FUNCIONES ELEMENTALES
|
|
|
- Rosa Venegas Acosta
- hace 7 años
- Vistas:
Transcripción
1 FUNCIONES ELEMENTALES 1.- FUNCIONES POLINÓMICAS. Las más importantes son las de grado 0, 1 y 2, también llamadas funciones constantes, afines y cuadráticas. Funciones constantes. Evidentemente, las funciones constantes están acotadas, no crecen ni decrecen y tienen simetría par. Funciones afines.
2 Las propiedades más importantes de las funciones afines son: El crecimiento o decrecimiento es más rápido cuanto mayor sea a. Funciones cuadráticas. Su dominio es todo y su representación gráfica es una parábola simétrica respecto a la recta vertical b (paralela al eje Y) de ecuación x = que se llama eje de la parábola. 2a Es convexa (1ª figura) si a > 0, y cóncava (2ª figura) si a < 0. Cuanto mayor sea a más cerrada es la parábola (más juntas están sus ramas).
3 El punto en que corta a su eje se llama vértice de la parábola. Su b primera coordenada es x =, y la segunda se calcula sustituyendo 2a ese valor en la función. Es el mínimo si la parábola es convexa y el máximo si es cóncava. Corta al eje Y en el punto (0,c) Los puntos de corte con el eje X son las soluciones de la ecuación ax 2 + bx + c = 0. Por tanto puede haber dos, uno o ninguno. Está acotada inferiormente (superiormente) por el valor de la y correspondiente al vértice según sea convexa o cóncava. 2.- FUNCIONES RACIONALES. Las funciones racionales más importantes son las funciones de proporcionalidad inversa que reflejan situaciones en que la relación entre dos variables es tal que cuando una se duplica la otra se reduce a la mitad, etc. Esas situaciones se llaman de proporcionalidad inversa. Ejemplo: la duración de un viaje en relación con la velocidad. La función correspondiente se llama función de proporcionalidad inversa y su fórmula es k y = siendo k 0 x Las propiedades más importantes de estas funciones son:
4 Cuando los valores de x se hacen muy grandes los de y se acercan a 0, y cuando los de x se acercan a 0 los de y se hacen muy grandes. Por ello se dice que los ejes de coordenadas son asíntotas para esta función (el eje X horizontal y el eje Y vertical). La gráfica correspondiente se llama hipérbola y tiene dos ramas, una en el primer cuadrante y otra en el tercero. Es simétrica respecto al origen y decreciente (si fuese k < 0 las ramas estarían en el segundo y cuarto cuadrantes y la gráfica sería creciente). Si k = 1 la hipérbola se llama equilátera. 3.- FUNCIONES EXPONENCIALES. La base no puede ser negativa porque tendríamos problemas para calcular, por ejemplo (- 2) 1/2 Y tampoco tiene interés usar el 0 ni el 1 como base porque nos reduciríamos a las funciones constantes f(x) = 0 y f(x) = 1. La gráfica de las funciones exponenciales varía según la base a sea mayor o menor que 1. Por ejemplo:
5 Las propiedades más importantes son: 4.- FUNCIONES LOGARÍTMICAS. Recordar que al definir los logaritmos se explicó por qué la base tiene que ser positiva y distinta de 1. Y también que la variable x sólo puede tomar valores estrictamente positivos. Igual que en el caso de las exponenciales la gráfica varía según la base a sea mayor o menor que 1. Por ejemplo:
6 Las propiedades más importantes son: Como se observa en las representaciones gráficas cuando la variable x toma valores cada vez más próximos al 0, la función toma valores cada vez mayores en positivo (si a < 0) o en negativo (si a > 0), por lo que se dice que el eje Y es una asíntota vertical para estas funciones. No puede ser simétrica al no existir para valores de x menores o iguales a 0. Si recordamos la definición de logaritmo: y = log a x a y = x, vemos que estas funciones son las inversas de las exponenciales: En la función exponencial dada x se calcula el valor de y = a x En la función logarítmica dada x se calcula el valor de y tal que a y = x En consecuencia las gráficas de las dos funciones (exponencial y logarítmica) son simétricas respecto a la bisectriz del primer cuadrante (y = x).
7 5.- FUNCIONES TRIGONOMÉTRICAS. Las razones trigonométricas asignan a cada ángulo un único número, por lo que podemos considerarlas funciones que dependen del valor de dicho ángulo: las funciones trigonométricas o circulares. Estas funciones son muy importantes por sí mismas pero, además, son los ejemplos más conocidos de funciones periódicas. Sólo vamos a ver tres de ellas: las funciones seno, coseno y tangente. Además existen las funciones secante, cosecante y cotangente, y las inversas de todas ellas: arco seno, arco coseno, En las funciones trigonométricas los valores del ángulo x se expresan en radianes (un radián es el ángulo que, colocado en el centro de una circunferencia, determina sobre ella un arco de longitud igual al radio. Para representar las funciones trigonométricas recordemos que si el ángulo se coloca en el centro de una circunferencia de radio 1 (llamada circunferencia goniométrica) con el primer lado sobre la dirección positiva del eje X (supuesto que los ejes se cortasen en el centro de la circunferencia) las distintas razones trigonométricas vienen representadas por las longitudes de unos segmentos que recordamos en la figura: Función seno: Es la que hace corresponder a cada valor real x del ángulo, expresado en radianes, el valor del seno de dicho ángulo. Se escribe f(x) = sen x. Para representarla hacemos una tabla de valores (ponemos también los valores en grados de los ángulos para facilitar la comprensión).
8 Las propiedades más importantes de esta función son: Dom (f) = e Im (F) = [-1, 1] Corta al eje X en los puntos de la forma x = 0 + nπ, con n, y al eje Y en el punto (0, 1) Es estrictamente creciente en los intervalos, π π,, π π,, π π, , Es estrictamente decreciente en los intervalos, π, π, π, π, π, π , Tiene infinitos máximos relativos en los puntos (π/2 + 2πn, 1) con n Tiene infinitos mínimos relativos en los puntos (3π/2 + 2πn, - 1) con n Está acotada superiormente por 1 e inferiormente por 1 Es par y periódica de período 2π Función coseno: Es la que hace corresponder a cada valor real x del ángulo, expresado en radianes, el valor del coseno de dicho ángulo. Se escribe f(x) = cos x. Para representarla hacemos una tabla de valores como en el caso del seno.
9 Las propiedades más importantes de esta función son: Dom (f) = e Im (F) = [-1, 1] Corta al eje X en los puntos de la forma x = π/2 + nπ, con n, y al eje Y en el punto (0, 1) Es estrictamente creciente en los intervalos, (-π, 0), (π, 2π), (3π, 4π), Es estrictamente decreciente en los intervalos, (-2π, -π), (0, π), (2π, 3π), Tiene infinitos máximos relativos en los puntos (0 + 2πn, 1) con n Tiene infinitos mínimos relativos en los puntos (π + 2πn, - 1) con n Está acotada superiormente por 1 e inferiormente por 1 Es par y periódica de período 2π Función tangente: Es la que hace corresponder a cada valor real x del ángulo, expresado en radianes, el valor del coseno de dicho ángulo. Se escribe f(x) = tg x. Para representarla hacemos una tabla de valores como en los casos anteriores:
10 . Las propiedades más importantes de esta función son: 6.- FUNCIONES DEFINIDAS A TROZOS. Hay funciones que no están definidas por una única fórmula sino que presentan diferentes expresiones en distintas partes (intervalos) de su dominio. Este tipo de funciones se dice que están definidas a trozos. Para representarlas se puede dibujar primero la gráfica de cada una de las expresiones en toda la recta real y luego quedarnos solamente con la parte correspondiente al trozo (intervalo) que nos interese, como puede verse en los ejemplos siguientes:
11 Las funciones definidas a trozos más importantes son: Función valor absoluto. Función parte entera. La función parte entera f(x) = E (x) asocia a cada número real x el mayor número entero que sea menor o igual que x. Hay que tener cuidado porque, por ejemplo, la parte entera de 2 4 NO es -2, es -3.
12 Su gráfica es la siguiente: Las funciones que tienen gráficas de este tipo se dice que son escalonadas. Función valor absoluto de una función. Por ejemplo, vamos a representar la gráfica de la función f(x) = x 2-4.
FUNCIONES FUNCIONES POLINÓMICAS DE GRADO UNO Y CERO. Funciones de proporcionalidad directa
Funciones de ecuación: ( ) FUNCIONES = m + n ; m y n son números reales Dom = R. Es continua en su dominio. Gráica: una recta m es la pendiente de la recta La pendiente de una recta es el cociente entre
1.- CONCEPTO DE FUNCIÓN. DOMINIO Y RECORRIDO
1.- CONCEPTO DE FUNCIÓN. DOMINIO Y RECORRIDO Definición: Una función es una relación entre dos conjuntos X e Y, que asocia a cada elemento x X un único elemento y Y. Diremos que y es la imagen del elemento
Si se pueden obtener las imágenes de x por simple sustitución.
TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,
TEMA 0: REPASO DE FUNCIONES
TEMA 0: REPASO DE FUNCIONES Recordamos que una función real de variable real es una aplicación de un subconjunto de los números reales A en el conjunto de los números reales de forma que a cada elemento
Bloque 3. Análisis. 2. Tipos de funciones
Bloque 3. Análisis 2. Tipos de funciones 1. Función lineal Es una función polinómica de primer grado y tiene una ecuación del tipo: y = mx. Su gráfica es una línea recta que pasa por el origen de coordenadas,
Apuntes de Funciones
Apuntes de Funciones El concepto de función es un elemento fundamental dentro del análisis matemático, así como en sus aplicaciones. Esta idea se introdujo con el objetivo de matematizar la transformación
Propiedad importante: Si una recta pasa por los puntos ( a, 1. FUNCIÓNES POLINÓMICAS DE PRIMER GRADO
1. FUNCIÓNES POLINÓMICAS DE PRIMER GRADO Son funciones de la forma mx n ó y mx n donde: m : se llama pendiente de la recta n : se llama ordenada en el origen. La recta pasa por el punto 0,n Ya sabemos
UNIDAD 7.- FUNCIONES ELEMENTALES (tema 10 del libro)
UNIDAD 7.- FUNCIONES ELEMENTALES (tema 10 del libro) 1. FUNCIONES AFINES Y LINEALES Son funciones cuya gráfica es una recta (como ya vimos en geometría). De manera general son de la forma f ( ) = m + n
REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL
REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se
Funciones. 1. Funciones. Ecuaciones. Curvas. 2. Función lineal. La recta
Funciones 1 Funciones Ecuaciones Curvas Una función es una correspondencia entre números Mediante la función f a cada número x se le hace corresponder un solo número que se representa por f(x) Puesto que
TEMA 0 FUNCIONES ***************
TEMA 0. Definición y terminología.. Funciones conocidas. 3. Operaciones con funciones. 4. Funciones inversas. FUNCIONES ***************. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable
FUNCIONES ELEMENTALES Y PROPIEDADES
. NOCIONES INTRODUCTORIAS.. Concepto de función. Dominio e Imagen. Una función es una relación entre dos variables, de forma que a cada valor de la variable independiente x, le asocia un único valor de
El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.
Concepto de función Función real de variable real es toda correspondencia f que asocia a cada elemento de un determinado subconjunto de números reales, llamado dominio, otro número real (uno y sólo uno).
TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.
2009 TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 1º E.S.O. TEMA 08: Funciones. TEMA 08: FUNCIONES. 1. Correspondencia.
La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.
Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio
TEMA 7. FUNCIONES ELEMENTALES
TEMA 7. FUNCIONES ELEMENTALES 8.1. Funciones cuya gráfica es una recta. - Función constante. - Función de proporcionalidad. - Función lineal. - Pendiente. 8.2. Función cuadrática. - Representación gráfica
FUNCIONES ELEMENTALES
FUNCIONES ELEMENTALES FUNCIONES POLINÓMICAS.- Son aquellas cuya expresión algebraica es un polinomio. El grado del polinomio es el grado de la función polinómica. Ejemplos.- f ( x) = 3 g ( x) = x + 1 h
Esta es la gráfica de la función lineal y = 3x + 2 Vemos que m = 3 y b = 2 (de la forma y = mx + b)
FUNCIÓN LINEAL Una función lineal es una función cuyo dominio son todos los números reales, cuyo codominio también todos los números reales, y cuya expresión analítica es un polinomio de primer grado.
FUNCIONES CUADRÁTICAS
FUNCIONES ELEMENTALES FUNCIONES CUADRÁTICAS. La función f() = La función cuadrática más sencilla es f() = cuya gráfica es: -3 - - -0'5 0 0'5 3 f() = 9 4 0'5 0 0'5 4 9 Características generales Su dominio
Gráfico Exponencial, Polinominal y Cuadrático. Grafico de la funcion exponencial F(x)=a^ x, con a > 1. F(x)= 2^x
Gráfico Exponencial, Polinominal y Cuadrático Grafico de la funcion exponencial F(x)=a^ x, con a > 1 F(x)= 2^x Rec: R+ F(x):creciente en su recorrido ( la curva crece de izquierda a derecha) Asintótica
Los números reales Los números naturales... 2 Los números enteros... 2 Las leyes de los signos... 3 Los números racionales...
ÍNDICE Capítulo 1 Introducción... 1 Los números reales... 2 Los números naturales... 2 Los números enteros... 2 Las leyes de los signos... 3 Los números racionales... 4 Los números reales... 7 Los exponentes...
m = 0 constante m > 0 creciente m < 0 decreciente n es la ordenada en el origen (donde la función corta al eje Y, imagen de x=0)
1. FUNCIONES POLINÓMICAS. D(f) = R A. FUNCIONES LINEALES: n = 1 Su gráfica es una recta. D (f) = R. Im (f) = R m = 0 constante m es la pendiente (inclinación) m > 0 creciente y = mx + n m < 0 decreciente
TEMA 7. FUNCIONES. a) Mediante una grafica. Es la forma en la que mejor se puede apreciar el comportamiento global de una función.
. INTRODUCCIÓN. TEMA 7. FUNCIONES Las funciones estudian la relación existente entre dos variables. Para expresar esta relación, las funciones se pueden presentar de diferentes formas: a) Mediante una
FUNCIONES II: FUNCIONES ELEMENTALES
FUNCIONES II: FUNCIONES ELEMENTALES 1. FUNCIONES LINEALES Su gráfica es una recta. 1.1.FUNCION DE PROPORCIONALIDAD DIRECTA. f x =mx m R m es la pendiente e indica la inclinación de la recta que representa.
Análisis de Funciones Tema 1: Qué empiece la función! Apuntes: Parte 1
Tema : Qué empiece la función! Apuntes: Parte.- Idea de función Se define función real de variable real, a una relación que asocia a un número de un conjunto inicial, otro número de un conjunto final.
DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x):
1 FUNCIONES ELEMENTALES CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x): Lo denotamos por : f : Dom -----> R x
Contenido. Prefacio 13
Contenido Prefacio 13 Los números reales y la recta numérica Los números na turales: N Los números enteros: Z.. Los números racionales: Q Números irracionalcs: II.. Números reales: lr Propiedades de los
UNIDAD 8.- Funciones racionales (tema 8 del libro)
(tema 8 del libro). FUNCIÓNES DE PROPORCIONALIDAD INVERSA k Las funciones de proporcionalidad inversa son funciones cuya epresión es de la forma f ( ) Las gráficas de estas funciones son o se llaman hipérbolas
el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1
el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1 FUNCIONES LINEALES 1.- FUNCIÓN CONSTANTE Una función constante es aquella en la cual el valor de la variable dependiente siempre
1. FUNCIÓN REAL DE VARIABLE REAL
1. FUNCIÓN REAL DE VARIABLE REAL Una función real de variable real es una aplicación de un subconjunto de los nº reales ( R ) en otro subconjunto de R f : D R R Se representa de la siguiente forma: Una
5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES
Tema 5 : Funciones elementales - Matemáticas B 4º E.S.O. 1 TEMA 5 FUNCIONES ELEMENTALES 5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES 3º 5.1.1 - FUNCIONES DE PROPORCIONALIDAD: y = mx Las funciones de proporcionalidad
Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x
Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que
01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial.
2.6 Criterios específicos de evaluación. 01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial. 03. Conoce la definición
FUNCIONES DE PROPORCIONALIDAD: y = mx. Su pendiente es 0. La recta y = 0 coincide con el eje
Funciones elementales - Matemáticas B 4º E.S.O. FUNCIONES ELEMENTALES DISTINTOS TIPOS DE FUNCIONES LINEALES FUNCIONES DE PROPORCIONALIDAD: y = mx FUNCIÓN CONSTANTE: y = n Las funciones de proporcionalidad
10.1 LAS FUNCIONES DESCRIBEN FENÓMENOS REALES
TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 - FUNCIONES ELEMENTALES 10.1 LAS FUNCIONES DESCRIBEN FENÓMENOS REALES Las funciones describen fenómenos cotidianos, económicos, psicológicos,
TEMA 10.- FUNCIONES ELEMENTALES
º Bachillerato Matemáticas I Dpto de Matemáticas- I.E.S. Montes Orientales (Iznalloz)-Curso 20/202 TEMA 0.- FUNCIONES ELEMENTALES.- CONCEPTO DE FUNCIÓN. CARACTERÍSTICAS (Pág. 28) Deinición de unción. Decimos
UNIDAD 3: FUNCIONES -PROPIEDADES GLOBALES -OPERACIONES -FUNCIONES ELEMENTALES -INTERPOLACIÓN
UNIDAD 3: FUNCIONES -PROPIEDADES GLOBALES -OPERACIONES -FUNCIONES ELEMENTALES -INTERPOLACIÓN 46 OBJETIVOS DIDÁCTICOS En esta unidad aprenderás a:. Analizar si una gráfica es o no función.. Analizar las
FUNCIONES REALES DE VARIABLE REAL
Pag. 1 FUNCIONES REALES DE VARIABLE REAL 1.- Aplicaciones y Funciones. Definiciones. 2.- Tipos de funciones. 3.-Operaciones con funciones. 4.-Composición de funciones. 5.- Función identidad y funciones
Principios de graficación
Graicación Principios de graicación En algunas oportunidades tenemos que graicar una unción que es casi igual a las que a sabemos graicar, llamadas básicas, sólo que estas presentan elementos adicionales
Funciones reales de variable real
Tema Funciones reales de variable real Introducción El objetivo fundamental de este tema es recordar conceptos ya conocidos acerca de las funciones reales de variable real.. Conceptos Generales Definición.
Prueba de Septiembre 2012/13
Contenidos 1º Bach. Matemáticas Aplicadas a las C. Sociales I Prueba de Septiembre 2012/13 Aritmética y Álgebra. - El número real. La recta real. - El número irracional. Ejemplos de especial interés, 2,.
ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES
ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES I ) DOMINIO DE DEFINICIÓN DE UNA FUNCIÓN: Es el conjunto de puntos donde tiene sentido realizar las operaciones indicadas en el criterio de definición de la
EV ALU ACIÓN EXTRAO RDIN ARI A DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS I.
EV ALU ACIÓN EXTRAO RDIN ARI A DE SEPTIEMBRE CURSO 2014-2015. Contenidos para la Prueba de Septiembre MATEMÁTICAS I. UNIDAD 1: NÚMEROS REALES Números racionales, irracionales y reales. Ordenación en el
Ecuación de la recta tangente
Ecuación de la recta tangente Pendiente de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. Recta tangente a una curva en un punto
FUNCIONES REALES 1º DE BACHILLERATO CURSO
FUNCIONES REALES 1º DE BACHILLERATO CURSO 2007-2008 Funciones reales Definición Clasificación Igual de funciones Dominio Propiedades Monotonía Extremos relativos Acotación. Extremos absolutos Simetría
GRÁFICA DE FUNCIONES
GRÁFICA DE FUNCIONES. Función cuadrática. Potencia. Eponencial 4. Logarítmica 5. Potencia de eponente negativo 6. Seno 7. Coseno 8. Tangente 9. Valor absoluto. Dominio. Puntos de corte con los ejes. Simetrías.
Funciones. Las funciones no tienen una forma única de expresión, y sin embargo, de todas ellas podemos extraer propiedades.
7 Funciones LECTURA INICIAL Las funciones no tienen una forma única de expresión, y sin embargo, de todas ellas podemos extraer propiedades. G. W. Leibniz Busca en la web El calculo Trabajando por separado
Sucesiones y Series. Capítulo O.
Capítulo O. Sucesiones y Series 0.1 Valor absoluto. Propiedades 0.2 Algunas fórmulas trigonométricas 0.3 Fórmulas de la geometría analítica del plano. Distancia entre dos puntos. Punto medio. Pendiente
Fundamentos matemáticos. Tema 4 Funciones de una y varias variables
Grado en Ingeniería agrícola y del medio rural Tema 4 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna [email protected] 2017 Licencia Creative Commons 4.0 Internacional J.
Tema 9 Funciones elementales
Tema 9 Funciones elementales 9.1Gráfica de una función. Signo simetría. PÁGINA 175 EJERCICIOS 1. Encuentra los puntos de corte con los ejes de las siguientes funciones estudia su signo. 3 c) f 1 c.1) Cortes
Tema 7.0. Repaso de números reales y de funciones
Matemáticas II (Bachillerato de Ciencias) Análisis: Repaso de números reales y de funciones 47 Tema 70 Repaso de números reales y de funciones El conjunto de los números reales El conjunto de los números
Medida de ángulos. Para medir ángulos se utilizan las siguientes unidades:
Medida de ángulos Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. El ángulo es positivo si se desplaza
Distribución de ítems para la prueba nacional Matemática Modalidad Técnica Convocatorias 2016
ESTIMADO DOCENTE: Ministerio de Educación Pública Distribución de ítems para la prueba nacional Matemática Modalidad Técnica Convocatorias 2016 En la modalidad de colegios técnicos, la Prueba de Bachillerato
DEPARTAMENTO DE MATEMÁTICAS
DOMINIO Y PUNTOS DE CORTE 1. Se considera la función que tiene la siguiente gráfica: a) Cuál es su dominio de definición? Cuáles son los puntos de corte con los ejes de coordenadas? c) Presenta algún tipo
Tema 4: Representación de Funciones
Tema 4: Representación de Funciones.- Dominio y recorrido: Dominio: Valores de para los que está definida (eiste) f () Recorrido: Valores que toma f () Funciones Polinómicas, son de la forma f ( ) ao a...
Alumno/a: Curso: PLAN DE RECUPERACIÓN PARA ALUMNOS/AS PEDIENTES DE MATEMÁTICAS I
Alumno/a: Curso: PLAN DE RECUPERACIÓN PARA ALUMNOS/AS PEDIENTES DE MATEMÁTICAS I Se realizarán tres pruebas a lo largo del Curso: 1ª prueba: 19 de noviembre (jueves), a las 9:1 en el Salón de Actos. ª
(tema 9 del libro) 1. FUNCIÓNES EXPONENCIALES
(tema 9 del libro). FUNCIÓNES EXPONENCIALES Son funciones de la forma f ( ) a donde a 0 y a. Su dominio es todo R y van a estar acotadas inferiormente por 0, que es su ínfimo. Todas pasan por el punto
Ficha 1. Formas de expresar una función
Ficha 1. Formas de expresar una función 1. En unas instalaciones deportivas cobran 5 euros por la entrada, que da derecho a la utilización de todas las dependencias salvo las pistas de tenis, por las que
MATERIA:_Matemáticas V 5010 CICLO ESCOLAR_ PROFESOR:
MATERIA:_Matemáticas V 5010 CICLO ESCOLAR_2014-2015 PROFESOR: Relaciones y funciones. Para las siguientes funciones encuentra el dominio por medio de su regla de correspondencia e intervalo correspondiente
MATEMÁTICA Modalidad Académica (Diurna Nocturna)
2255-2272 222-555 MATEMÁTICA Modalidad Académica (Diurna Nocturna) Distribución del número de ítems según los objetivos o habilidades generales de los Programas de estudio para las Pruebas Nacionales de
Funciones, Límites y Continuidad
Tema Funciones, Límites y Continuidad Introducción El objetivo fundamental de este tema es recordar conceptos ya conocidos acerca de las funciones reales de variable real, así como de los límites en dichas
REPÚBLICA BOLIVARIANA DE VENEZUELA NÚCLEO COSTA ORIENTAL DEL LAGO PROGRAMA DE INGENIERÍA UNIDAD CURRICULAR: CÁLCULO I
REPÚBLICA BOLIVARIANA DE VENEZUELA NÚCLEO COSTA ORIENTAL DEL LAGO PROGRAMA DE INGENIERÍA UNIDAD CURRICULAR: CÁLCULO I FUNCIONES Instructivo de trabajo Autor: Ing. Roger J. Chirinos S., MSc. Ciudad Ojeda,
f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).
TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:
No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.
FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números
Funciones y sus gráficas
y sus gráficas Marzo de 2006 Índice 1 polinómicas función constante función lineal función afín función cuadrática 2 racionales función de proporcionalidad inversa función racional 3 exponenciales 4 Ejemplos
FUNCIONES POLINÓMICAS
PRÁCTICAS CON DERIVE 28 NUM.de MATRÍCULA FECHA... APELLIDOS /Nombre...PC PRÁCTICA CUATRO. FUNCIONES ELEMENTALES FUNCIONES POLINÓMICAS Dado un entero n 0, la función f(x) =a 0 x n + a 1 x n 1 + a 2 x n
Fecha: 29/10/2013 MATEMÁTICAS
Página: 1/5 MATEMÁTICAS Álgebra 1.- Conceptos y operaciones algebraicas fundamentales Terminología Operaciones fundamentales con monomios y polinomios o Reducción de términos semejantes o Suma, resta o
TEMA 4 Y 5 FUNCIONES. (El valor de la y es función de lo que valga x, depende de x).
TEMA 4 Y 5 FUNCIONES. FUNCIÓN Una función relaciona dos variables: x (variable independiente) e y (variable dependiente). (El valor de la y es función de lo que valga x, depende de x). y = 3x 5 Una función
Tema 9: Estudio y representación de funciones
1. Introducción Tema 9: Estudio y representación de funciones El objetivo de esta unidad es representar gráficamente funciones polinómicas, racionales, irracionales, exponenciales y logarítmicas sencillas,
TEMA 3. Funciones. Cálculo diferencial
TEMA 3. Funciones. Cálculo diferencial En este tema vamos a hacer un estudio preliminar de las funciones de una variable real y el importante concepto de derivada. Comenzaremos recordando las funciones
SOLUCIONARIO. UNIDAD 11: Funciones elementales ACTIVIDADES-PÁG Las representaciones gráficas aparecen a continuación: f (x) = 2x - 5
UNIDAD 11: Funciones elementales ACTIVIDADES-PÁG. 48 1. Las representaciones gráficas aparecen a continuación: f () = - 5 g () = + 4 + 5 183 h () = - 3 184 . Los resultados aparecen en la tabla. Función
Gráficas de funciones
Apuntes Tema 1 Gráficas de funciones 1.1 Gráficas de funciones a) Función constante: f(x) = k b) Recta vertical: x = k c) Función lineal: f(x) = mx Todas pasan por el origen O(0, 0). 2 d) Función afín:
Bloque 3. Funciones. 1. Análisis de funciones
Bloque 3. Funciones 1. Análisis de funciones 1. Concepto de función Una función es una relación entre dos magnitudes, de tal manera que a cada valor de la primera le corresponde un único valor de la segunda,
Tema 8: Estudio y representación de funciones
Tema 8: Estudio y representación de funciones 1. Introducción El objetivo de esta unidad es representar gráficamente funciones polinómicas, racionales, irracionales, exponenciales y logarítmicas sencillas,
EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES
EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación
Distribución de ítems para la prueba nacional Matemática Modalidad Colegios Técnicos Convocatorias 2014
ESTIMADO DOCENTE: Distribución de ítems para la prueba nacional Matemática Modalidad Colegios Técnicos Convocatorias 201 En la modalidad de colegios técnicos, la Prueba de Bachillerato 201 considerará
Tema 2. FUNCIONES REALES DE VARIABLE REAL
UAH Funciones reales de variable real 1 Tema FUNCIONES REALES DE VARIABLE REAL Concepto de función Dados dos conjuntos A y B, una función de A en B es una relación (una ley) que asigna a cada elemento
REPRESENTACIÓN DE CURVAS
ºBachillerato REPRESENTACIÓN DE CURVAS Esquema Para representar gráficamente una función se debe estudiar:. Dominio. Puntos de corte con los ejes coordenados. Paridad y periodicidad 4. Asíntotas 5. Monotonía
Función Real de variable Real. Definiciones
Función Real de variable Real Definiciones Función Sean A y B dos conjuntos cualesquiera. Una aplicación de A en B es una relación que asocia a cada elemento (x=variable independiente) de A un único valor
Guía de exámenes parciales
Universidad de Costa Rica Escuela de Matemática Proyecto MATEM http://matem.emate.ucr.ac.cr/ tel. (506) 511-458 Guía de exámenes parciales Precálculo undécimo 017 Contenido I Parcial:... Álgebra... Geometría
Funciones elementales: polinómica, racional y con radicales
8 Funciones elementales: polinómica, racional y con radicales LECTURA INICIAL Las parábolas y las hipérbolas son elementos muy utilizados en las representaciones artísticas o arquitectónicas, para medir
Colegio Portocarrero. Curso Departamento de matemáticas. 2º Bachillerato de Humanidades. Concepto de función
2º Bachillerato de Humanidades. Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir
Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)
Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de
FUNCIONES. Ejemplo: F(x) = 3x + 2
FUNCIONES Una función es una regla que asocia a cada elemento de un conjunto, uno y solo un elemento de otro conjunto. Una función es un conjunto de parejas ordenadas de números (x, y) en el cual dos parejas
Funciones Trigonométricas Directas.
2.2. Funciones Trascendentes. 2.2.1. Funciones trascendentes: funciones trigonométricas y funciones eponenciales. Funciones Trascendentes No siempre se puede modelar con funciones del tipo algebraico;
Mapa Curricular: Funciones y Modelos
A.PR.11.2.1 Determina el dominio y el alcance de las funciones a partir de sus diferentes representaciones. A.PR.11.2.2 Identifica y aplica las relaciones entre los puntos importantes de una función (ceros,
Tema 2.- Va de funciones. Ejercicios Definición de funciones y funciones sencillas. Forma de dar una función.
Tema 2.- Va de funciones. Ejercicios 2.1.- Definición de funciones y funciones sencillas. Forma de dar una función. 1. En un triángulo isosceles de perímetro 20, expresa la base como función del otro lado.
