Representación gráfica de funciones
|
|
|
- Juan Luis Suárez Paz
- hace 9 años
- Vistas:
Transcripción
1 Gráfica de una fución Representación gráfica de funciones La gráfica de una función está formada por el conjunto de puntos (x, y) para todos los valores de x pertenecientes al Dominio de la función gráfica (f) = {(x, f(x)) / x D} Para representarla calcularemos aquellos puntos o intervalos donde la función tiene un comportamiento especial, que determinaremos mediante el estudio de los siguientes apartados: 1. Dominio de una función. 2. Simetría. 3. Periodicidad. 4. Puntos de corte con los ejes. 5. Asíntotas. 6. Ramas parabólicas. 7. Crecimiento y Decrecimiento. 8. Máximos y mínimos. 9. Concavidad y convexidad. 10. Puntos de inflexión. Dominio de una función El dominio de una función está formado por todos los elementos que tienen imagen. D = {x / f (x)} Cálculo del dominio de una función Dominio de la función polinómica El dominio de una función polinómica es R f(x)= x 2-5x + 6 D=R Dominio de la función racional El dominio es menos los valores que anulan al denominador. Dominio de la función radical de índice impar El dominio es R. 1
2 Dominio de la función radical de índice par El dominio está formado por todos los valores que hacen que el radicando sea mayor o igual que cero. Dominio de la función logarítmica El dominio está formado por todos los valores que hacen que el radicando sea mayor que cero. Dominio de la función exponencial D = R Dominio de la función seno D = R. 2
3 Dominio de la función coseno D = R. Dominio de la función tangente Dominio de la función cotangente Dominio de la función secante Dominio de la función cosecante Dominio de operaciones con funciones Ejemplo: 3
4 Simetría de una función Simetría respecto del eje de ordenadas Una función f es simétrica respecto del eje de ordenadas si ésta es una función par, es decir: f(-x) = f(x) Ejemplo: Simetría respecto al origen Una función f es simétrica respecto al origen si ésta es una función impar, es decir: f(-x) = -f(x) 4
5 Funciones periódicas Periodicidad de una función Una función es periódica cuando: La función se repite de T en T, siendo T el período. Ejemplos: La función f(x) = x E(x), es periódica de periodo 1. sen (x + 2π) = sen x En el caso de la función seno T = 2π tg (x + π) = tg x En el caso de la función tangente T = π 5
6 Si f es periódica de período T, también lo es f(mx +n), y su período es T/m. Ejemplos Hallar el periodo de las funciones: 1f(x) = sen 2x 2f(x) = tg (1/2)x 3f(x) = E (1/2)x Puntos de corte con los ejes Puntos de corte con el eje OX Para hallar los puntos de corte con el eje de abscisas hacemos y = 0 y resolvemos la ecuación resultante. Ejemplo: Hallar los puntos de corte con el eje OX de la función: Punto de corte con el eje OY Para hallar el punto de corte con el eje de ordenadas hacemos x = 0 y calculamos el valor de f(0). Ejemplo: Hallar el punto de corte con el ejes OY de la función: 6
7 Ejemplo de puntos de corte con los ejes Hallar los puntos de corte con los ejes de la función: Asíntotas Las asíntotas son rectas a las cuales la función se va acercando indefinidamente. Hay tres tipos: Asíntotas horizontales La recta y=k es una asíntota horizontal si se cumple que: Una función puede tener hasta dos asíntotas horizontales, correspondientes a cada uno de los límites. Ejemplo: Calcular las asíntotas horizontales de la función: 7
8 Asíntotas verticales La recta x=k es una asíntota horizontal de la función f(x) si se cumple que: Los valores de K hay que buscarlos en los puntos que no pertenecen al dominio de la función. Una función puede tener infinitas asíntotas verticales (por ejemplo la función tangente) Ejemplo: Calcular las asíntotas horizontales y verticales de la función: Asíntotas oblicuas Una asíntota vertical tiene por ecuación y = mx + n Sólo existen asíntotas oblicuas cuando no haya asíntotas horizontales. 8
9 Una función puede tener hasta dos asíntotas oblicuas, correspondientes a cada uno de los límites (+ yy ). Ejemplo Calcular las asíntotas de la función: Asíntotas horizontales Asíntotas verticales Asíntotas oblicuas 9
10 Ramas parabólicas Las ramas parabólicas se estudian sólo si: Rama parabólica en la dirección del eje OY Se dice que f tiene una rama parabólica en la dirección del eje OY cuando: Esto quiere decir que la gráfica se comporta como una parábola de eje vertical. Ejemplo Estudiar las ramas parabólicas de la función: Tiene una rama parabólica en la dirección del eje OY. Rama parabólica en la dirección del eje OX Se dice que f tiene una rama parabólica en la dirección del eje OX cuando: Esto quiere decir que la gráfica se comporta como una parábola de eje horizontal. 10
11 Ejemplo Estudiar las ramas parabólicas de la función: Tiene una rama parabólica en la dirección del eje OX. Crecimiento y decrecimiento Crecimiento en un punto Si f es derivable en a: f es estrictamente creciente en a si: f'(a) > 0 Decrecimiento en un punto Si f es derivable en a: f es estrictamente decreciente en a si: f'(a) < 0 Intervalos de crecimiento y decrecimiento Para hallar el crecimiento y decrecimiento seguiremos los siguientes pasos: 1. Derivar la función. 2. Obtener las raíces de la derivada primera, para ello hacemos: f'(x) = Formamos intervalos abiertos con los ceros (raíces) de la derivada primera y los puntos de discontinuidad (si los hubiese) 4. Tomamos un valor de cada intervalo, y hallamos el signo que tiene en la derivada primera. Si f'(x) > 0 es creciente. Si f'(x) < 0 es decreciente. 5. Escribimos los intervalos de crecimiento y decrecimiento. 11
12 Ejemplo Calcular los intervalos de crecimiento y decrecimiento de la función: Máximos y mínimos Extremos relativos Si f es derivable en a, a es un extremo relativo o local si: 1. Si f'(a) = Si f''(a) 0. 12
13 Máximos relativos Si f y f' son derivables en a, a es un máximo relativo si se cumple: 1. f'(a) = 0 2. f''(a) < 0 Mínimos relativos Si f y f' son derivables en a, a es un mínimo relativo si se cumple: 1. f'(a) = 0 2. f''(a) > 0 Cálculo de máximos y mínimos Para hallar los extremos locales seguiremos los siguientes pasos: 1. Hallamos la derivada primera y calculamos sus raíces. 2. Realizamos la 2ª derivada, y calculamos el signo que toman en ella las raíces de derivada primera y si: f''(a) < 0 es un máximo relativo f''(a) > 0 es un mínimo relativo 3. Calculamos la imagen (en la función) de los extremos relativos. Ejemplo Calcular los máximos y mínimos de: f(x) = x 3 3x + 2 f'(x) = 3x 2 3 = 0 f''(x) = 6x f''( 1) = 6 Máximo f''(1) = 6 Mínimo f( 1) = ( 1) 3 3( 1) + 2 = 4 f(1) = (1) 3 3(1) + 2 = 0 Máximo( 1, 4) Mínimo( 1, 0) Si ya hemos estudiado el crecimiento y decrecimiento de una función habrá: 1. Un máximo en el punto, de la función, en la que ésta pasa de creciente a decreciente. 2. Un mínimo en el punto, de la función, en la que ésta pasa de decreciente a creciente. 13
14 Ejemplo Hallar los máximos y mínimos de: Tenemos un mínimo en x = 3 Mínimo(3, 27/4) En x = 1 no hay un máximo porque x = 1 no pertenece al dominio de la función. Concavidad y convexidad Si f y f' son derivables en a, a es: Cóncava Si f''(a) > 0 Convexa Si f''(a) < 0 Intervalos de concavidad y convexidad Para calcular los intervalos la concavidad y convexidad de una función seguiremos los siguientes pasos: 1. Hallamos la derivada segunda y calculamos sus raíces. 2. Formamos intervalos abiertos con los ceros (raíces) de la derivada segunda y los puntos de discontinuidad (si los hubiese). 3. Tomamos un valor de cada intervalo, y hallamos el signo que tiene en la derivada segunda. Si f''(x) > 0 es cóncava. Si f''(x) < 0 es convexa. 4. Escribimos los intervalos: 14
15 Ejemplo Puntos de inflexión de una función Si f y f' son derivables en a, a es un: 15
16 Punto de inflexión Si f'' = 0 y f''' 0 Cálculo de los puntos de inflexión Para hallar los puntos de inflexión, seguiremos los siguientes pasos: 1. Hallamos la derivada segunda y calculamos sus raíces. 2. Realizamos la derivada tercera, y calculamos el signo que toman en ella los ceros de derivada segunda y si: f'''(x) 0 Tenemos un punto de inflexión. 3. Calculamos la imagen (en la función) del punto de inflexión. Ejemplo Hallar los puntos de inflexión de: f(x) = x 3 3x + 2 f''(x) = 6x 6x = 0 x = 0. f'''(x) = 6 Será un punto de inflexión. f(0) = (0) 3 3(0) + 2 = 2 Punto de inflexión: (0, 2) Si ya hemos estudiado la concavidad y convexidad de una función habrá: Puntos de inflexión en los puntos en que ésta pasa de cóncava a convexa o vicecersa. Ejemplo Calcular los puntos de inflexión de la función: 16
17 Tenemos un punto de inflexión en x = 0, ya que la función pasa de convexa a concava. Punto de inflexión (0, 0) Ejemplo de representación de una función Vamos a representar la función Dominio Simetría Simetría respecto al origen. Puntos de corte con los ejes Punto de corte con OY: Asíntotas Asíntota horizontal No tiene asíntotas verticales ni oblicuas. 17
18 Crecimiento y decrecimiento Mínimos Máximos Concavidad y convexidad Puntos de inflexión Representación gráfica 18
REPRESENTACIÓN DE FUNCIONES
REPRESENTACIÓN DE FUNCIONES Tema 4: Representación de funciones Índice:. Información obtenida de la función... Dominio de la función.. Simetrías..3. Periodicidad.4. Puntos de corte con los ejes..5. Ramas
Tipos de funciones. Clasificación de funciones
Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,
EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES
EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(
1. Dominio, simetría, puntos de corte y periodicidad
Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado
Funciones definidas a trozos
Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad
Concepto de función. El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.
Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna. Función
Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II
Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 200 Las siguientes páginas contienen las soluciones de los ejercicios propuestos
Unidad 5 Estudio gráfico de funciones
Unidad 5 Estudio gráfico de funciones PÁGINA 84 SOLUCIONES Representar puntos en un eje de coordenadas. 43 Evaluar un polinomio. a) P(-1) = 1 + + 1 1 = 3 b) P(0) = -1 c) P(-) = 8 + 8 + 1 = 17 d) P(1) =
http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17
http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 1 CONCEPTOS BÁSICOS 1.1 DEFINICIONES Una función liga dos variables numéricas a las que, habitualmente, se les llama x e y. x es la
Unidad 6 Estudio gráfico de funciones
Unidad 6 Estudio gráfico de funciones PÁGINA 96 SOLUCIONES Representar puntos en un eje de coordenadas. 178 Evaluar un polinomio. a) b) c) d) e) Escribir intervalos. a) b) c) 179 PÁGINA 98 SOLUCIONES 1.a)
Gráfica de una función
CAPÍTULO 9 Gráfica de una función 9. Bosquejo de la gráfica de una función Para gráficar una función es necesario:. Hallar su dominio sus raíces.. Decidir si es par o impar, o bien ninguna de las dos cosas..
f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11
1. y = x + 11 x + 5 a) ESTUDIO DE f: 1) Dominio: Como es un cociente del dominio habrá que excluir los valores que anulen el denominador. Por tanto: x + 5 = 0 x = 5 ) Simetría: A simple vista, como el
10 Cálculo. de derivadas. 1. La derivada. Piensa y calcula. Aplica la teoría
0 Cálculo de derivadas. La derivada Piensa y calcula Calcula mentalmente sobre la primera gráfica del margen: a) la pendiente de la recta secante, r, que pasa por A y B b) la pendiente de la recta tangente,
ANÁLISIS DE FUNCIONES RACIONALES
ANÁLISIS DE FUNCIONES RACIONALES ( x 9) Dada la función f( x) = x 4 DETERMINE: Dominio, asíntotas, intervalos de crecimiento, intervalos de concavidad, extremos relativos y puntos de inflexión, representar
1. Definición 2. Operaciones con funciones
1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de
1. Hallar los extremos de las funciones siguientes en las regiones especificadas:
1 1. DERIVACIÓN 1. Hallar los extremos de las funciones siguientes en las regiones especificadas: b) f(x) x (x 1) en el intervalo [, ] y en su dominio. DOMINIO. D R. CORTES CON LOS EJES. Cortes con el
Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada
FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones
Ejercicios de representación de funciones
Ejercicios de representación de funciones 1.- Representar las siguientes funciones, estudiando su: Dominio. Simetría. Puntos de corte con los ejes. Asíntotas y ramas parabólicas. Crecimiento y decrecimiento.
4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES
Tema 4 Funciones. Características - Matemáticas B 4º E.S.O. 1 TEMA 4 FUNCIONES. CARACTERÍSTICAS 4.1 CONCEPTOS BÁSICOS 3º 4.1.1 DEFINICIONES 3º Una función liga dos variables numéricas a las que, habitualmente,
PROPIEDADES FUNCIONES PRINCIPALES
PROPIEDADES FUNCIONES PRINCIPALES 1.- FUNCIÓN EXPONENCIAL Sea a un número real positivo no nulo distinto de 1. Se llama función exponencial real de base a, a la función: a) a 0 = 1 b) a 1 = a f: R R x
ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN
ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN Problema Datos Procedimiento Ejemplo Dominio de una La ecuación de Casos en los que en dominio no es IR: función la función Irracionales (ecluir valores
Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES
Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos
Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009
Estudio Gráfico de Funciones Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Índice 1. Función 2 1.1. Definición............................. 2 1.2. Clasificación............................
Límite de una función
Límite de una función Idea intuitiva de límite El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es
b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:
1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el
Estudio Gráfico de Funciones
Esquema 1 2 Esquema 1 2 Definición es una correspondencia entre dos conjuntos A B tal que a cada elemento del conjunto A le corresponde un único valor solo uno del conjunto B. La gráfica de la función
TEMA 8: LÍMITES DE FUNCIONES. CONTINUIDAD
TEMA 8: DE FUNCIONES. CONTINUIDAD 1. EN EL INFINITO En ocasiones interesa estudiar el comportamiento de una función (la tendencia) cuando los valores de se hacen enormemente grandes ( ) o enormemente pequeños
Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1
Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 TEMA 4 - FUNCIONES ELEMENTALES 4.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : Una función real de variable real es una aplicación de un subconjunto
Gráfica de una función
CAPÍTULO 9 Gráfica de una función 9. Interpretación de gráficas símbolos Con la finalidad de reafirmar la relación eistente entre el contenido de un concepto, la notación simbólica utilizada para representarlo
Una función f es derivable en un punto a de su dominio si existe el límite. f(x) f(a) Si f y g son derivables en a, entonces fg es derivable en a y
4. Derivabilidad 1 Una función f es derivable en un punto a de su dominio si existe el límite f (a) = lím x a f(x) f(a) x a f(a + h) f(a) = lím, h 0 h y es un número real. El número f (a) se denomina derivada
Funciones y sus gráficas
Funciones y sus gráficas El concepto de función es de suma importancia en la matemática moderna, debido a esto vamos a estudiar este tema de una manera un poco detallada. Dos conjuntos de números, por
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 7 Funciones reales de una variable real Elaborado por la Profesora Doctora
Examen funciones 4º ESO 12/04/13
Examen funciones 4º ESO 12/04/13 1) Calcula el dominio de las siguientes funciones: a. b. c. d. Calculamos las raíces del numerador y del denominador: Construimos la tabla para ver los signos: - - 0 +
Para la oblicua hacemos lo mismo, calculamos el límite en el menos infinito : = lim. 1 ( ) = = lim
) Sea la función: f(x) = ln( x ): a) Dar su Dominio y encontrar sus asíntotas verticales, horizontales y oblicuas. b) Determinar los intervalos de crecimiento y decrecimiento, los máximos y mínimos, los
Tema 7. Límites y continuidad de funciones
Matemáticas II (Bachillerato de Ciencias) Análisis: Límites y continuidad de funciones 55 Límite de una función en un punto Tema 7 Límites y continuidad de funciones Idea inicial Si una función f está
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva
Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =
T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente
CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática
CAPITULO Aplicaciones de la Derivada Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Créditos Primera edición impresa: Rosario Álvarez, 1988. Edición Latex: Marieth
MATEMÁTICAS. TEMA 5 Límites y Continuidad
MATEMÁTICAS TEMA 5 Límites y Continuidad MATEMÁTICAS º BACHILLERATO CCSS. TEMA 5: LÍMITES Y CONTINUIDAD ÍNDICE. Introducción. Concepto de función. 3. Dominio e imagen de una función. 4. Gráfica de algunas
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente
, determinar: dominio y raíces; intervalos de continuidad y tipo de x 2 4 discontinuidades; asíntotas verticales y horizontales; su gráfica.
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E00 ) Dadas las funciones f) +4, g) 3 & h), obtener: g/h)), h f)) &g h)), así como sus respectivos dominios. ) Dada la función definida por f) 3 5 5 3,
Polinomios de Taylor.
Tema 7 Polinomios de Taylor. 7.1 Polinomios de Taylor. Definición 7.1 Recibe el nombre de polinomio de Taylor de grado n para la función f en el punto a, denotado por P n,a, el polinomio: P n,a (x) = f(a)
TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1
TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 - FUNCIONES ELEMENTALES 10.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder
FUNCIONES. Funciones. Qué es una función? Indicadores. Contenido
Indicadores FUNCIONES Calcula el valor de incógnitas usando la definición de función. Determina valores de la variable dependiente a partir de valores dados a la variable independiente. Determina los puntos
Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)
MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en
Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í
Unidad. Límites de funciones. Continuidad y ramas infinitas Resuelve Página 7 A través de una lupa AUMENTO DISTANCIA (dm) El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A
Herramientas digitales de auto-aprendizaje para Matemáticas
Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura Índice Dada una función f : D R R y un intervalo I D
SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA 1
MATEMÁTICAS:º BACHILLERATO SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA.- Calcular los etremos relativos de las siguientes funciones: a) f ( ) D(f) (Por ser polinómica) ; Posibles máimos o mínimos 6
FUNCIONES CUADRÁTICAS Y RACIONALES
www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro
8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3
CONTENIDOS Límite y asíntotas Cálculo de límites Continuidad Derivadas Estudio de funciones Problemas de optimización Varias de las características de diferentes tipos de funciones ya han sido estudiadas
APLICACIONES DEL CÁLCULO DIFERENCIAL-II
APLICACIONES DEL CÁLCULO DIFERENCIAL-II. Estudia si crecen o decrecen las siguientes funciones en los puntos indicados: π a) f() cos en 0 b) f() ln ( arc tg ) en 0 π c) f() arc sen en 0 d) f() ln en 0
1. Funciones y sus gráficas
FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada
Halla dominio e imagen de las funciones
Tema 1 Las Funciones y sus Gráficas Ejercicios Resueltos Ejercicio 1 Halla dominio e imagen de las funciones y Como no está definido si, es decir, si El recorrido o imagen será el conjunto de todos los
DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim
DERIVADAS. CONTENIDOS. Recta tangente a una curva en un punto. Idea intuitiva del concepto de derivada de una función en un punto. Función derivada. sucesivas. Reglas de derivación Aplicación de la derivada
(Apuntes en revisión para orientar el aprendizaje)
(Apuntes en revisión para orientar el aprendizaje) LÍMITES DE FUNCIONES TRIGONOMÉTRICAS Para resolver límites que involucran funciones circulares directas, resulta conveniente conocer los límites de las
Límites. 1. Calcula los límites de las siguientes funciones en los puntos que se indican: 2 2 2 a) lim b) lim c) lim d) lim
Límites CIT_H. Calcula los límites de las siguientes funciones en los puntos que se indican: ( ) + + + a) lim b) lim c) lim d) lim + + + + + e) lim f) lim g) lim h) lim + 0 + + 9 + j) lim k) lim l) lim
(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E700 1) x 5 > 1. A) Primer parcial ) Sean las funciones ft) t +,gy) y 4&hw) w. Encontrar f/h, g f, f g y sus dominios. ) Graficar la función x + six
x - Verticales. No tiene asíntotas verticales porque f(x) está definida en R y no cambia de criterio en ningún punto. - Oblicuas.
f ( ) + +. Dominio D (f ) R 4. Recorrido Im( f ) [, ). Puntos de corte - Con el eje y, donde 0 y + + y P (0,) - Con el eje, donde y 0 No hay punto de corte con el eje 4. Asíntotas - Horizontales lim +
Las funciones trigonométricas
Las funciones trigonométricas Las funciones trigonométricas Las funciones trigonométricas son las funciones derivadas de las razones trigonométricas de un ángulo. En general, el ángulo sobre el cual se
Observaciones del profesor:
Calificación total máxima: 10 puntos. Tiempo: 60 minutos. OPCIÓN A Ejercicio 1. (Puntuación máxima: 4 puntos) Se considera la matriz: A=( ) a) Determina la matriz B= A 2-2A 1,5 PUNTOS b) Determina los
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva
UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.
UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado
DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. [email protected]. Página. Titulo:
Titulo: DOMINIO Y RANGO I N D I C E Página DE UNA FUNCIÓN Año escolar: 4to. Año de Bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela
a) PAR: Una función es simétrica con respecto al eje Y cuando se verifica:
TEMA 10: REPRESENTACIÓN DE FUNCIONES. 10.1. DOMINIO. El dominio de definición de una función y = f{) (valores para los cuales eiste la función) es, en principio, todo ir, salvo que haya operaciones imposibles
Funciones vectoriales de variable vectorial. Son aplicaciones entre espacios eucĺıdeos, IR n, f : X IR n Y IR m
Funciones vectoriales de variable vectorial Son aplicaciones entre espacios eucĺıdeos, IR n, f : X IR n Y IR m x y x = (x 1, x 2,, x n ), y = (y 1, y 2,, y m ) e y j = f j (x 1, x 2,, x n ), 1 j n n =
FUNCIONES Y GRÁFICAS.
FUNCIONES Y GRÁFICAS. CONTENIDOS: Concepto de función. Gráfica de una función. Estudio cualitativo de funciones dadas por sus gráficas Idea intuitiva de continuidad de una función. Repaso de funciones
, o más abreviadamente: f ( x)
TEMA 5: 1. CONCEPTO DE FUNCIÓN Observa los siguientes ejemplos: El precio de una llamada telefónica depende de su duración. El consumo de gasolina de un coche depende de la velocidad del mismo. La factura
n es la ordenada en el origen, el punto de corte de la recta con el eje de ordenadas (el vertical, y)
Una función es una relación entre 2 magnitudes, de manera que a cada valor de x de la primera le corresponde un único valor de y, de la segunda. Este valor también se designa por f(x) y se conoce como
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 4 La recta en el plano Elaborado por la Profesora Doctora María Teresa
Matemática I Extremos de una Función. Definiciones-Teoremas
Universidad Centroccidental Lisandro Alvarado Decanato de Agronomía Programa Ingeniería Agroindustrial Departamento de Gerencia Estudios Generales Matemática I Etremos de una Función. Definiciones-Teoremas
Calculadora ClassPad
Calculadora ClassPad Tema: Ejercicios varios sobre Análisis de funciones y optimización. Nivel: 1º y º de Bachiller Comentario: La siguiente actividad que propongo es para la evaluación de los conceptos
Tema 2 Límites de Funciones
Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos
LÍMITES DE FUNCIONES. CONTINUIDAD
LÍMITES DE FUNCIONES. CONTINUIDAD Página REFLEXIONA Y RESUELVE Algunos ites elementales Utiliza tu sentido común para dar el valor de los siguientes ites: a,, b,, @ c,, 5 + d,, @ @ + e,, @ f,, 0 @ 0 @
TEMA 5. REPRESENTACIÓN DE FUNCIONES
94 TEMA 5. REPRESENTACIÓN DE FUNCIONES 1. Representación de funciones 1.1. Dominio 1.. Puntos de corte con los ejes 1..1. Con el eje 1... Con el eje y 1.. Signo de la función 1.4. Periodicidad y simetría
FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS.
FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN. Es toda aplicación entre dos conjuntos A y B formados ambos por números. f A --------> B Al conjunto A se le llama campo de existencia de la función
M a t e m á t i c a s I I 1
Matemáticas II Matemáticas II ANDALUCÍA CNVCATRIA JUNI 009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz pción A Ejercicio En este límite nos encontramos ante la indeterminación. Agrupemos la
TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1
TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1 TEMA 11 LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN 11.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función en un
CALCULO CAPITULO 1 1.6 ASINTOTAS VERTICALES Y HORIZONTALES
1.6 ASINTOTAS VERTICALES Y HORIZONTALES 1.6.1.- Definición. Una asíntota es una recta que se encuentra asociada a la gráfica de algunas curvas y que se comporta como un límite gráfico hacia la cual la
Análisis de funciones y representación de curvas
12 Análisis de funciones y representación de curvas 1. Análisis gráfico de una función Aplica la teoría 1. Dada la siguiente gráfica, analiza todas sus características, es decir, completa el formulario
Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor
Tema 5 Aproximación funcional local: Polinomio de Taylor Teoría Los polinomios son las funciones reales más fáciles de evaluar; por esta razón, cuando una función resulta difícil de evaluar con exactitud,
TEMA 1: Cálculo Diferencial de una variable
TEMA 1: Cálculo Diferencial de una variable Cálculo para los Grados en Ingeniería EPIG - UNIOVI Curso 2010-2011 Los números Naturales I Los números Naturales N = f1, 2, 3, g I Principio de inducción Supongamos
Estudio de ceros de ecuaciones funcionales
Capítulo 1 Estudio de ceros de ecuaciones funcionales Problema 1.1 Calcular el número de ceros de la ecuación arctang(x) = 4 x, dando un intervalo 5 donde se localicen. Solución: Denimos f(x) = arctan(x)
IES Fco Ayala de Granada Junio de 2012 (Específico Modelo 1) Solución Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Junio de 01 (Específico Modelo 1) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 específico Sea la función f: (0,+) R definida por f(x) 1/x + ln(x) donde
Tema 5: Funciones. Tema 5: Funciones. Funciones reales de variable real. Dominio y recorrido. Crecimiento. Concavidad. Extremos.
Tema 5: Funciones Gráfica Enunciado Fórmula Tabla Composición de funciones Función inversa Traslaciones Simetrías se expresan mediante operaciones Funciones reales se clasifican en características Algebraicas
Cálculo diferencial: Concepto y propiedades de una función. Representación gráfica.
Tema 1 Cálculo diferencial: Concepto y propiedades de una función. Representación gráfica. 1.1. Un esbozo de qué es el Cálculo: paradojas y principales problemas planteados. Los orígenes del Cálculo se
Bloque II. Actividades de síntesis: Análisis. Solucionario OPCIÓN A
Bloque II Actividades de síntes: Anális Solucionario OPCIÓN A A.. a) Escribe la función f(x) x 4 x como una función a trozos y dibuja su gráfica. b) Para cuántos valores de x es f(x) 0? c) Para qué números
LÍMITES Y CONTINUIDAD
UNIDAD 5 LÍMITES Y CONTINUIDAD Páginas 0 y Describe las siguientes ramas: a) f () b) f () no eiste c) f () d) f () + e) f () f) f () + g) f () h) f () no eiste; f () 0 i) f () + f () + j) f () 5 4 f ()
CAPÍTULO III. FUNCIONES
CAPÍTULO III LÍMITES DE FUNCIONES SECCIONES A Definición de límite y propiedades básicas B Infinitésimos Infinitésimos equivalentes C Límites infinitos Asíntotas D Ejercicios propuestos 85 A DEFINICIÓN
Examen de Matemáticas Aplicadas a las CC. Sociales II (Marzo 2013) Selectividad-Opción A Tiempo: 90 minutos
Eamen de Matemáticas Aplicadas a las CC. Sociales II (Marzo 2013) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos)dado el sistema a+ y+ 3z = 0 + ay+ 2z = 1 + ay+ 3z = 1 a) (2 puntos). Discutir
Descripción: dos. función. decreciente. Figura 1. Figura 2
Descripción: En éste tema se utiliza la primera derivada para encontrar los valores máximo y mínimo de una función, así como para determinar los intervalos en donde la función es creciente o decreciente,
Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales
Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento
LÍMITES Y CONTINUIDAD DE FUNCIONES
Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos
EJERCICIOS RESUELTOS DE CÓNICAS
EJERCICIOS RESUELTOS DE CÓNICAS 1. Hallar la ecuación de la circunferencia que tiene: a) el centro en el punto (, 5) y el radio es igual a 7. b) un diámetro con extremos los puntos (8, -) y (, 6). a) La
Práctica 4: Aplicaciones de la derivada: representación gráfica de funciones y polinomio de Taylor.
1 de 12 08/07/2010 12:55 To print higher-resolution math symbols, click the Hi-Res Fonts for Printing button on the jsmath control panel. If the math symbols print as black boxes, turn off image alpha
Bloque 4. Cálculo Tema 4 Aplicaciones de la derivada Ejercicios resueltos
Bloque 4. Cálculo Tema 4 Aplicaciones de la derivada Ejercicios resueltos 4.4- Resolver los siguientes límites aplicando la regla de L Hôpital: ; a) sen e e lim ; b) lim ; c) lim e d) lim 0 0 sen 0 e)
LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS
LÍMITES DE FUNCIONES. CONTINUIDAD RAMAS INFINITAS Página 7 REFLEIONA RESUELVE Aproimaciones sucesivas Comprueba que: f () = 6,5; f (,9) = 6,95; f (,99) = 6,995 Calcula f (,999); f (,9999); f (,99999);
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0100
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0100 1) Cierto artículo de lujo se vende en 1 000 pesos. La cantidad de ventas es de 0 000 artículos al año. Se considera imponer un impuesto
13 Integral. indefinida. 1. Reglas de integración. Piensa y calcula. Aplica la teoría
Integral indefinida. Reglas de integración Piensa y calcula Calcula: a y =, y' = b y' =, y = c y = cos, y' = d y' = cos, y = a y' = b y = c y' = sen d y = sen Aplica la teoría. 7 Se aplica la integral
