construcción y Evaluación de un Reflector Solar Fresnel de Concentración de Foco Lineal para Generar Vapor de Agua
Diseño, Construcción y Evaluación de un Reflector Solar Fresnel de Concentración de Foco Lineal para Generar Vapor de Agua Presentado por: Jorge Choque Chacolla Lic. Física Aplicada Universidad Nacional
de la Edificación DB-HE Ahorro de Energía
Colegio Oficial de Aparejadores y Arquitectos Técnicos de CádizC Curso Código C Técnico T de la Edificación DB-HE Ahorro de Energía Septiembre - Octubre de 2006 1 Colegio Oficial de Aparejadores y Arquitectos
