Funciones Trigonométricas Directas.
|
|
|
- Mercedes Montoya Ruiz
- hace 8 años
- Vistas:
Transcripción
1 2.2. Funciones Trascendentes Funciones trascendentes: funciones trigonométricas y funciones eponenciales. Funciones Trascendentes No siempre se puede modelar con funciones del tipo algebraico; esto ha dado lugar al desarrollo de otro tipo de funciones, las funciones trascendentes, las cuales se clasifican en: las trigonométricas y sus inversas, relacionadas con el triángulo rectángulo; y las logarítmicas y eponenciales, más asociadas a una variación en progresión geométrica (crecimiento poblacional, por ejemplo). Definición: Se llama función trascendente, aquella cuya variable y contiene epresiones trigonométricas, eponenciales o logarítmicas. Ejemplos de funciones trascendentes Algebraicas Funciones Logarítmicas Trascendentes Trigonométricas Eponenciales Funciones Trigonométricas Directas. Función trigonométrica Directas: Las funciones trigonométricas son el resultado del cociente de dos números (cateto sobre hipotenusa, hipotenusa sobre cateto, cateto sobre cateto). Esto hace necesario, para el dominio de definición, restringir el eje en aquellos números que anulen el denominador.
2 Seno Coseno Tangente Cotangente Secante Cosecante La función seno es la asociación entre un ángulo dado y el valor de su seno La función coseno es la asociación entre un ángulo dado y el valor de su coseno. La función tangente es la asociación entre un ángulo dado y el valor de su tangente. La función cotangente es la asociación entre un ángulo dado y el valor de su cotangente. La función secante es la asociación entre un ángulo dado y el valor de su secante. La función cosecante es la asociación entre un ángulo dado y el valor de su cosecante. f () = sen f() = cos f() = tg f() = cotg f() = sec f() = cosec La función seno y cosecante son inversas, así como lo son coseno y secante, y tangente con cotangente. También, tenemos que: senα cosα tanα = cot gα = cos α ; sen α Dominio de las Funciones Trigonométricas Directas Función Dominio Contradominio. f() = sen Todo eje real - < < El denominador es la hipotenusa, la cual siempre es diferente de cero, no así los catetos del triángulo f() = cos Todo eje real. - < < La misma razón que el primer caso. f() = tg π 3π 5π Se restringe el dominio de manera que el ± ; ± ; ± ; denominador debe ser cos 0. f() = cotg 0; ± π ; ± 2π; ± 3π;. Se restringe el dominio de manera que el denominador debe ser sen 0. f() = sec π 3π 5π Se restringe el dominio de manera que el ± ; ± ; ± ; denominador cos 0. f() = cosec 0; ± π ; ± 2π; ± 3π;.. Se restringe el dominio de manera que el denominador sen 0.
3 Gráficas de las Funciones Trigonométricas Directas Gráfica de y = sen Gráfica de y = cos Gráfica de y = tg
4 Gráfica de y = cotg PERÍODO: π DOMINIO: Todos los números reales, con ecepción de los de la forma kπ, siendo k un entero. RANGO: R Función impar (simétrica con respecto al origen). Función decreciente entre las asíntotas. Discontinua para kπ, siendo k entero.
5 Gráfica de y = sec PERÍODO: 2π DOMINIO: Todos los números reales, con ecepción de los de la forma π/2 + kπ, siendo k un entero. RANGO: (-, -1] U [1, ) Función par (simétrica con respecto al eje y). Discontinua en π/2 + kπ, siendo k entero. Gráfica de y = cosec
6 PERÍODO: 2π DOMINIO: Todos los números reales, con ecepción de los de la forma kπ, siendo k un entero. RANGO: (-, -1] U [1, ) Función impar (simétrica con respecto al origen). Discontinua para kπ, siendo k entero. Función Eponencial. Definición: Función eponencial: sea a un número real positivo y distinto de 1. Definimos la función eponencial de base a como aquella que tiene la forma: en donde es cualquier número real. f ( ) = a Los términos eponenciales son en sí aquellas potencias cuya base es un número fijo y el eponente es una variable. En la siguiente tabla se presentan algunos ejemplos de funciones eponenciales. Función Título f() = 10 Función eponencial de base 10 f() = 2 Función eponencial de base 2 Gráficas Eponenciales Típicas 1 Es útil comparar las gráficas de y = 2, y = = 2, trazando ambas 2 en el mismo sistema coordenado (figura 34.a). La gráfica de:
7 ( ) a > 1 f = a (Figura 34.b) se parece mucho a la gráfica de y = 2 y la gráfica de: ( ) a 0 < 1 f = < a (Figura 34.b) 1 se perece mucho a la gráfica de y =. Nótese en ambos casos que el eje 2 es una asíntota horizontal que nunca toca las gráficas. 1 y = = 2 2 y y = 2 Tipo básico 1 y Tipo básico 2 y = a 0< a< 1 1 y = a a > Dominio = R Contradominio = (0, ) a b OBSERVACIONES:
8 a b Note que cuando la base a es mayor que 1, la función eponencial (figura a) no está acotada superiormente. Es decir, crece sin límite al aumentar la variable. Además, ésta función tiene al cero como etremo inferior. Esto es, grandes pero negativos. tiende a cero (0), cuando toma valores Igualmente, cuando la base 0 < a < 1, la función eponencial (figura b) no está acotada superiormente, pero su comportamiento para valores grandes de, en valor absoluto, es diferente. Así, crece sin límite, al tomar valores grandes, pero negativos y valores grandes positivos. tiende a cero, cuando la variable toma El hecho de ser la función eponencial con a > 1, estrictamente creciente (estrictamente decreciente cuando 0 < a < 1), significa que la función eponencial es inyectiva en su dominio. Este hecho y la continuidad de la función son las condiciones que se eigen para garantizar la eistencia de la función inversa (función logarítmica), que se presentan en la próima sección. Cuando a = e, donde e es el número irracional cuya representación decimal con sus primeras cifras decimales, es e = , la función eponencial, se llama: función eponencial de base e y, frecuentemente, se denota por Ep() =. Se llaman funciones eponenciales a las
9 funciones de la forma f() = a o y = a, donde la base de la potencia "a" es constante (un número) y el eponente la variable. Dominio y Contradominio de la Función Eponencial. Función eponencial de base a f ( ) = a Dominio Todo número real - < < Contradominio 0< y < EJERCICIOS: Calcule el dominio y contradominio de las siguientes funciones. Realizar la gráfica de las funciones. 1) f() = (1/3) 2) f() = 5 RESUMEN: La función eponencial De finición.-sea a un número real positivo. La aplicación que a cada número real
10 le asigna la potencia a base a. Funciones eponenciales se denomina función eponencial de Df: - << Cf: 0<y< Función eponencial:,, Donde. Esta función es creciente en todo su dominio si y decreciente si. f() = a (0<a<1) f() = a (a>1) La imagen de es. Propiedades: a > 0 para todo є R. La función eponencial de base a>1 es estrictamente creciente, mientras que la de base a<1 es estrictamente decreciente. La función eponencial de base mayor que 1 no está acotada superiormente aunque si lo está inferiormente en R. Si 0 < a < 1 la función eponencial de base a no está acotada superiormente aunque si lo esta inferiormente en R. Si 0 < a < b entonces: a < b si > 0 y b < a si < 0. Cualquiera que sea el número real positivo y eiste un único número real tal que a = y. El número se llama logaritmo en base a de y y se representa
APUNTES DE MATEMÁTICAS
APUNTES DE MATEMÁTICAS TEMA 7: FUNCIONES 1º BACHILLERATO 1 ÍNDICE 1. INTRODUCCIÓN...3 1.1. CONCEPTO DE FUNCIÓN...3. Definición de Dominio...3.1. CÁLCULOS DE DOMINIOS...3 3. Composición de funciones...4
Si se pueden obtener las imágenes de x por simple sustitución.
TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,
f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).
TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:
TEMA 0: REPASO DE FUNCIONES
TEMA 0: REPASO DE FUNCIONES Recordamos que una función real de variable real es una aplicación de un subconjunto de los números reales A en el conjunto de los números reales de forma que a cada elemento
Tema 7.0. Repaso de números reales y de funciones
Matemáticas II (Bachillerato de Ciencias) Análisis: Repaso de números reales y de funciones 47 Tema 70 Repaso de números reales y de funciones El conjunto de los números reales El conjunto de los números
DERIVADAS (1) LA DERIVADA DE UNA CONSTANTE es cero. Sol: Sol: Sol: Sol: Derivada de una función potencial: Forma simple
DERIVADAS ( Derivada de una constante K K R F ( 0 LA DERIVADA DE UNA CONSTANTE es cero. nº nº nº nº 4 nº 5 nº 6 Derivada de una función potencial: Forma simple r r R r. r LA DERIVADA DE UNA FUNCIÓN POTENCIAL
Trigonometría. 1. Ángulos:
Trigonometría. Ángulos: - Ángulos en posición estándar: se ubican en un sistema de coordenadas XY. El vértice será el origen (0,0) y el lado inicial coincide con el eje X positivo. - Ángulos positivos:
El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.
Concepto de función Función real de variable real es toda correspondencia f que asocia a cada elemento de un determinado subconjunto de números reales, llamado dominio, otro número real (uno y sólo uno).
Por ser un cociente entre dos longitudes, el radián no tiene dimensión. De la definición obtenemos la relación entre radianes y grados:
E.T.S.I. Industriales y Telecomunicación Curso 011-01 Medida de ángulos Unidad Como unidad del tamaño de un ángulo se utiliza el radián, más natural y con más sentido geométrico que el grado. Recordemos
FUNCIONES REALES 1º DE BACHILLERATO CURSO
FUNCIONES REALES 1º DE BACHILLERATO CURSO 2007-2008 Funciones reales Definición Clasificación Igual de funciones Dominio Propiedades Monotonía Extremos relativos Acotación. Extremos absolutos Simetría
Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función.
Unidad II Funciones 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Función En matemática, una función (f) es una relación entre un conjunto dado X (llamado dominio)
TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.
2009 TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 1º E.S.O. TEMA 08: Funciones. TEMA 08: FUNCIONES. 1. Correspondencia.
Funciones Guía Teórico y práctico.
Carrera: Profesorado en Física. Materia: MATEMÁTICA Titular: Dra. Godoy, Antonia E. Adscripta: Lubaczewski, Itatí Funciones Guía Teórico y práctico. Dados dos conjuntos no vacíos A y B y una relación que
RELACIÓN ENTRE LA GRÁFICA DE UNA FUNCIÓN f y LA DE SU INVERSA f -1
RELACIÓN ENTRE LA GRÁFICA DE UNA FUNCIÓN f y LA DE SU INVERSA f -1 Sabemos que la función inversa 1 Si f a b, entonces f b a 1 f (o recíproca) de f cumple la siguiente condición: Por lo tanto: 1 f f 1
Función es una relación entre dos variables a las que, en general, se les llama x e y. Viene representado por: y f (x)
TEMA 9: :.- CONCEPTO DE FUNCIÓN: Función es una relación entre dos variables a las que, en general, se les llama e y. Viene representado por: y (, donde es la variable independiente e y es la variable
PROPIEDADES FUNCIONES PRINCIPALES
PROPIEDADES FUNCIONES PRINCIPALES 1.- FUNCIÓN EXPONENCIAL Sea a un número real positivo no nulo distinto de 1. Se llama función exponencial real de base a, a la función: a) a 0 = 1 b) a 1 = a f: R R x
TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos
TRIGONOMETRÍA 1 Ángulos Hasta ahora se han considerado los ángulos como la porción del plano comprendida entre dos semirrectas con el origen común De esta manera, el ángulo está comprendido entre 0 y 360
TEMA 3. Funciones. Cálculo diferencial
TEMA 3. Funciones. Cálculo diferencial En este tema vamos a hacer un estudio preliminar de las funciones de una variable real y el importante concepto de derivada. Comenzaremos recordando las funciones
1. Ángulos Referencia angular. TRIGONOMETRÍA La palabra, TRI-GONO-METRÍA, etimológicamente significa relación entre los lados
IES Joan Ramon Benaprès TRIGNMETRÍA La palabra, TRI-GN-METRÍA, etimológicamente significa relación entre los lados y ángulos de un triángulo 1 Ángulos Definición 1 (Ángulo) Un ángulo es la abertura de
Concepto de función. Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B
Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna. Función
Si x lr y > 1-x lr, y lr Dom( R2) = lr, Ran( R2) = lr. X y : y > 1-x. 1 y : y > 0. 2 y : y > RELACIONES. EN EL PLANO CARTESIANO.
R = { (, y) A B / + y > } Si lr y > - lr, y lr Dom( R) = lr, Ran( R) = lr Funciones en una variable Real Para aproimar el gráfico realizamos una tabulación: X y : y > -. y y : y > 0. y : y > -.. RELACIONES.
ASIGNATURA: MATEMÁTICA. Contenido: TRIGONOMETRÍA I TEORÍA
ASIGNATURA: MATEMÁTICA Contenido: TRIGONOMETRÍA I TEORÍA Docente: Teneppe María Gabriela Medida de ángulos: Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas
Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x
Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que
1. FUNCIÓN REAL DE VARIABLE REAL
1. FUNCIÓN REAL DE VARIABLE REAL Una función real de variable real es una aplicación de un subconjunto de los nº reales ( R ) en otro subconjunto de R f : D R R Se representa de la siguiente forma: Una
(tema 9 del libro) 1. FUNCIÓNES EXPONENCIALES
(tema 9 del libro). FUNCIÓNES EXPONENCIALES Son funciones de la forma f ( ) a donde a 0 y a. Su dominio es todo R y van a estar acotadas inferiormente por 0, que es su ínfimo. Todas pasan por el punto
Primera parte: Funciones trigonome tricas (cont). Tiempo estimado: 1.3 h
1. DATOS DE IDENTIFICACIÓN Asignatura: Cálculo Diferencial Docente: Alirio Gómez Programa : INGENIERÍA Semestre: 4 Fecha de elaboración: 21-07-2013 Guía Nº: 2 Título: Funciones. Alumno: Grupo: CB-N-2 Primera
Tema 2. FUNCIONES REALES DE VARIABLE REAL
UAH Funciones reales de variable real 1 Tema FUNCIONES REALES DE VARIABLE REAL Concepto de función Dados dos conjuntos A y B, una función de A en B es una relación (una ley) que asigna a cada elemento
FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =
Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.
Unidad 3: Funciones exponenciales Tema: Función exponencial Lección: Definición y gráfica
1 Unidad 3: Funciones eponenciales Tema: Función eponencial Lección: Definición gráfica 10 Función eponencial La función eponencial, es conocida formalmente como la función real e, donde e es el número
1. a) Qué significa una potencia de exponente negativo?... ; b)
MATEMÁTICAS - SEPTIEMBRE TAREA DE VERANO 4º E.S.O.-B 1. a) Qué significa una potencia de eponente negativo?..... b) Simplificar: b 1) : b 4 ) b ) 9 1 b 4) 1 4. Simplificar potencias: a) 4 ( ) d) 9000 0'000000006
Tipos de funciones. Clasificación de funciones. Funciones algebraicas
Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,
Cálculo de derivadas
0 Cálculo de derivadas. La derivada Piensa y calcula La gráfica f() representa el espacio que recorre un coche en función del tiempo. Calcula mentalmente: a) la pendiente de la recta secante, r, que pasa
UNIDAD IV TRIGONOMETRÍA
UNIDAD IV TRIGONOMETRÍA http://www.ilustrados.com/publicaciones/epyuvklkkvpfesxwjt.php Objetivos: Al finalizar esta unidad, el alumno deberá ser hábil en: Comprender las definiciones de las relaciones
FUNCIONES DE UNA VARIABLE
FUNCIONES DE UNA VARIABLE 1- Definiciones 2- Algunas funciones reales 3- Ecuaciones de curvas planas en coordenadas cartesianas 4- Coordenadas polares 5- Coordenadas paramétricas 6- Funciones hiperbólicas
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Lo peor no es cometer un error, sino tratar de justificarlo, en vez de aprovecharlo como aviso providencial de nuestra ligereza
TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS
IES IGNACIO ALDECOA 19 TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS 4.1 Medida de ángulos. Equivalencias. Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas
Fecha: 29/10/2013 MATEMÁTICAS
Página: 1/5 MATEMÁTICAS Álgebra 1.- Conceptos y operaciones algebraicas fundamentales Terminología Operaciones fundamentales con monomios y polinomios o Reducción de términos semejantes o Suma, resta o
U.E CRUZ VITALE Prof.Zuleidi Zambrano Matemática 4to A Y B
U.E CRUZ VITALE Prof.Zuleidi Zambrano Matemática 4to A Y B TEORIA PARA LA ELABORACIÓN DEL CUENTO. ( PERSONAS, DEFENSA) TRIGONOMETRÍA ETIMOLÓGICAMENTE: Trigonometría, es la parte de la matemática que estudia
PLAN DE ESTUDIOS DE MS
PLAN DE ESTUDIOS DE MS Temario para desarrollar a lo largo de las clases 11 y 12. CLASE 11: I. ELEMENTOS DE ÁLGEBRA LINEAL. a) Revisión de conceptos Estructura de espacio vectorial. Propiedades de los
Funciones reales de variable real
Tema Funciones reales de variable real Introducción El objetivo fundamental de este tema es recordar conceptos ya conocidos acerca de las funciones reales de variable real.. Conceptos Generales Definición.
TRIGONOMETRÍA ANALÍTICA
TRIGONOMETRÍA ANALÍTICA....4 Los alumnos comenzaron a estudiar funciones trigonométricas en el Capítulo 7, cuando aprendieron sobre radianes la transformación de funciones trigonométricas. Aquí aprenderán
3.1 Situaciones que involucran funciones trigonométricas
3.1 Situaciones que involucran funciones trigonométricas Ejemplo 1) La traectoria de un proectil disparado con una inclinación respecto a la horizontal con una velocidad inicial v 0 es una parábola. Epresa
Funciones trigonométricas básicas. Propiedades básicas de las funciones trigonométricas: Seno, Coseno, Tangente, Cotangente, Secante y Cosecante.
Funciones trigonométricas básicas Propiedades básicas de las funciones trigonométricas: Seno, Coseno, Tangente, Cotangente, Secante y Cosecante. www.math.com.mx José de Jesús Angel Angel [email protected]
Tema 3. LÍMITES Y CONTINUIDAD DE FUNCIONES
Tema LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) 4 en el punto Para ello, damos a valores próimos
1.5 Funciones trigonométricas
.5 Funciones trigonométricas Haciendo uso de las razones trigonométricas vistas anteriormente, se puede definir un nuevo tipo de función, que llamaremos f unciones trigonométricas. Notemos que para cada
Trigonometría. Guía de Ejercicios
. Módulo 6 Trigonometría Guía de Ejercicios Índice Unidad I. Razones trigonométricas en el triángulo rectángulo. Ejercicios Resueltos... pág. 0 Ejercicios Propuestos... pág. 07 Unidad II. Identidades trigonométricas
DERIVADAS (1) Derivada de una constante. LA DERIVADA DE UNA CONSTANTE es cero. Derivada de una función potencial: Forma simple.
DERIVADAS (1) Derivada de una constante f ( ) K K F ( ) 0 LA DERIVADA DE UNA CONSTANTE es cero. nº 1) nº ) nº 3) nº 4) nº 5) nº 6) Derivada de una función potencial: Forma simple r f ( ) r f ( ) r. r 1
TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO
TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bac TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación
TRIGONOMETRÍA ANALÍTICA
TRIGONOMETRÍA ANALÍTICA....4 El estudio de las funciones trigonométricas comenzó en el Capítulo 9, con los radianes la transformación de funciones trigonométricas. Este capítulo se concentra en la resolución
IDENTIDADES TRIGONOMETRICAS
IDENTIDADES TRIGONOMETRICAS. ESTANDARES Modelar situaciones de variaciones de variación periódicas con funciones trigonométricas.. LOGROS.. Deducir las identidades trigonométricas fundamentales.. Demostrar
Las Funciones Trigonométricas. Sección 5.3 Funciones Trigonométricas de números reales
5 Las Funciones Trigonométricas Sección 5.3 Funciones Trigonométricas de números reales Qué hemos visto? Si el lado inicial de un ángulo,, coincide con la parte del eje de x que se encuentra en el primer
LA FUNCION SENO CONDOMINIO RESTRINGIDO. F(X)=sen x en el intervalo [, ] es creciente y por lo tanto inyectiva es. y el recorrido es [-1, 1] su grafica
FUNCIONES TRIGONOMETRICAS INVERSAS Son necesarias para calcular los ángulos de un triangulo a partir de la medición de sus lados,aparecen con frecuencia en las soluciones de ecuaciones diferenciales Sin
TRIGONOMETRÍA. π radianes. 1.- ÁNGULOS Y SUS MEDIDAS. 1.1 Los ángulos orientados
TRIGONOMETRÍA.- ÁNGULOS Y SUS MEDIDAS. Los ángulos orientados Son aquellos que además de tener una cierta su amplitud ésta viene acompañada de un signo que nos indica un orden de recorrido (desde la semirrecta
TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R
TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. Concepto de función. Definición Se llama función (real de variable real) a toda aplicación f : R R f() que a cada número le
MATEMATICAS GRADO DECIMO
MATEMATICAS GRADO DECIMO TERCER PERIODO TEMAS Funciones Trigonométricas. Funciones trigonométricas. Son relaciones angulares; guardan relación con el estudio de la geometría de los triángulos y son de
12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO
INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo
GUIA INFORMATIVA DE RAZONES TRIGONOMÉTRICAS
GUIA INFORMATIVA DE RAZONES TRIGONOMÉTRICAS Para el estudio de la Trigonometría es importante tomar en cuenta conocimientos básicos sobre: concepto de triángulo, su clasificación, conceptos de ángulos
Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada
FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones
Razones trigonométricas DE un ángulo agudo de un triángulo
RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO RAZONAMIENTO Y DEMOSTRACIÓN Calcula razones trigonométricas en un triángulo rectángulo. Demuestra identidades trigonométricas elementales Demuestra identidades
Guía para el examen de clasificación de matemáticas para las carreras de: actuaría, economía, ingenierías y matemáticas aplicadas.
Guía para el eamen de clasificación de matemáticas para las carreras de: actuaría, economía, ingenierías matemáticas aplicadas. Septiembre 23 Índice. Instrucciones.. Objetivo....2. Requisitos....3. Característicasdeleamen...
Lección 3.1. Funciones Trigonométricas de Ángulos. 21/02/2014 Prof. José G. Rodríguez Ahumada 1 de 21
Lección 3. Funciones Trigonométricas de Ángulos /0/0 Prof. José G. Rodríguez Ahumada de Actividades 3. Referencia Texto: Seccíón 6. Ángulo; Ejercicios de Práctica: Problemas impares -33 página 09 (375
UNIDAD 6: PROPIEDADES GLOBALES DE LAS FUNCIONES
UNIDAD 6: PROPIEDADES GLOBALES DE LAS FUNCIONES 1. EXPRESIÓN DE UNA FUNCIÓN - Epresión mediante una tabla de valores La tabla de valores de una unción está ormada por dos ilas o columnas. En la primera
9 Funciones elementales
Solucionario 9 Funciones elementales ACTIVIDADES INICIALES 9.I. Halla las raíces y factoriza los siguientes polinomios. a) P() 4 b) Q() 3 6 a) Se resuelve la ecuación 4 0. Las raíces son 6 y, y P() ( 6)(
UTILIZAMOS LA TRIGONOMETRÍA.
UTILIZAMOS LA TRIGONOMETRÍA. RAZONAMIENTO Y DEMOSTRACIÓN Determina las demás razones trigonométricas a través de un dato. Aplica las definiciones de razones trigonométricas en la solución de ejercicios
6 Funciones. 1. Estudio gráfico de una función. Piensa y calcula. Aplica la teoría
6 Funciones 1. Estudio gráfico de una función Piensa y calcula Indica cuál de las siguientes funciones es polinómica y cuál racional: 2 + 5 f() = f() = 3 5 2 + 6 4 2 4 Racional. Polinómica. Aplica la teoría
Interpretación de la infor- en los avances científicos y tecnológicos. acerca de la utilización de. la trigonometría en el desa-
1 FUNCIONES TRIGONOMÉTRICAS 1) Analizar la Aportes de la trigonometría en el desarrollo mación detectada en diver- Interpretación de la infor- aplicación de la trigonometría, científico y tecnológico.
Funciones Hiperbólicas. Who? Verónica Briceño V. When? noviembre 2013
Funciones Hiperbólicas Funciones Hiperbólicas Who? Verónica Briceño V. When? noviembre 2013 En esta Presentación... En esta Presentación veremos: Definición de Funciones Hiperbólicas En esta Presentación...
Las funciones trigonométricas
Las funciones trigonométricas Las funciones trigonométricas Las funciones trigonométricas son las funciones derivadas de las razones trigonométricas de un ángulo. En general, el ángulo sobre el cual se
4.1 RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º)
TEMA 4 RESOLUCIÓN DE TRIÁNGULOS MATEMÁTICAS I º Bac. TEMA 4 RESOLUCIÓN DE TRIÁNGULOS 4. RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) DEFINICIÓN DE RAZONES TRIGONOMÉTRICAS SENO DEL ÁNGULO α: es
FUNCIONES TRIGONOMÉTRICAS
FUNCIONES TRIGONOMÉTRICAS Sugerencias para quien imparte el curso: Por ningún motivo se debe dar por hecho que todos los alumnos recuerdan perfectamente a las razones trigonométricas, y a las principales
Concepto de función. El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.
Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna. Función
FUNCIONES EXPONENCIALES y LOGARITMICAS FUNCIONES EXPONENCIALES
Ingeniería en Sistemas de Información 01 FUNCIONES EXPONENCIALES LOGARITMICAS La función eponencial FUNCIONES EXPONENCIALES La función eponencial es de la forma, siendo a un número real positivo. El dominio
CONCEPTOS CLAVE DE LA UNIDAD 3
CONCEPTOS CLAVE DE LA UNIDAD 3 1. Razón trigonométrica seno. Si θ es la medida de algún ángulo interior agudo en cualquier triángulo rectángulo, entonces a la razón que hay de la longitud del cateto opuesto
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA La matemática es la ciencia del orden y la medida, de bellas cadenas de razonamientos, todos sencillos y fáciles. René Descartes
Teoría Tema 1 Propiedades de funciones elementales. Ejemplos exponencial y logaritmo
página 1/9 Teoría Tema 1 Propiedades de funciones elementales. Ejemplos exponencial y logaritmo Índice de contenido Dominio de una función...2 Rango o recorrido de una función...3 Simetría...4 Periodicidad...5
REPRESENTACIÓN DE FUNCIONES
8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta
Tutoría Completa - Curso de Matemática para 1, 2 y 3 Básico
Tutoría Completa - Curso de Matemática para 1, 2 y 3 Básico Contenido 1 Básico 1. Proposiciones y cuantificadores a. Proposiciones b. Negación c. Conjunción d. Disyunción e. Condicional f. Doble condicional
TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO
TEMA 7 DERIVADAS Y APLICACIONES MATEMÁTICAS CCSSI º Bac TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Definición : Se llama
Tema 3. LÍMITES Y CONTINUIDAD DE FUNCIONES
1 Tema LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g( ) ENT[ ] h ( ) i ( ) 4 en el punto = Para ello, damos a valores
MATEMÁTICA DE CUARTO 207
CAPÍTULO 1 CONJUNTOS NUMÉRICOS 1 Introducción... pág. 9 2 Números naturales... pág. 10 3 Números enteros... pág. 10 4 Números racionales... pág. 11 5 Números reales... pág. 11 6 Números complejos... pág.
TEMA 4 FUNCIONES ELEMENTALES
TEMA 4 FUNCIONES ELEMENTALES 4.1. Funciones lineales, cuadráticas y polinómicas 4.1.1. Funciones lineales. Las unciones lineales o aines tienen por epresión analítica ( m n. Si m > 0, la unción aín tiene
Guía para maestro. Representación de funciones trigonométricas. Compartir Saberes.
Guía para maestro Guía realizada por Nury Yolanda Espinosa Baracaldo Profesional en Matemáticas [email protected] La trigonometría es la ciencia encargada de estudiar la relación que hay
UNIDAD 6.- Funciones reales. Propiedades globales (temas 6 del libro)
(temas 6 del libro). EXPRESIÓN DE UNA FUNCIÓN - Epresión mediante una tabla de valores La tabla de valores de una unción está ormada por dos ilas o columnas. En la primera ila o columna iguran los valores
Tipos de funciones. Clasificación de funciones
Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,
Matemáticas TRABAJO. Funciones Trigonométricas
Matemáticas TRABAJO Funciones Trigonométricas 2 En este trabajo trataremos de mostrar de una forma práctica las funciones trigonométricas, con sus formas de presentación, origen y manejos. También se incluirán
GUIA DE ESTUDIO PARA EXAMEN DEL PRIMER PERIODO PARCIAL
Departamento de Bachillerato GUIA DE ESTUDIO PARA EXAMEN DEL PRIMER PERIODO PARCIAL PREPARATORIA UNAM MATEMÁTICAS V Plan 100 CICLO 06 / 07 NOMBRE DEL ESTUDIANTE: Apellido paterno Apellido materno Nombre(s)
UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.
IES Padre Poveda (Guadi) UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.. Límite de una función en un punto... Límites laterales... Límite de una función en un punto.. Límites en el infinito... Comportamiento
Tema 1: Razones Trigonométricas. Resolución de Triángulos Rectángulos
Tema : Razones Trigonométricas. Resolución de Triángulos Rectángulos Matemáticas º Bachillerato CCNN.- Ángulos..- Angulo en el plano..- Criterio de Orientación de ángulos..- Sistemas de medida de ángulos.-
Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009
Estudio Gráfico de Funciones Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Índice 1. Función 2 1.1. Definición............................. 2 1.2. Clasificación............................
Funciones algebraicas
Funciones algebraicas Las funciones polinomiales tienen una gran aplicación en la elaboración de modelos que describen fenómenos reales. Algunos de ellos son: la concentración de una sustancia en un compuesto,
Senos (truco): (Coseno truco = pero el cero ponerlo del 90 a la izquierda y /2.
SENOS, COSENOS Y TANGENTES (REPASO): Grados Radianes Seno Coseno Tangente 0 0 0 1 0 30 pi / 6 un medio Raíz de 3 / 2 raíz de 3 / 3 45 pi / 4 raíz de 2 / 2 Raíz de 2 / 2 1 60 pi /3 raíz de 3 / 2 Un medio
SOLUCIÓN. BLOQUE DE FUNCIONES.
SOLUCIÓN. BLOQUE DE FUNCIONES. Análisis de funciones 1. a) y c) son funciones, porque para cada valor de hay un único valor de y. b) no es una función, porque para cada valor de hay dos valores de y. 2.
TRIGONOMETRÍA. MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico. 1.- Ángulos en la Circunferencia.
TRIGONOMETRÍA MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico 1.- Ángulos en la Circunferencia. 2.- Razones Trigonométricas de un Triángulo Rectángulo. 3.- Valores del Seno, Coseno y Tangente
TRIGONOMETRIA. π radianes <> 180º
TRIGONOMETRIA La trigonometría estudia las relaciones existentes entre los ángulos y los lados de un triángulo. La base de su estudio es el ángulo. Angulo es la porción del plano limitada por dos semirrectas
CONTENIDO PRÓLOGO LAS FUNCIONES... 5
CONTENIDO PRÓLOGO... 1 1. LAS FUNCIONES... 5 1.1 FORMAS DE REPRESENTACIÓN... 5 1.1.1 Representación de funciones... 6 1.1.2 Funciones definidas a trozos... 7 1.1.3 Simetría... 8 1.1.4 Funciones crecientes
Identidades Trigonométricas
Identidades Trigonométricas Unidad TR.4: Identidades trigonométricas Las identidades trigonométricas son útiles en la transformación de expresiones. Repaso Hemos estudiado la unidad del circulo ya que
