Gráficas de funciones
|
|
|
- David Sáez Navarro
- hace 10 años
- Vistas:
Transcripción
1 Apuntes Tema 1 Gráficas de funciones
2 1.1 Gráficas de funciones a) Función constante: f(x) = k b) Recta vertical: x = k c) Función lineal: f(x) = mx Todas pasan por el origen O(0, 0). 2
3 d) Función afín: f(x) = mx + n e) Parábolas: f(x) = ax 2 + bx + c Cálculo del vértice: x v = b 2a 3
4 f) Función cúbica y polinómica de grado mayor que 3 Para representarlas gráficamente basta con estudiar los puntos de corte con los ejes y los extremos relativos (máximos y mínimos). No tienen asíntotas. D = R. g) Función exponencial: Si a > 1 entonces es creciente Si 0 < a < 1 entonces es decreciente Las funciones exponenciales son siempre positivas, sus gráficas transcurren siempre por encima del eje OX, de ahí que las ecuaciones del tipo: e x2 +x 2 = 3 2 x = 0 no tengan solución. Dominio: D = R, salvo que el exponente contenga alguna discontinuidad. 4
5 h) Función logarítmica: Si a > 1 entonces es creciente Si 0 < a < 1 entonces es decreciente Los logaritmos surgen de despejar el exponente en una ecuación exponencial a y = x y = log a x Por eso, la función exponencial y la logarítmica son simétricas con respecto a la bisectriz del primer cuadrante (y = x). Siempre que tengamos una función logarítmica habrá que hallar su dominio, es decir, aquellos valores de x para los cuales el argumento del logaritmo es positivo. Ejemplos: 5
6 1. Halla el dominio de f(x) = ln (x 2 1) 2. Representa gráficamente la función f(x) = ln x. 3. Representa gráficamente la función f(x) = ln x. i) Función valor absoluto Podemos encontrarnos con dos tipos de funciones con valor absoluto. f(x) si f(x) 0 1. Valor absoluto de la función, por ejemplo, y = f(x) = { f(x) si f(x) < 0. Con estas funciones procederemos de la manera siguiente: a) Determinar los puntos de corte de f(x) con el eje OX. b) Estudiar los signos de f(x). c) Los intervalos positivos se quedan como estaban y los negativos se cambian de signo. En la gráfica, la parte de la función que queda por debajo del eje OX se reflejará en él, quedando por encima de dicho eje. Ej.: Representa la siguiente función: f(x) = x 2 x 2 = 0 x = 2 Ejercicios: Representa las siguientes funciones a) f(x) = 3 x b) f(x) = 2x + 4 c) f(x) = x 2 5x Valor absoluto de la variable x, por ejemplo, y = f( x ) = { f( x) si x < 0 f(x) si x 0 Para representarla gráficamente, primero dibujaremos la función f(x) para los valores positivos de x (a la derecha del eje OY). A la izquierda del eje OY anotaremos los simétricos respecto al eje vertical. 6
7 Ejercicio: Representa la función f(x) = x 2 4 x Valor absoluto en la región, pero no en la función. f(x) = { x2 + 1 si x < 2 x + 1 si x 2 j) Funciones trigonométricas Siempre las representaremos en radianes, nunca en grados. 7
8 f(x) = sen x f(x) = cos x f(x) = tg x k) Función raíz cuadrada: f(x) = x 8
9 La función anterior es la función inversa de f(x) = x 2, de ahí que sean simétricas con respecto a la bisectriz del primer cuadrante (y = x). 3 l) Raíz cúbica: f(x) = x m) Hipérbolas: f(x) = 1 x a 9
10 n) Traslaciones Tipo 1: y = f(x a) traslada a unidades a la derecha y = f(x + a) traslada a unidades a la izquierda Tipo 2: y = f(x) + a traslada a unidades hacia arriba y = f(x) a traslada a unidades hacia abajo 10
11 Ej.: Representa en el sistema cartesiano anterior la función f(x) = (x + 1) Ej.: Representa en el sistema cartesiano anterior la función f(x) = x 2 4x + 3. Ejercicios Representa las siguientes funciones: 1. f(x) = sen x 2. f(x) = sen x 3. f(x) = (x 4) 3 4. f(x) = 4 x 5. f(x) = { x2 4 si x < 3 x 2 si x 3 6. f(x) = ln (x + 5) 7. f(x) = x x
12 Ficha de repaso del tema 1 Representa gráficamente las siguientes funciones: a) f(x) = x 2 + 4x 32 b) f(x) = (x + 3) 2-4 c) f(x) = x 2 3 d) f(x) = x 2 + 4x (escríbela previamente a trozos) e) f(x) = cos x si π x 3π f) f(x) = Ln x 1 g) f(x) = 2cos (x + π 2 ) + 1 h) f(x) = x i) f(x) = { x + 2 si x < 2 x + 1 si x 2 j) f(x) = { 1 x2 si x 1 Ln x si x 1 k) f (x) = 2 x 1 12
13 a) b) c) 13
14 d) e) f) 14
15 g) h) i) 15
16 j) k) 16
TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1
TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 - FUNCIONES ELEMENTALES 10.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder
http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17
http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 1 CONCEPTOS BÁSICOS 1.1 DEFINICIONES Una función liga dos variables numéricas a las que, habitualmente, se les llama x e y. x es la
1. Definición 2. Operaciones con funciones
1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de
Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1
Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 TEMA 4 - FUNCIONES ELEMENTALES 4.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : Una función real de variable real es una aplicación de un subconjunto
Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada
FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones
Tipos de funciones. Clasificación de funciones
Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,
Unidad 6 Estudio gráfico de funciones
Unidad 6 Estudio gráfico de funciones PÁGINA 96 SOLUCIONES Representar puntos en un eje de coordenadas. 178 Evaluar un polinomio. a) b) c) d) e) Escribir intervalos. a) b) c) 179 PÁGINA 98 SOLUCIONES 1.a)
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado
1. Dominio, simetría, puntos de corte y periodicidad
Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele
Si se pueden obtener las imágenes de x por simple sustitución.
TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,
Examen funciones 4º ESO 12/04/13
Examen funciones 4º ESO 12/04/13 1) Calcula el dominio de las siguientes funciones: a. b. c. d. Calculamos las raíces del numerador y del denominador: Construimos la tabla para ver los signos: - - 0 +
TEMA 0: REPASO DE FUNCIONES
TEMA 0: REPASO DE FUNCIONES Recordamos que una función real de variable real es una aplicación de un subconjunto de los números reales A en el conjunto de los números reales de forma que a cada elemento
Concepto de función y funciones elementales
Concepto de unción unciones elementales Matemáticas I - º Bachillerato Las unciones describen enómenos cotidianos, económicos, psicológicos, cientíicos Tales unciones se obtienen eperimentalmente, mediante
FUNCIONES II: FUNCIONES ELEMENTALES
FUNCIONES II: FUNCIONES ELEMENTALES 1. FUNCIONES LINEALES Su gráfica es una recta. 1.1.FUNCION DE PROPORCIONALIDAD DIRECTA. f x =mx m R m es la pendiente e indica la inclinación de la recta que representa.
f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11
1. y = x + 11 x + 5 a) ESTUDIO DE f: 1) Dominio: Como es un cociente del dominio habrá que excluir los valores que anulen el denominador. Por tanto: x + 5 = 0 x = 5 ) Simetría: A simple vista, como el
Concepto de función. El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.
Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna. Función
FUNCIÓN CUADRÁTICA. Tres formas para identificar una parábola según los datos:
FUNCIÓN CUADRÁTICA Una función cuadrática es una función polinómica de segundo grado de la forma y=ax +bx+c, cuya gráfica es una parábola de eje vertical, donde a representa la abertura de la parábola.
BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas
BLOQUE IV Funciones 0. Funciones. Rectas y parábolas. Funciones racionales, irracionales, exponenciales y logarítmicas. Límites y derivadas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo
FUNCIONES FUNCIONES POLINÓMICAS DE GRADO UNO Y CERO. Funciones de proporcionalidad directa
Funciones de ecuación: ( ) FUNCIONES = m + n ; m y n son números reales Dom = R. Es continua en su dominio. Gráica: una recta m es la pendiente de la recta La pendiente de una recta es el cociente entre
Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =
T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente
1. Funciones y sus gráficas
FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada
Ejercicios de representación de funciones
Ejercicios de representación de funciones 1.- Representar las siguientes funciones, estudiando su: Dominio. Simetría. Puntos de corte con los ejes. Asíntotas y ramas parabólicas. Crecimiento y decrecimiento.
PROPIEDADES FUNCIONES PRINCIPALES
PROPIEDADES FUNCIONES PRINCIPALES 1.- FUNCIÓN EXPONENCIAL Sea a un número real positivo no nulo distinto de 1. Se llama función exponencial real de base a, a la función: a) a 0 = 1 b) a 1 = a f: R R x
m = 0 constante m > 0 creciente m < 0 decreciente n es la ordenada en el origen (donde la función corta al eje Y, imagen de x=0)
1. FUNCIONES POLINÓMICAS. D(f) = R A. FUNCIONES LINEALES: n = 1 Su gráfica es una recta. D (f) = R. Im (f) = R m = 0 constante m es la pendiente (inclinación) m > 0 creciente y = mx + n m < 0 decreciente
UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.
UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado
Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)
MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en
LA FUNCIÓN EXPONENCIAL Y LA FUNCIÓN LOGARÍTMICA. FUNCIONES DEFINIDAS A TROZOS. Función exponencial
LA FUNCIÓN EXPONENCIAL Y LA FUNCIÓN LOGARÍTMICA. FUNCIONES DEFINIDAS A TROZOS. Función eponencial La función eponencial es de la forma f () = a, tal que a > 0, a El valor a se llama base de la función
BLOQUE III Funciones
BLOQUE III Funciones 8. Funciones 9. Continuidad, límites y asíntotas 0. Cálculo de derivadas. Aplicaciones de las derivadas. Integrales 8 Funciones. Estudio gráfico de una función Piensa y calcula Indica
Senos (truco): (Coseno truco = pero el cero ponerlo del 90 a la izquierda y /2.
SENOS, COSENOS Y TANGENTES (REPASO): Grados Radianes Seno Coseno Tangente 0 0 0 1 0 30 pi / 6 un medio Raíz de 3 / 2 raíz de 3 / 3 45 pi / 4 raíz de 2 / 2 Raíz de 2 / 2 1 60 pi /3 raíz de 3 / 2 Un medio
TEMA 4 Y 5 FUNCIONES. (El valor de la y es función de lo que valga x, depende de x).
TEMA 4 Y 5 FUNCIONES. FUNCIÓN Una función relaciona dos variables: x (variable independiente) e y (variable dependiente). (El valor de la y es función de lo que valga x, depende de x). y = 3x 5 Una función
EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES
EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(
Capítulo 3 Soluciones de ejercicios seleccionados
Capítulo 3 Soluciones de ejercicios seleccionados Sección 3.1.4 1. Dom a = [ 1, 1]. Dom b = R. Dom c = (, 4). Dom d = ( 1, ). Dom e = R ( 1, 3] y Dom f = R {, }. 5x 4 x < 1, (x 1)(3x ) x < 1,. (f + g)(x)
Polinomios de Taylor.
Tema 7 Polinomios de Taylor. 7.1 Polinomios de Taylor. Definición 7.1 Recibe el nombre de polinomio de Taylor de grado n para la función f en el punto a, denotado por P n,a, el polinomio: P n,a (x) = f(a)
Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones
Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................
TEMA 5. REPRESENTACIÓN DE FUNCIONES
94 TEMA 5. REPRESENTACIÓN DE FUNCIONES 1. Representación de funciones 1.1. Dominio 1.. Puntos de corte con los ejes 1..1. Con el eje 1... Con el eje y 1.. Signo de la función 1.4. Periodicidad y simetría
Límite de una función
Límite de una función Idea intuitiva de límite El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco
FUNCIÓN POLINÓMICA DE GRADO TRES. FUNCIÓN CÚBICA.
FUNCIÓN POLINÓMICA DE GRADO TRES. FUNCIÓN CÚBICA. La ecuación de dichas funciones es de la forma f(x) = y = ax 3 +bx 2 +cx +d, donde a,b,c y d PRIMERAS CARACTERÍSTICAS: 1.- DOMINIO: por ser polinómicas
n es la ordenada en el origen, el punto de corte de la recta con el eje de ordenadas (el vertical, y)
Una función es una relación entre 2 magnitudes, de manera que a cada valor de x de la primera le corresponde un único valor de y, de la segunda. Este valor también se designa por f(x) y se conoce como
5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES
Tema 5 : Funciones elementales - Matemáticas B 4º E.S.O. 1 TEMA 5 FUNCIONES ELEMENTALES 5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES 3º 5.1.1 - FUNCIONES DE PROPORCIONALIDAD: y = mx Las funciones de proporcionalidad
FUNCIONES CUADRÁTICAS Y RACIONALES
www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro
La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.
Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio
Bloque 3. Análisis. 2. Tipos de funciones
Bloque 3. Análisis 2. Tipos de funciones 1. Función lineal Es una función polinómica de primer grado y tiene una ecuación del tipo: y = mx. Su gráfica es una línea recta que pasa por el origen de coordenadas,
FUNCIONES DE PROPORCIONALIDAD: y = mx. Su pendiente es 0. La recta y = 0 coincide con el eje
Funciones elementales - Matemáticas B 4º E.S.O. FUNCIONES ELEMENTALES DISTINTOS TIPOS DE FUNCIONES LINEALES FUNCIONES DE PROPORCIONALIDAD: y = mx FUNCIÓN CONSTANTE: y = n Las funciones de proporcionalidad
Estudio Gráfico de Funciones
Esquema 1 2 Esquema 1 2 Definición es una correspondencia entre dos conjuntos A B tal que a cada elemento del conjunto A le corresponde un único valor solo uno del conjunto B. La gráfica de la función
1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones:
F. EJERCICIOS PROPUESTOS. 1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: (a) f(x) =x 3 /3+3x 2 /2 10x. Resp.: Crece en (, 5) y en (2, ); decrece en ( 5, 2). (b) f(x) =x 3
DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x):
1 FUNCIONES ELEMENTALES CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x): Lo denotamos por : f : Dom -----> R x
FUNCIONES CUADRÁTICAS
FUNCIONES ELEMENTALES FUNCIONES CUADRÁTICAS. La función f() = La función cuadrática más sencilla es f() = cuya gráfica es: -3 - - -0'5 0 0'5 3 f() = 9 4 0'5 0 0'5 4 9 Características generales Su dominio
APLICACIONES DEL CÁLCULO DIFERENCIAL-II
APLICACIONES DEL CÁLCULO DIFERENCIAL-II. Estudia si crecen o decrecen las siguientes funciones en los puntos indicados: π a) f() cos en 0 b) f() ln ( arc tg ) en 0 π c) f() arc sen en 0 d) f() ln en 0
4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES
Tema 4 Funciones. Características - Matemáticas B 4º E.S.O. 1 TEMA 4 FUNCIONES. CARACTERÍSTICAS 4.1 CONCEPTOS BÁSICOS 3º 4.1.1 DEFINICIONES 3º Una función liga dos variables numéricas a las que, habitualmente,
Funciones definidas a trozos
Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad
Funciones y gráficas (1)
Funciones y gráficas (1) Introducción Uno de los conceptos más importantes en matemática es el de función. El término función fue usado por primera vez en 1637 por el matemático francés René Descartes
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva
Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad)
Integral definida Dada una función f(x) de variable real y un intervalo [a,b] R, la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y rectas x = a y x = b. bb
3ª Parte: Funciones y sus gráficas
3ª Parte: Funciones y sus gráficas Relaciones funcionales. Estudio gráfico y algebraico de funciones 1. Interpretación de gráficas 1. Un médico dispone de 1hora diaria para consulta. El tiempo que podría,
3. Funciones reales de una variable real. Límites. Continuidad 1
3. Funciones reales de una variable real. Límites. Continuidad 1 Una función real de variable real es una aplicación f : D R, donde D es un subconjunto de R denominado dominio de f. La función f hace corresponder
FUNCIONES ELEMENTALES
FUNCIONES ELEMENTALES 1.- FUNCIONES POLINÓMICAS. Las más importantes son las de grado 0, 1 y 2, también llamadas funciones constantes, afines y cuadráticas. Funciones constantes. Evidentemente, las funciones
REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL
REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se
Bloque II. Actividades de síntesis: Análisis. Solucionario OPCIÓN A
Bloque II Actividades de síntes: Anális Solucionario OPCIÓN A A.. a) Escribe la función f(x) x 4 x como una función a trozos y dibuja su gráfica. b) Para cuántos valores de x es f(x) 0? c) Para qué números
CALCULO 11-M-1 Primera Parte
CALCULO 11-M-1 Primera Parte Duración 1h 4m Ejercicio 1 (1. puntos) Una isla A se encuentra a 3 kilómetros del punto más próximo B de una costa rectilínea. En la misma costa, a 1 kilómetros de B se encuentra
Apuntes de Funciones
Apuntes de Funciones El concepto de función es un elemento fundamental dentro del análisis matemático, así como en sus aplicaciones. Esta idea se introdujo con el objetivo de matematizar la transformación
ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN
ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN Problema Datos Procedimiento Ejemplo Dominio de una La ecuación de Casos en los que en dominio no es IR: función la función Irracionales (ecluir valores
9 Funciones elementales
Solucionario 9 Funciones elementales ACTIVIDADES INICIALES 9.I. Halla las raíces y factoriza los siguientes polinomios. a) P() 4 b) Q() 3 6 a) Se resuelve la ecuación 4 0. Las raíces son 6 y, y P() ( 6)(
1.- CONCEPTO DE FUNCIÓN. DOMINIO Y RECORRIDO
1.- CONCEPTO DE FUNCIÓN. DOMINIO Y RECORRIDO Definición: Una función es una relación entre dos conjuntos X e Y, que asocia a cada elemento x X un único elemento y Y. Diremos que y es la imagen del elemento
4.1 EL SISTEMA POLAR 4.2 ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS
4 4.1 EL SISTEMA POLAR 4. ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS POLARES: RECTAS, CIRCUNFERENCIAS, PARÁBOLAS, ELIPSES, HIPÉRBOLAS, LIMACONS, ROSAS, LEMNISCATAS, ESPIRALES.
FUNCIONES ELEMENTALES
FUNCIONES ELEMENTALES FUNCIONES POLINÓMICAS.- Son aquellas cuya expresión algebraica es un polinomio. El grado del polinomio es el grado de la función polinómica. Ejemplos.- f ( x) = 3 g ( x) = x + 1 h
Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones
Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a
Posteriormente el matemático suizo Leonard Euler (1707-1783) fue el primero que utilizó el símbolo y = f(x) en la forma que ahora lo utilizamos.
Una función en matemáticas, es un término que se usa para indicar la relación entre dos o más magnitudes. El matemático alemán Gottfried Wilhelm Leibniz (1646-1716) fue el primero que utilizó el término
TEMA 7. FUNCIONES ELEMENTALES
TEMA 7. FUNCIONES ELEMENTALES 8.1. Funciones cuya gráfica es una recta. - Función constante. - Función de proporcionalidad. - Función lineal. - Pendiente. 8.2. Función cuadrática. - Representación gráfica
Análisis de funciones y representación de curvas
12 Análisis de funciones y representación de curvas 1. Análisis gráfico de una función Aplica la teoría 1. Dada la siguiente gráfica, analiza todas sus características, es decir, completa el formulario
Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II
Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 200 Las siguientes páginas contienen las soluciones de los ejercicios propuestos
Funciones. 63 Ejercicios para practicar con soluciones
Funciones. 63 Ejercicios para practicar con soluciones Dadas las siguientes funciones gráficas, asocia cada función con su gráfica: a) f() = b) g() = - c) h() = 3 a) La 3; b) La ; c) La De las siguientes
DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. [email protected]. Página. Titulo:
Titulo: DOMINIO Y RANGO I N D I C E Página DE UNA FUNCIÓN Año escolar: 4to. Año de Bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela
x - Verticales. No tiene asíntotas verticales porque f(x) está definida en R y no cambia de criterio en ningún punto. - Oblicuas.
f ( ) + +. Dominio D (f ) R 4. Recorrido Im( f ) [, ). Puntos de corte - Con el eje y, donde 0 y + + y P (0,) - Con el eje, donde y 0 No hay punto de corte con el eje 4. Asíntotas - Horizontales lim +
Ejercicios de Análisis propuestos en Selectividad
Ejercicios de Análisis propuestos en Selectividad.- Dada la parábola y 4, se considera el triángulo rectángulo T( r ) formado por los ejes coordenados y la tangente a la parábola en el punto de abscisa
ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS
ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS INTRODUCCIÓN La noción actual de función comienza a gestarse en el siglo XIV, cuando empiezan a preocuparse de medir y representar las variaciones de ciertas
Herramientas digitales de auto-aprendizaje para Matemáticas
Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura Índice Dada una función f : D R R y un intervalo I D
Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009
Estudio Gráfico de Funciones Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Índice 1. Función 2 1.1. Definición............................. 2 1.2. Clasificación............................
DE LA GRÁFICA A LA EXPRESIÓN ALGEBRAICA
De la gráfica a la expresión algebraica DE LA GRÁFICA A LA EXPRESIÓN ALGEBRAICA Rectas, Parábolas, Hipérbolas, Exponenciales Logarítmicas LA RECTA Comencemos localizando el punto donde la recta corta al
b1ct Propuesta Actividades Recuperación Matemáticas
b1ct Propuesta Actividades Recuperación Matemáticas Bloque Números 1 Resuelve: a. Si tomas como valor de 11. 1 la aproximación. 1, qué errores absoluto y relativo has cometido?. Solución: 0. 000; 0. 0%
Representación gráfica de funciones
Gráfica de una fución Representación gráfica de funciones La gráfica de una función está formada por el conjunto de puntos (x, y) para todos los valores de x pertenecientes al Dominio de la función gráfica
DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES
UNIDAD 6 DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES Página 5 Problema y f () 5 5 9 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(). f'() 0; f'(9) ; f'() Di otros tres puntos en
Colegio Las Tablas Tarea de verano Matemáticas 3º ESO
Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y
Esta es la gráfica de la función lineal y = 3x + 2 Vemos que m = 3 y b = 2 (de la forma y = mx + b)
FUNCIÓN LINEAL Una función lineal es una función cuyo dominio son todos los números reales, cuyo codominio también todos los números reales, y cuya expresión analítica es un polinomio de primer grado.
Repaso de funciones elementales, límites y continuidad
Tema 3 Repaso de funciones elementales, ites y continuidad 3.1. Funciones. Definiciones básicas. Operaciones con funciones 3.1.1. Definiciones Una función real de (una) variable real es una aplicación
TEMA 4. FUNCIONES DE VARIABLE REAL
TEMA 4. FUNCIONES DE VARIABLE REAL 4.1 Definición de función real Definición: Una función real de variable real es una aplicación de un subconjunto A en. f : A El dominio de una función es el conjunto
DEPARTAMENTO DE MATEMÁTICAS
DOMINIO Y PUNTOS DE CORTE 1. Se considera la función que tiene la siguiente gráfica: a) Cuál es su dominio de definición? Cuáles son los puntos de corte con los ejes de coordenadas? c) Presenta algún tipo
UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas.
UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas. PROBLEMAS DE CÁLCULO INFORMÁTICA DE SISTEMAS . Cálculo diferencial. Probar que a si y sólo si a a, siendo a >. Utilizar estas desigualdades
1.4.- D E S I G U A L D A D E S
1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y
Opción A Ejercicio 1 opción A, modelo Junio 2013 x cos(x) + b sen(x) [2 5 puntos] Sabiendo que lim
IES Fco Ayala de Granada Junio de 013 (Modelo ) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 013 x cos(x) + b sen(x) [ 5 puntos] Sabiendo que lim es finito, calcula b
FUNCIONES ELEMENTALES
FUNCIONES ELEMENTALES LA PARÁBOLA. FUNCIONES CUADRÁTICAS. FUNCIONES A TROZOS CON RECTA Y PARÁBOLAS. HIPÉRBOLAS. FUNCIONES RADICALES. FUNCIONES EXPONENCIALES. FUNCIONES LOGARITMICAS. La función =.- LA PARÁBOLA
IES Fco Ayala de Granada Sobrantes de 2011 ( Modelo 3) Solución Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Sobrantes de 11 ( Modelo 3) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 3 del 11 [ 5 puntos] Dada la función f : R R definida por f(x) ax 3 + bx +cx, determina
TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1
TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1 TEMA 11 LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN 11.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función en un
12 ESTUDIO DE FUNCIONES
ESTUDI DE FUNCINES EJERCICIS PRPUESTS. Representa las siguientes funciones lineales e indica el valor de sus pendientes. a) y b) y 5 y = + y = 5 c) y a) m 0 b) m 5 c) m y =. Representa estas funciones
TEMA 10.- FUNCIONES ELEMENTALES
º Bachillerato Matemáticas I Dpto de Matemáticas- I.E.S. Montes Orientales (Iznalloz)-Curso 20/202 TEMA 0.- FUNCIONES ELEMENTALES.- CONCEPTO DE FUNCIÓN. CARACTERÍSTICAS (Pág. 28) Deinición de unción. Decimos
CUADERNO DE TRABAJO 2
1 COLEGIO UNIVERSITARIO DE CARTAGO ELECTRÓNICA MATEMÁTICA ELEMENTAL EL-103 CUADERNO DE TRABAJO 2 Elaborado por: Msc. Adriana Rivera Meneses II Cuatrimestre 2014 2 ESTIMADO ESTUDIANTE: Continuamos con el
EJERCICIOS DE FUNCIONES REALES
EJERCICIOS DE FUNCIONES REALES.- La ley que relaciona el valor del área de un cuadrado con la longitud de su lado es una función. Sabemos que la epresión que nos relacionas ambas variables es. Observa
Halla dominio e imagen de las funciones
Tema 1 Las Funciones y sus Gráficas Ejercicios Resueltos Ejercicio 1 Halla dominio e imagen de las funciones y Como no está definido si, es decir, si El recorrido o imagen será el conjunto de todos los
i. y = 0,25x k. x = 2 l. y = -3 n. 2y 2x = 0
TRABAJO PRÁCTICO Nº1 1. Identificar la pendiente y ordenada al origen de las siguientes rectas. Graficar y escribir para cada una dominio, imagen, crecimiento, decrecimiento, raíces. a. y = 2x + 1 d. y
