Funciones Lineales en una Variable Real
|
|
|
- María Elena Muñoz Escobar
- hace 9 años
- Vistas:
Transcripción
1 en una Variable Real Carlos A. Rivera-Morales Precálculo I
2 Tabla de Contenido Contenido
3 : Contenido Discutiremos: la definición de una función lineal
4 : Contenido Discutiremos: la definición de una función lineal propiedades de funciones lineales
5 : Contenido Discutiremos: la definición de una función lineal propiedades de funciones lineales gráficas de las funciones lineales
6 en una Variable Real Función Lineal Definición: Una función lineal en la variable real x es una función de la forma f(x) = ax + b, donde a, b R, con a 0.
7 en una Variable Real Función Lineal Definición: Una función lineal en la variable real x es una función de la forma f(x) = ax + b, donde a, b R, con a 0. Observación: También es usual representarla de la forma f(x) = mx + b.
8 en una Variable Real Función Lineal Definición: Una función lineal en la variable real x es una función de la forma f(x) = ax + b, donde a, b R, con a 0. Observación: También es usual representarla de la forma f(x) = mx + b. Notas:
9 en una Variable Real Función Lineal Definición: Una función lineal en la variable real x es una función de la forma f(x) = ax + b, donde a, b R, con a 0. Observación: También es usual representarla de la forma f(x) = mx + b. Notas: 1 Df =R
10 en una Variable Real Función Lineal Definición: Una función lineal en la variable real x es una función de la forma f(x) = ax + b, donde a, b R, con a 0. Observación: También es usual representarla de la forma f(x) = mx + b. Notas: 1 Df =R 2 ax : término lineal
11 en una Variable Real Función Lineal Definición: Una función lineal en la variable real x es una función de la forma f(x) = ax + b, donde a, b R, con a 0. Observación: También es usual representarla de la forma f(x) = mx + b. Notas: 1 Df =R 2 ax : término lineal 3 b : término independiente o constante
12 en una Variable Real Notas: La función f(x) = mx + b tiene las siguientes características: 1 es una función cuya representación gráfica es una línea o recta en el plano cartesiano.
13 en una Variable Real Notas: La función f(x) = mx + b tiene las siguientes características: 1 es una función cuya representación gráfica es una línea o recta en el plano cartesiano. 2 m (coeficiente de x) es la pendiente de la línea y expresa la variación de la variable y cuando x aumenta una unidad.
14 en una Variable Real Notas: La función f(x) = mx + b tiene las siguientes características: 1 es una función cuya representación gráfica es una línea o recta en el plano cartesiano. 2 m (coeficiente de x) es la pendiente de la línea y expresa la variación de la variable y cuando x aumenta una unidad. De otra forma, m representa la razón de cambio en y por unidad de aumento en x.
15 en una Variable Real Notas: La función f(x) = mx + b tiene las siguientes características: 1 es una función cuya representación gráfica es una línea o recta en el plano cartesiano. 2 m (coeficiente de x) es la pendiente de la línea y expresa la variación de la variable y cuando x aumenta una unidad. De otra forma, m representa la razón de cambio en y por unidad de aumento en x. 3 b es la ordenada al origen; la línea corta el eje-y en el punto (0, b).
16 en una Variable Real Notas: La función f(x) = mx + b tiene las siguientes características: 1 es una función cuya representación gráfica es una línea o recta en el plano cartesiano. 2 m (coeficiente de x) es la pendiente de la línea y expresa la variación de la variable y cuando x aumenta una unidad. De otra forma, m representa la razón de cambio en y por unidad de aumento en x. 3 b es la ordenada al origen; la línea corta el eje-y en el punto (0, b). 4 Las ecuaciones de la forma y = mx representan líneas que pasan por el origen del plano cartesiano, se llaman funciones de proporcionalidad.
17 en una Variable Real Observaciones: Sea f(x) = mx + b. 1 Si m > 0, la recta, de izquierda a derecha sube; f es una función creciente.
18 en una Variable Real Observaciones: Sea f(x) = mx + b. 1 Si m > 0, la recta, de izquierda a derecha sube; f es una función creciente. 2 Si m < 0, la recta, de izquierda a derecha baja; f es una función decreciente.
19 en una Variable Real Observaciones: Sea f(x) = mx + b. 1 Si m > 0, la recta, de izquierda a derecha sube; f es una función creciente. 2 Si m < 0, la recta, de izquierda a derecha baja; f es una función decreciente. 3 Si m = 0, la recta es horizontal; f es una función constante.
MATEMÁTICAS 2º DE ESO
MATEMÁTICAS 2º DE ESO LOE TEMA VII: FUNCIONES Y GRÁFICAS Coordenadas cartesianas. Concepto de función. Tabla y ecuación. Representación gráfica de una función. Estudio gráfico de una función. o Continuidad
Ecuaciones Lineales en Dos Variables Reales
Carlos A. Rivera-Morales Precálculo I Tabla de Contenido Contenido : Contenido Discutiremos: pendiente de una línea. : Contenido Discutiremos: pendiente de una línea. fórmula de la pendiente : Contenido
Funciones Cuadráticas en una Variable Real
en una Variable Real Carlos A. Rivera-Morales Precálculo I Tabla de Contenido Contenido adrática : Contenido Discutiremos: qué es una función cuadrática : Contenido Discutiremos: qué es una función cuadrática
Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano.
Plano cartesiano El plano cartesiano se forma con dos rectas perpendiculares, cuyo punto de intersección se denomina origen. La recta horizontal recibe el nombre de eje X o eje de las abscisas y la recta
FUNCIONES y = f(x) ESO3
Las correspondencias entre conjunto de valores o magnitudes se pueden expresar de varias formas: con un enunciado, con una tabla, con una gráfica, o con una fórmula o expresión algebraica o analítica.
FUNCIONES CUADRÁTICAS
FUNCIONES CUADRÁTICAS A la función polinómica de segundo grado f(x) = ax 2 + bx + c, siendo a, b, c, números reales y a 0 se la denomina función cuadrática. Dominio de una función cuadrática es el conjunto
El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica.
Capítulo 4. Estudio de la línea recta El análisis cartesiano (René Descartes 1596-1650) descubrió que las ecuaciones pueden tener una representación gráfica. Para lograr esa representación gráfica es necesario
Carlos A. Rivera-Morales. Precálculo I
Carlos A. Rivera-Morales Precálculo I Tabla de Contenido Contenido : Contenido Discutiremos: función inversa : Contenido Discutiremos: función inversa construcción de la función inversa : Contenido Discutiremos:
Definición de Funciones MATE 3171
Definición de Funciones MATE 3171 Función Una función, f, es una regla de correspondencia entre dos conjuntos, que asigna a cada elemento x de D exactamente un elemento de E : x 1 x 2 x 3 y 2 y 1 Terminología
gráfica de una función afín dada en forma explícita
PARADA TeÓRICA 3 Función afín. Ecuación explícita de la recta A la función polinómica de primer grado f(x) = ax + b, siendo ay b números reales, se la denomina función afín. Los coeficientes principal
Funciones constantes, lineales y afines 1.
Funciones constantes, lineales y afines 1. 1.- Rectas horizontales y verticales. Ej.1.- A continuación tienes la gráfica de la recta y = 0. Qué puntos de corte tiene con los ejes? Qué posición tiene respecto
Funciones y sus gráficas
y sus gráficas Marzo de 2006 Índice 1 polinómicas función constante función lineal función afín función cuadrática 2 racionales función de proporcionalidad inversa función racional 3 exponenciales 4 Ejemplos
2 año secundario. Función Lineal MINISTERIO DE EDUCACIÓN. Se llama función lineal porque la potencia de la x es 1. Su gráfico es una recta.
año secundario Función Lineal Se llama función lineal porque la potencia de la x es. Su gráfico es una recta. Y en general decimos que es de la forma : f(x)= a. x + b donde a y b son constantes, a recibe
Gráficas de funciones
Apuntes Tema 1 Gráficas de funciones 1.1 Gráficas de funciones a) Función constante: f(x) = k b) Recta vertical: x = k c) Función lineal: f(x) = mx Todas pasan por el origen O(0, 0). 2 d) Función afín:
Tranformaciones de Funciones
Tranformaciones de Funciones Carlos A. Rivera-Morales Precálculo I Tabla de Contenido Contenido : Contenido Discutiremos: transformaciones algebraicas de funciones : Contenido Discutiremos: transformaciones
i. y = 0,25x k. x = 2 l. y = -3 n. 2y 2x = 0
TRABAJO PRÁCTICO Nº1 1. Identificar la pendiente y ordenada al origen de las siguientes rectas. Graficar y escribir para cada una dominio, imagen, crecimiento, decrecimiento, raíces. a. y = 2x + 1 d. y
El plano cartesiano y Gráficas de ecuaciones. Copyright 2013, 2009, 2006 Pearson Education, Inc. 1
El plano cartesiano y Gráficas de ecuaciones Copyright 2013, 2009, 2006 Pearson Education, Inc. 1 Sistema de coordenadas rectangulares En el cap 2 presentamos la recta numérica real que resulta al establecer
Ecuaciones Lineales en Dos Variables
Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma
12 Funciones de proporcionalidad
8 _ 09-088.qxd //0 : Página 9 Funciones de proporcionalidad INTRODUCCIÓN La representación gráfica de funciones de proporcionalidad es una de las formas más directas de entender y verificar la relación
La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.
Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio
Funciones uno-uno, sobre y biunívocas
Funciones uno-uno, sobre y biunívocas La inversa (biunívocas) de una función es una regla que actúa en la salida de la función y produce la entrada correspondiente. Así, la inversa deshace o invierte lo
Ax + By + C = 0. Que también puede escribirse como. ax + by + c = 0 y que se conoce como: la ecuación general de la línea recta
ECUACIÒN DE LA RECTA La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano). La recta se puede entender como un conjunto infinito de puntos alineados
CENTRO REGIONAL UNIVERSITARIO BARILOCHE TALLER DE MATEMATICA INGRESO 2016 LIC. ENFERMERÍA PRACTICO UNIDAD 3
PRACTICO UNIDAD 3 Nota: Los ejercicios propuestos en los prácticos deben servirle para afianzar y practicar temas. Si nota que algunos ejercicios ya los sabe hacer bien, continúe con otros que le impliquen
En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253
Eje temático: Álgebra y funciones Contenidos: Operatoria con expresiones algebraicas Nivel: 2 Medio Funciones 1. Funciones En la vida diaria encontramos situaciones en las que aparecen valores que varían
Funciones polinomiales de grados cero, uno y dos
Funciones polinomiales de grados cero, uno y dos A una función p se le llama polinomio si: p x = a n x n + a n 1 x n 1 + + a 2 x 2 + a 1x + a 0 Donde un entero no negativo y los números a 0, a 1, a 2,
No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.
FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números
Funciones Racionales y Asíntotas
Funciones Racionales y Carlos A. Rivera-Morales Precálculo II Funciones Racionales y Tabla de Contenido 1 2 3 Verticales y Horizontales Funciones Racionales y : Contenido Discutiremos: qué es una función
Función Lineal Prof. Natalia Rodríguez 1
Función Lineal Prof. Natalia Rodríguez 1 1 Función lineal 1.1 La función lineal Sea f una función tal que, f : IR! IR. Se llama función lineal si f (x) = mx + b con m, b 2 IR. El dominio, el codominio
TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.
2009 TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 1º E.S.O. TEMA 08: Funciones. TEMA 08: FUNCIONES. 1. Correspondencia.
Si se pueden obtener las imágenes de x por simple sustitución.
TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Pobre del estudiante que no aventaje a su maestro. LA LÍNEA RECTA Leonardo da Vinci DESEMPEÑOS Identificar, interpretar, graficar
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación
Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones
Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a
FUNCIÓN LINEAL FUNCIÓN CONSTANTE - RELACIÓN LINEAL
FUNCIÓN LINEAL FUNCIÓN CONSTANTE - RELACIÓN LINEAL ) a) Determine pendiente, ordenada al origen y abscisa al origen, si es posible. b) Grafique. -) a) y = ( x ) aplicando propiedad distributiva y= x se
Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x
Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que
UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES
UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES Al finalizar esta unidad: - Describirás verbalmente en que consiste el cambio y cuáles son los aspectos involucrados en él. - Identificarás
TALLERES DE MATEMATICA INSTITUCION EDUCATIVA PRESBITERO DANIEL JORDAN TEMA: IDENTIDADES TRIGONOMETRICAS GEOMETRIA ANALITICA EXPERIMENTOS ALEATORIOS
TEMAS: ANALISIS DE LAS FUNCIONES TRIGONOMETRICAS ECUACIONES TRIGONOMETRICAS LA LINEA RECTA SECCIONES CONICAS TALLER NO. 1 TRABAJO EXTRACLASE ANALISIS DE LAS FUNCIONES TRIGONOMETRICAS : Escriba debajo de
TEMA 0: REPASO DE FUNCIONES
TEMA 0: REPASO DE FUNCIONES Recordamos que una función real de variable real es una aplicación de un subconjunto de los números reales A en el conjunto de los números reales de forma que a cada elemento
TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1
TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 - FUNCIONES ELEMENTALES 10.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder
Precálculo 2130034 Prof.: Gerardo Varela
Definición de función Una función con dominio D es un conjunto W de pares ordenados tales que, para cada en D, ha eactamente un par ordenado (, ) en W que tiene a en la primera posición. Terminología Definición
Funciones y gráficas. 3º de ESO
Funciones y gráficas 3º de ESO Funciones Una función es una correspondencia entre dos conjuntos numéricos que asocia a cada valor,, del primer conjunto un único valor, y, del segundo. La variable variable
Bloque II. Actividades de síntesis: Análisis. Solucionario OPCIÓN A
Bloque II Actividades de síntes: Anális Solucionario OPCIÓN A A.. a) Escribe la función f(x) x 4 x como una función a trozos y dibuja su gráfica. b) Para cuántos valores de x es f(x) 0? c) Para qué números
FUNDAMENTOS DEL ÁLGEBRA. Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES
FUNDAMENTOS DEL ÁLGEBRA Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES NOMBRE ID SECCIÓN SALÓN Prof. Eveln Dávila Contenido TEMA: Ecuaciones Lineales En Dos Variables... Solución
DE LA GRÁFICA A LA EXPRESIÓN ALGEBRAICA
De la gráfica a la expresión algebraica DE LA GRÁFICA A LA EXPRESIÓN ALGEBRAICA Rectas, Parábolas, Hipérbolas, Exponenciales Logarítmicas LA RECTA Comencemos localizando el punto donde la recta corta al
1.- CONCEPTO DE FUNCIÓN
.- CONCEPTO DE FUNCIÓN Actividades del alumno/a Explica porqué la siguiente gráfica no corresponde a una función: Porque a un valor de x, por ejemplo x =, le corresponde más de un valor de y. .- CONCEPTO
TRAZADO DE LA GRÁFICA DE LAS DERIVADA DE UNA FUNCIÓN
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL VALLEJO ÁREA DE MATEMÁTICAS CÁLCULO DIFERENCIAL E INTEGRA I TRAZADO DE LA GRÁFICA DE LAS DERIVADA DE UNA FUNCIÓN ELEAZAR
http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17
http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 1 CONCEPTOS BÁSICOS 1.1 DEFINICIONES Una función liga dos variables numéricas a las que, habitualmente, se les llama x e y. x es la
ECUACIÓN GENERAL DE LA RECTA
ECUACIÓN GENERAL DE LA RECTA Sugerencias para quien imparte el curso En los ejemplos que se proponen, se debe tratar en la medida de lo posible que el propio alumno encuentre las respuestas y llegue a
Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)
Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de
4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES
Tema 4 Funciones. Características - Matemáticas B 4º E.S.O. 1 TEMA 4 FUNCIONES. CARACTERÍSTICAS 4.1 CONCEPTOS BÁSICOS 3º 4.1.1 DEFINICIONES 3º Una función liga dos variables numéricas a las que, habitualmente,
INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES
INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA Supongamos que tenemos una función. Consideramos la recta que corta a la gráfica en los puntos A y B. Esta recta se llama secante
FUNCIONES 1. DEFINICION DOMINIO Y RANGO
1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad
Capítulo 3 Soluciones de ejercicios seleccionados
Capítulo 3 Soluciones de ejercicios seleccionados Sección 3.1.4 1. Dom a = [ 1, 1]. Dom b = R. Dom c = (, 4). Dom d = ( 1, ). Dom e = R ( 1, 3] y Dom f = R {, }. 5x 4 x < 1, (x 1)(3x ) x < 1,. (f + g)(x)
APUNTES ACERCA DE LA ECUACIÓN DE LA RECTA
Introducción APUNTES ACERCA DE LA ECUACIÓN DE LA RECTA Se denomina solución de una ecuación al valor o conjunto de valores de la(s) incógnita(s) que verifican la igualdad. Así por ejemplo decimos que x
Funciones polinómicas
Funciones polinómicas Footer Text 4/23/2015 1 Funciones Polinómicas La ecuación general de una función polinómica de grado n con coeficientes reales está dada por f(x) = a n x n + a n-1 x n-1 + + a 1 x
n es la ordenada en el origen, el punto de corte de la recta con el eje de ordenadas (el vertical, y)
Una función es una relación entre 2 magnitudes, de manera que a cada valor de x de la primera le corresponde un único valor de y, de la segunda. Este valor también se designa por f(x) y se conoce como
La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx.
Conceptos de derivada y de diferencial Roberto C. Redondo Melchor, Norberto Redondo Melchor, Félix Redondo Quintela 1 Universidad de Salamanca 18 de agosto de 2012 v1.3: 17 de septiembre de 2012 Aunque
Contenido Objetivos División Sintética de Polinomios. Carlos A. Rivera-Morales. Precálculo 2
Carlos A. Rivera-Morales Precálculo 2 Tabla de Contenido 1 2 : Discutiremos: la división sintética de polinomios División sintética es un método corto de dividir un polinomio P(x) en una variable por un
Funciones Racionales y Asíntotas
y Asíntotas Carlos A. Rivera-Morales Precálculo 2 y Asíntotas Tabla de Contenido 1 Asíntotas de :Asíntotas Asíntotas Verticales y Asíntotas Horizontales y Asíntotas Asíntotas de :Asíntotas Definición:
ECUACIÓN DE LA RECTA
MATEMÁTICA SEMANA 2 ECUACIÓN DE LA RECTA Todos los derechos de autor son de la exclusiva propiedad de IACC o de los otorgantes de sus licencias. No está permitido copiar, reproducir, reeditar, descargar,
GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES
UNIDAD I FUNCIONES Una función es una correspondencia entre dos conjuntos, que asocia a cada elemento del primer conjunto exactamente un elemento del otro conjunto. Una función f definida entre dos conjuntos
Sistemas de Ecuaciones Lineales con Dos Incognitas
PreUnAB Sistemas de Ecuaciones Lineales con Dos Incognitas Clase # 9 Agosto 2014 Sistemas de Ecuaciones Lineales con dos Incógnitas Definición Se llama sistema de ecuaciones a un conjunto de dos o más
MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta.
ECUACIONES SIMULTÁNEAS DE PRIMER GRADO CON DOS INCÓGNITAS. Dos o más ecuaciones con dos incógnitas son simultáneas cuando satisfacen iguales valores de las incógnitas. Para resolver ecuaciones de esta
UNIDAD 7: PROGRESIONES OBJETIVOS
UNIDAD 7: PROGRESIONES Reconocer sucesiones y deducir su regla de formación en los casos en que sea posible. Obtener distintos términos en sucesiones recurrentes. Distinguir si una sucesión es una progresión
La representación gráfica de una función cuadrática es una parábola.
Función Cuadrática A la función polinómica de segundo grado +bx+c, siendo a, b, c números reales y, se la denomina función cuadrática. Los términos de la función reciben los siguientes nombres: La representación
Ecuación de la recta tangente
Ecuación de la recta tangente Pendiente de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. Recta tangente a una curva en un punto
Una función es una relación o correspondencia entre dos magnitudes o variables x e y, de manera que a cada valor
RESUMEN TEORÍA FUNCIONES: 4º ESO Op. B DEFINICIONES: Una función es una relación o correspondencia entre dos magnitudes o variables x e y, de manera que a cada valor de x le corresponde un único valor
Funciones y gráficas (1)
Funciones y gráficas (1) Introducción Uno de los conceptos más importantes en matemática es el de función. El término función fue usado por primera vez en 1637 por el matemático francés René Descartes
Las únicas funciones cuyas gráficas son rectas son las siguientes:
Funciones, 3º ESO () RECTAS Las únicas funciones cuyas gráficas son rectas son las siguientes: - Lineales, de fórmula y mx. Las gráficas de estas funciones pasan por el origen de coordenadas. m es la pendiente
UNIDAD II FUNCIONES. Ing. Ronny Altuve Esp.
República Bolivariana de Venezuela Universidad Alonso de Ojeda Administración Mención Gerencia y Mercadeo UNIDAD II FUNCIONES Ing. Ronny Altuve Esp. Ciudad Ojeda, Septiembre de 2015 Función Universidad
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado
Derivación. Aproximaciones por polinomios.
Derivación... 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Matemáticas (Grado en Químicas) Contenidos Derivada 1 Derivada 2 3 4 5 6 Outline Derivada 1 Derivada 2 3 4 5 6 Definición
1. Dominio, simetría, puntos de corte y periodicidad
Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele
INECUACIONES Y VALOR ABSOLUTO
INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.
Estudio Gráfico de Funciones
Esquema 1 2 Esquema 1 2 Definición es una correspondencia entre dos conjuntos A B tal que a cada elemento del conjunto A le corresponde un único valor solo uno del conjunto B. La gráfica de la función
Teoría de la decisión
1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia
Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1
Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 TEMA 4 - FUNCIONES ELEMENTALES 4.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : Una función real de variable real es una aplicación de un subconjunto
Álgebra y trigonometría: Gráficas de ecuaciones y funciones
Álgebra y trigonometría: Gráficas de ecuaciones y funciones CNM-108 Instituto de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Este documento es distribuido bajo una licencia
1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución:
RELACIÓN DE PROBLEMAS DE SELECTIVIDAD DE ANÁLISIS. I Departamento de Matemáticas 1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función
La recta en el plano.
1 CONOCIMIENTOS PREVIOS. 1 La recta en el plano. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas. Representación
Concepto de función. El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.
Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna. Función
MATE 3013 DERIVADAS Y GRAFICAS
MATE 3013 DERIVADAS Y GRAFICAS Extremos relativos La función f tiene un máximo relativo en el valor c si hay un intervalo (r, s), que contiene a c, en el cual f(c) f(x) para toda x entre r y s. Si además,
Una variable, y, es función de otra, x, si existe una relación entre ambas de forma tal que: para cada valor de x existe solamente uno de y
Funciones Una variable, y, es función de otra, x, si existe una relación entre ambas de forma tal que: para cada valor de x existe solamente uno de y Notamos de la siguiente manera: y = f(x) Leemos: y
(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E700 1) x 5 > 1. A) Primer parcial ) Sean las funciones ft) t +,gy) y 4&hw) w. Encontrar f/h, g f, f g y sus dominios. ) Graficar la función x + six
Derivadas. Derivabilidad
Apuntes Tema 4 Derivadas. Derivabilidad 4.1 Derivada de una función Llamamos tasa de variación media al cociente entre el incremento que sufre la variable dependiente y el incremento de la variable independiente.
LÍMITES Y CONTINUIDAD (asíntotas) Tema 6. Matemáticas Aplicadas CS I 1
LÍMITES Y CONTINUIDAD (asíntotas) Tema 6 Matemáticas Aplicadas CS I 1 FUNCIONES DE PROPORCIONALIDAD INVERSA Tema * 1º BCS Matemáticas Aplicadas CS I 2 FUNCIÓN DE PROPORCIONALIDAD INVERSA LA FUNCIÓN DE
FUNCIONES Y GRÁFICAS
FUNCIONES Y GRÁFICAS Material de clase INTRODUCCIÓN: EJEMPLOS Una función es una correspondencia (relación) entre dos conjuntos (magnitudes ), de forma que a cada elemento (objeto) del primer conjunto
Interpretación de gráficas 1
Interpretación de gráficas 1 Dos ejemplos sencillos. 1. El precio de un bolígrafo en la papelería cercana es de 0,30. Calcula y escribe en la tabla siguiente el precio de los bolígrafos que se indican.
BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas
BLOQUE IV Funciones 0. Funciones. Rectas y parábolas. Funciones racionales, irracionales, exponenciales y logarítmicas. Límites y derivadas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo
La asignatura de Matemática estimula el desarrollo de diversas habilidades:
La asignatura de Matemática estimula el desarrollo de diversas habilidades: Intelectuales, como: El razonamiento lógico y flexible, la imaginación, la inteligencia espacial, el cálculo mental, la creatividad,
FUNCIÓN POLINÓMICA DE GRADO TRES. FUNCIÓN CÚBICA.
FUNCIÓN POLINÓMICA DE GRADO TRES. FUNCIÓN CÚBICA. La ecuación de dichas funciones es de la forma f(x) = y = ax 3 +bx 2 +cx +d, donde a,b,c y d PRIMERAS CARACTERÍSTICAS: 1.- DOMINIO: por ser polinómicas
MATEMÁTICAS 2º ESO. BLOQUE 9. FUNCIONES, ESTADÍSTICA Y PROBABILIDAD. (En el libro Temas 8, 9 y 10, páginas 141, 159 y 177)
MATEMÁTICAS 2º ESO. BLOQUE 9. FUNCIONES, ESTADÍSTICA Y PROBABILIDAD. (En el libro Temas 8, 9 y 10, páginas 141, 159 y 177) 1. Funciones. 1.1. Coordenadas en el plano. 1.2. Definición de función. 1.3. Intervalos.
Álgebra y Trigonometría CNM-108
Álgebra y Trigonometría CNM-108 Clase 2 Ecuaciones, desigualdades y funciones Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción
Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica
10 Funciones lineales Objetivos En esta quincena aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a
Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones
Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................
Dos pares ordenados seran iguales si cada una de sus componentes son respectivamente iguales, es decir: (a, b) = (c, d) a = c y b = d
El Plano Cartesiano EDUCACIÓN MATEMATICA 1/10 El plano cartesiano o sistema de ejes coordenados debe su nombre al matemático francés Rene Descartes, es utilizado principalmente en la Geometría Analítica
El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.
Concepto de función Función real de variable real es toda correspondencia f que asocia a cada elemento de un determinado subconjunto de números reales, llamado dominio, otro número real (uno y sólo uno).
MATE 3013 DERIVADAS Y GRAFICAS
MATE 3013 DERIVADAS Y GRAFICAS Extremos relativos La función f tiene un máximo relativo en el valor c si hay un intervalo (r, s), que contiene a c, en el cual f(c) f(x) para toda x entre r y s. Si además,
EXAMEN DEPARTAMENTAL DE CÁLCULO DIFERENCIAL MUESTRA FIN TECATE UABC
EXAMEN DEPARTAMENTAL DE CÁLCULO DIFERENCIAL MUESTRA FIN TECATE UABC 1. REACTIVO MUESTRA Sea el número A qué conjunto pertenece? a) trascendente b) irracionales c) Naturales d) Enteros 2. REACTIVO MUESTRA
