Triangularización Simultanea
|
|
|
- Marcos Suárez San Segundo
- hace 9 años
- Vistas:
Transcripción
1 Triangularización Simultanea Antonio M. Oller 21 de Noviembre de Introducción Sabemos que toda matriz sobre C (y en general sobre un cuerpo algebráicamente cerrado) es semejante a una matriz triangular superior. Trabajar con matrices de este tipo tiene ventajas. Por ejemplo, que los valores propios (con su multiplicidad) están a la vista o que se tiene, también a la vista, una familia de subespacios invariantes. Esto justifica los esfuerzos por intentar triangularizar una matriz cualquiera. El objetivo de esta charla no es más que presentar dos resultados clásicos que nos proporcionan condiciones bajo las cuales pueden ser triangularizadas, a la vez, todas las matrices de una determinada familia. En primer lugar presentaremos una versión simplificada de cada uno de ellos, dar el enunciado general nos obligará a comentar el concepto de Álgebra de Lie resoluble. 2. Resultados Clásicos Comenzaremos poniendo una restricción bastante fuerte sobre el cuerpo en el que trabajamos. Teorema (Lie). Sea K un cuerpo algebráicamente cerrado, V un K-espacio vectorial de dimensión finita y sea L End(V ) tal que xy = yx para todos x, y L. Entonces existe 0 v V tal que x(v) = λ(x)v para todo x L pues por ser K algebráicamente cerrado y L = Kx debe existir un vector propio para x. Supongamos ahora que L = K x 1,..., x r con r > 1. En tal caso ponemos L = M Kx r y tenemos dim M < dim L por lo que podemos aplicar nuestra hipótesis de inducción y ver que W = {v V x(v) = λ(x)v x M} = 0. Vamos a ver ahora que W es x r -invariante: En efecto, si w W queremos ver que x r (w) W. Para ello tomamos y M y se tiene que y(x r (w)) = x r (y(w)) = x r (λ(y)w) = λ(y)x r (w) como queríamos. Así, razonando como en el paso anterior concluimos que x r posee un vector propio en W que es precisamente lo que se quería demostrar. Corolario. Si V es un espacio vectorial sobre un cuerpo K algebráicamente cerrado y L es un subespacio vectorial de End(V ) tal que todos sus elementos conmutan, entonces existe una base de V respecto de la cual todos los endomorfismos de L tienen matriz asociada triangular. 1
2 Nuestro siguiente paso es tratar de eliminar la restricción que hemos hecho sobre el cuerpo K. No obstante, hay que observar que se ha hecho un uso crucial de esta condición cuando se ha empleado que todo endomorfismo posee un valor propio. Así que debemos cambiar esta hipótesis por otra que nos garantice una conclusión similar. En esa dirección tenemos el siguiente resultado. Teorema (Engel). Sea V un K-espacio vectorial de dimensión finita. Sea L End(V ) tal que xy = yx para todos x, y L y tal que todo endomorfismo de L es nilpotente. Entonces existe 0 v V tal que x(v) = 0 para todo x L pues si L = Kx, como x es nilpotente, existe n tal que x n = 0 pero x n 1 0 y podemos elegir 0 v V tal que x n 1 (v) 0. Este es el vector buscado. Supongamos ahora que L = K x 1,..., x r con r > 1. En tal caso ponemos L = M Kx r y tenemos dim M < dim L por lo que podemos aplicar nuestra hipótesis de inducción y ver que W = {v V x(v) = 0 x M} = 0. Vamos a ver ahora que W es x r -invariante: En efecto, si w W queremos ver que x r (w) W. Para ello tomamos y M y se tiene que y(x r (w)) = x r (y(w)) = 0 como queríamos. Así, razonando como en el paso anterior concluimos que existe 0 v W tal que x r (w) = 0 como se quería. Corolario. Si V es un K-espacio vectorial y L es un subespacio vectorial de End(V ) tal que todos sus elementos son nilpotentes y conmutan, entonces existe una base de V respecto de la cual todos los endomorfismos de L tienen matriz asociada triangular. Hemos logrado relajar nuestra hipótesis sobre el cuerpo K a costa de añadir la nilpotencia. Esto no es demasiado restrictivo, sin embargo, la condición sobre la conmutación lo es más. Nuestro siguiente objetivo va a ser tratar de relajar también esta condición, pero para ello debemos hablar antes un poco sobre Álgebras de Lie. 3. Un poco (muy poco) sobre Álgebras de Lie Un álgebra de Lie es un espacio vectorial L que posee un producto interno bilineal, que denotamos [x, y] cumpliendo: [x, x] = 0 [x, [y, z]] + [y, [z, x]] + [z, [y, x]] = 0 Vemos pues que un álgebra de Lie es, en particular, un anillo (no conmutativo, no asociativo, sin identidad) y es natural hablar de subálgebras, ideales, cocientes. Dado un subconjunto X L podemos definir N L (X) = {y L [y, x] X x X} que se llama normalizador en L de X. Si X N L (X) diremos que X es una subálgebra de L y si N L (X) = L diremos que X es un ideal de L. Observamos que si M es una subálgebra de L el cociente L/M sólo posee, en general, estructura de espacio vectorial. Para poder ver L/M como álgebra de Lie necesitamos que M sea un ideal de L 1 1 Exactamente igual sucede en anillos, aunque allí el cociente por un subanillo no posee ningún tipo de estructura. 2
3 Habría muchísimo que decir sobre álgebras de Lie, pero no es nuestro objetivo. Nosotros, para comenzar nos vamos a conformar con presentar un ejemplo que, aunque parece muy particular, no lo es tanto 2. Consideramos V un K-espacio vectorial. Asociado al mismo tenemos el álgebra (asociativa) de sus endomorfismos, que denotamos por End(V ). Allí podemos definir una nueva operación como [f, g] = fg gf y denotamos por gl(v ) al espacio vectorial End(V ) dotado de esta nueva operación interna. Proposición. gl(v ) es un álgebra de Lie. Dada un álgebra de Lie L podemos llevar a cabo la construcción siguiente: L (1) = [L, L] L (i) = [L (i 1), L (i 1) ] para todo i > 1 Definición. Si L (n) = 0 para algún n, L se dice resoluble 3 Con estos pocos ingredientes ya podemos tratar de generalizar un poco nuestros resultados anteriores. 4. Los Resultados Clásicos Revisitados Teorema (Engel). 4 Sea K un cuerpo cualquiera y sea V un K-espacio vectorial de dimensión finita. Si L es una subálgebra de Lie de gl(v ) formada por elementos nilpotentes, entonces existe 0 v V tal que x(v) = 0 para todo x L. pues si L = Kx, como x es nilpotente, existe n tal que x n = 0 pero x n 1 0 y podemos elegir 0 v V tal que x n 1 (v) 0. Este es el vector buscado. Supongamos ahora que dim L = r > 1. En tal caso elegimos M una subálgebra maximal (es fácil ver que es dimensión finita siempre existen) de L. Consideramos L/M que, en principio, sólo posee estructura de espacio vectorial. Para que tenga estructura de álgebra necesitamos que M sea un ideal y eso es lo que vamos a probar ahora. Definimos ρ : L/M gl(l/m) mediante ρ(x + M)(y + M) = [x, y] + M. Como ρ es un homomorfismo bien definido y dim L/M < dim L podemos aplicar nuestra hipótesis de inducción y concluir que M < N L (M) lo cual implica, por maximalidad de M que M L como queríamos. Así pues L/M tiene estructura de álgebra y es trivial ver que dim L/M = 1. Podemos poner L = M Kz y podemos aplicar nuestra hipótesis de inducción y ver que W = {v V x(v) = 0 x M} 0. Vamos a ver ahora que W es z-invariante: En efecto, si w W queremos ver que z(w) W. Para ello tomamos y M y se tiene que y(z(w)) = [y, z](w) + z(y(w)) = 0 como queríamos, puesto que [y, z] M. Así, razonando como en el paso anterior concluimos que existe 0 v W tal que z(w) = 0 y esto concluye la prueba. 2 Teorema de Poincaré-Birkhoff-Witt 3 Comparar con el concepto análogo en grupos 4 Este resltado tiene consecuencias muy profundas en la teoría de álgebras de Lie 3
4 Teorema (Lie). Sea K un cuerpo algebráicamente cerrado y de característica 0 y sea L una subálgebra de Lie resoluble de gl(v ). Entonces existe 0 v V tal que x(v) = λ(x)v para todo x L. Demostración: Razonaremos de nuevo por inducción sobre la dimensión de L. El caso dim L = 1 es obvio pues por ser K algebráicamente cerrado y L = Kx debe existir un vector propio para x. Supongamos ahora que dim L = r > 1. Observamos que por ser L resoluble y no abeliana (si lo fuera estaríamos en el caso inicial) se tiene que 0 < L < L y podemos elegir M subálgebra maximal tal que L < M. Ahora vemos que [L, M] < [L, L] = L < M por lo que L M y tenemos que L/M tiene estructura de álgebra de Lie y como espacios vectoriales L = M Kz. Podemos entonces aplicar nuestra hipótesis de inducción y concluir que W = {v V x(v) = λ(x)v x M} 0. Vamos a ver ahora que W es z-invariante: En efecto, si w W queremos ver que z(w) W. Para ello tomamos y M y se tiene que y(z(w)) = [y, z](w) + z(y(w)) = λ([z, y])w + λ(y)z(w). Para tener lo que queremos necesitamos que λ([z, y]) = 0, veamoslo. Como estamos en dimensión finita podemos considerar el menor r tal que la familia {w, x(w), x 2 (w),..., x r (w)} es linealmente independiente y llamamos T al subespacio generado por ella. Sea ahora m M cualquiera, es fácil ver que m(t ) T y de hecho la matriz de m T es (como se comprueba fácilmente): λ(m) 0 λ(m)..... De modo que traza(m T ) = (r + 1)λ(m), m M. Podemos ahora particularizar esto al caso en que m = [z, y] con z L, y M. Vemos que z(t ) t y que y(t ) T por lo que [z, y] T = [z T, y T ] y como la traza de un conmutador es 0, tenemos: (r + 1)λ([z, y]) = traza([z, y] T ) = traza([z T, y T ]) = 0 y como estamos en característica 0 se concluye que λ([z, y]) = 0 como se quería. Finalmente, razonando como en el paso anterior concluimos que z posee un vector propio en W que es precisamente lo que se quería demostrar. Corolario. Sea L una subálgebra de Lie de gl(v ) con V un K-espacio vectorial de dimensión finita tal que: Todo endomorfismo de L es nilpotente ó K es algebráicamente cerrado, de característica 0 y L es resoluble. Entonces, existe una base de V respecto de la cual todos los elementos de L tienen matriz asociada triangular. 4
5 5. Conclusión Para terminar nos vamos a conformar con presentar sin demostración otros dos resultados de este mismo tipo. En ambos casos consideraremos matrices sobre C Teorema (McCoy). Si A es una subálgebra de End(V ) generada por dos matrices A y B y tal que para todo polinomio no conmutativo p se tiene que p(a, B)[A, B] es nilpotente, entonces A es simultaneamente triangularizable. Teorema (Levitzki). Todo semigrupo de matrices nilpotentes es triangularizable. 6. Referencias Radjavi, H. y Rosenthal, P. Simultaneous Triangularization Springer-Verlag New York, Jacobson, N. Lie Algebras Dover,
Espacios topológicos. 3.1 Espacio topológico
Capítulo 3 Espacios topológicos 3.1 Espacio topológico Definición 3.1.1. Un espacio topológico es un par (X, τ), donde X es un conjunto, y τ es una familia de subconjuntos de X que verifica las siguientes
Grupos libres. Presentaciones.
S _ Tema 12.- Grupos libres. Presentaciones. 12.1 Grupos libres. En el grupo Z de los enteros vimos una propiedad (cf. ejemplos.5), que lo caracteriza como grupo libre. Lo enunciamos al modo de una Propiedad
b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A
APENDICE Relaciones y Operaciones Compatibles 1 Definición: a) Sea A un conjunto y una relación entre elementos de A. Decimos que es una relación de equivalencia si es: i Reflexiva: a A, a a. ii Simétrica:
Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo.
1 Tema 5.-. Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 5.1. Anillos y cuerpos Definición 5.1.1. Un anillo es una terna (A, +, ) formada por un conjunto A
ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3
ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2. Transformaciones ortogonales (Curso 2010 2011) 1. Se considera el espacio vectorial euclídeo IR referido a una base ortonormal. Obtener la expresión
ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros
Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Z = N {0} N Enteros Las operaciones + y. son cerradas en Z, es decir la suma de dos números enteros es un número entero y el producto
Terminaremos el capítulo con una breve referencia a la teoría de cardinales.
TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto
Algebra lineal y conjuntos convexos
Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar
Fundamentos Matemáticos de la Ingeniería. Tema 4: Diagonalización de matrices. Curso
Fundamentos Matemáticos de la Ingeniería Tema 4 Hoja Escuela Técnica Superior de Ingeniería Civil e Industrial Esp en Hidrología Fundamentos Matemáticos de la Ingeniería Tema 4: Diagonaliación de matrices
Estructuras Algebraicas
Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos
Semana05[1/14] Relaciones. 28 de marzo de Relaciones
Semana05[1/14] 28 de marzo de 2007 Introducción Semana05[2/14] Ya en los capítulos anteriores nos acercamos al concepto de relación. Relación Dados un par de conjuntos no vacíos A y B, llamaremos relación
Conjuntos, relaciones y funciones Susana Puddu
Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también
Ejercicios de Algebra III. Curso 00-01
Ejercicios de Algebra III. Curso 00-01 Ejercicio 1. Sea x un elemento nilpotente de un anillo A. Probar que 1 + x es una unidad de A. Deducir que la suma de un elemento nilpotente y de una unidad es una
Espacios vectoriales reales.
Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre
TEMA 2. ESPACIOS VECTORIALES
TEMA 2. ESPACIOS VECTORIALES CÉSAR ROSALES GEOMETRÍA I En este tema comenzaremos el estudio de los objetos que nos interesarán en esta asignatura: los espacios vectoriales. Estos son estructuras básicas
Dependencia e independencia lineal
CAPíTULO 3 Dependencia e independencia lineal En este capítulo estudiaremos tres conceptos de gran importancia para el desarrollo del álgebra lineal: el concepto de conjunto generador, el concepto de conjunto
Teoría de la Probabilidad Tema 2: Teorema de Extensión
Teoría de la Probabilidad Tema 2: Teorema de Extensión Alberto Rodríguez Casal 25 de septiembre de 2015 Definición Una clase (no vacía) A de subconjuntos de Ω se dice que es un álgebra si A es cerrada
Semana03[1/17] Funciones. 16 de marzo de Funciones
Semana03[1/17] 16 de marzo de 2007 Introducción Semana03[2/17] Ya que conocemos el producto cartesiano A B entre dos conjuntos A y B, podemos definir entre ellos algún tipo de correspondencia. Es decir,
SESIÓN 4: ESPACIOS VECTORIALES
SESIÓN 4: ESPACIOS VECTORIALES Un espacio vectorial sobre un campo (como el cuerpo de los números reales o los números complejos) es un conjunto no vacío, dotado de dos operaciones para las cuales será
IIC2213. IIC2213 Teorías 1 / 42
Teorías IIC2213 IIC2213 Teorías 1 / 42 Qué es una teoría? Una teoría es un cúmulo de información. Debe estar libre de contradicciones. Debe ser cerrada con respecto a lo que se puede deducir de ella. Inicialmente
TEMA 8.- NORMAS DE MATRICES Y
Álgebra II: Tema 8. TEMA 8.- NORMAS DE MATRICES Y NúMERO DE CONDICIóN Índice. Introducción 2. Norma vectorial y norma matricial. 2 2.. Norma matricial inducida por normas vectoriales......... 4 2.2. Algunos
Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21
Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)
Subconjuntos notables de un Espacio Topológico
34 Capítulo 4 Subconjuntos notables de un Espacio Topológico 4.1 Adherencia Definición 4.1.1 (Punto adherente). Sea (X, τ) un espacio topológico, y sea S un subconjunto de X. Diremos que x X es un punto
Continuidad. 5.1 Continuidad en un punto
Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos
May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN
May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p
Tema 5: Sistemas de ecuaciones lineales.
TEORÍA DE ÁLGEBRA: Tema 5 DIPLOMATURA DE ESTADÍSTICA 1 Tema 5: Sistemas de ecuaciones lineales 1 Definiciones generales Definición 11 Una ecuación lineal con n incognitas es una expresión del tipo a 1
Diagonalización de Endomorfismos
Capítulo VII Diagonalización de Endomorfismos Fijemos, para todo este capítulo, un espacio vectorial E sobre un cuerpo k y un endomorfismo T : E E. Vamos a estudiar cuándo existe una base de E respecto
Sistemas de Ecuaciones Lineales y Matrices
Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una
Estructuras algebraicas
Estructuras algebraicas Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza 1 Relaciones binarias 11 Recordatorio Definición Dados dos conjuntos A y B se llama producto cartesiano de A por B
2. Ortogonalidad. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U.
2 Ortogonalidad En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U 1 Vectores ortogonales Definición 11 Dos vectores x, ȳ U se dicen ortogonales si: x ȳ = 0 Veamos algunas propiedades
Tema 2.- Formas Cuadráticas.
Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas
Topología de R n. Beatriz Porras
Producto escalar, métrica y norma asociada. Topología de R n Beatriz Porras 1 Producto escalar, métrica y norma asociada Consideramos el espacio vectorial R n sobre el cuerpo R; escribimos los vectores
Álgebra Lineal VII: Independencia Lineal.
Álgebra Lineal VII: Independencia Lineal José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email: jrico@salamancaugtomx
Sesión del día 11 de Marzo del 2011 y tutoría del día 12 de Marzo del 2011
Especialidad La enseñanza de las matemáticas en secundaria Grupo B: Celaya Sesión del día 11 de Marzo del 2011 y tutoría del día 12 de Marzo del 2011 Álgebra Resumen de la sesión anterior. Se añadió que
1. Año 2011 Ejercicios para entregar
Grupos de Lie y Álgebras de Lie 1. Año 2011 Ejercicios para entregar Ejercicio 1.1. Sea ρ : R Aut(C) = C la representación dada por ρ(t)z = e it z. (a) Probar que G = C ρ R es un grupo de Lie simplemente
Anillo de polinomios con coeficientes en un cuerpo
Capítulo 2 Anillo de polinomios con coeficientes en un cuerpo En el conjunto Z se ha visto cómo la relación ser congruente módulo m para un entero m > 1, es compatible con las operaciones suma y producto.
Espacios Vectoriales www.math.com.mx
Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel [email protected] MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................
Apéndice sobre ecuaciones diferenciales lineales
Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.
r j ϕ j (v i ) = r i, ϕ(v i ) = v = n a ij ϕ j(v) ϕ i (v) =
ESPACIO DUAL 1. Espacio Dual En temas anteriores dados V y V espacios vectoriales sobre k, definíamos en Hom(V, V ) una suma y un producto por elementos de k que convertían este conjunto en un espacio
Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc.
Tema 1 Espacios Vectoriales 1.1 Introducción Estas notas están elaboradas pensando simplemente en facilitar al estudiante una guía para el estudio de la asignatura, y en consecuencia se caracterizan por
CAPÍTULO 2 NOCIONES BÁSICAS DE TEORÍA DE CONJUNTOS
CAPÍTULO 2 NOCIONES BÁSICAS DE TEORÍA DE CONJUNTOS 2.1. NOCIONES PRIMITIVAS Consideraremos tres nociones primitivas: Conjunto, Elemento y Pertenencia. Conjunto Podemos entender al conjunto como, colección,
Subespacios Vectoriales
Subespacios Vectoriales Prof. Apuntes del Postgrado en Ingeniería 31 Mayo 2008 Subespacio Definición de Subespacio y Ejemplos. Definición Sea H un subconjunto no vacio de un espacio vectorial V(K). Si
Teoremas de Convergencia
Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y
TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO
TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares
Gráficas de funciones sobre variedades
Gráficas de funciones sobre variedades Oscar Perdomo Resumen Dadas una variedad riemanniana compacta n dimensional (M, g) y una función diferenciable F : M R k consideraremos la variedad M = {(x, F (x))
Espacios conexos. Capítulo Conexidad
Capítulo 5 Espacios conexos 1. Conexidad En este capítulo exploraremos el concepto de conexidad en un espacio métrico, y estudiaremos algunas de sus aplicaciones. Definición 5.1. Decimos que el espacio
Teorema de estructura de los módulos finitamente generados sobre un D.I.P.. Aplicaciones
Tema 13.- Teorema de estructura de los módulos finitamente generados sobre un D.I.P.. Aplicaciones 13.1 Teorema de estructura de los módulos finitamente generados sobre un D.I.P. En lo que sigue A denotará
Problemas de Espacios Vectoriales
Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial
Transformaciones lineales y matrices
CAPíTULO 5 Transformaciones lineales y matrices 1 Matriz asociada a una transformación lineal Supongamos que V y W son espacios vectoriales de dimensión finita y que T : V W es una transformación lineal
Una topología de los números naturales*
Una topología de los números naturales* Divulgación Gabriel Ruiz Hernández Instituto de Matemáticas, UNAM 1 de septimebre de 1997 resumen En este trabajo vamos a describir un espacio topológico X con las
1. Construcción de la Integral
1. Construcción de la Integral La integral de Riemann en R n es una generalización de la integral de funciones de una variable. La definición que vamos a dar reproduce el método de Darboux para funciones
Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones
Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará
Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos
Lección 2: Funciones vectoriales: límite y continuidad. Diferenciabilidad de campos vectoriales 1.1 Introducción En economía, frecuentemente, nos interesa explicar la variación de unas magnitudes respecto
Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo.
Tema 2. Grupos. 1 Grupos Definición 1 Un grupo es una estructura algebraica (G, ) tal que la operación binaria verifica: 1. * es asociativa 2. * tiene elemento neutro 3. todo elemento de G tiene simétrico.
Sobre la Construcción Axiomática de los Números Naturales
Sobre la Construcción Axiomática de los Números Naturales Dr. Rafael Labarca Briones Profesor de Matemáticas. Universidad de Santiago de Chile. Charla dictadas en las EMALCAS de Arequipa, La Paz y Quito.
Autómatas Mínimos. Encontrar el autómata mínimo. Universidad de Cantabria. Introducción Minimización de Autómatas Deterministas Resultados Algoritmo
Autómatas Mínimos Encontrar el autómata mínimo. Universidad de Cantabria Introducción Dado un lenguaje regular sabemos encontrar un autómata finito. Pero, hay autómatas más sencillos que aceptan el mismo
Lenguajes No Regulares
Lenguajes No Regulares Problemas que los Autómatas No Resuelven. Universidad de Cantabria Esquema Lema del Bombeo 1 Lema del Bombeo 2 3 Introducción Todos los lenguajes no son regulares, simplemente hay
Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable.
Cardinalidad Dados dos conjuntos A y B, decimos que A es equivalente a B, o que A y B tienen la misma potencia, y lo notamos A B, si existe una biyección de A en B Es fácil probar que es una relación de
1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano.
CAPÍTULO El plano vectorial Consideremos P como el plano intuitivo de puntos: A,,C..... El espacio vectorial de los vectores Definición. Vectores fijos Dado dos puntos cualesquiera A e del espacio nos
Funciones integrables en R n
Capítulo 1 Funciones integrables en R n Sean un subconjunto acotado de R n, y f : R una función acotada. Sea R = [a 1, b 1 ]... [a n, b n ] un rectángulo que contenga a. Siempre puede suponerse que f está
Sucesiones en R n. Ejemplos.-Considerando el espacio R 2 sea la sucesión {x k } 1 dada por x k = ( k, 1 k) podemos listar como sigue:
Sucesiones en R n Definición. Una sucesión en R n es cualquier lista infinita de vectores en R n x, x,..., x,... algunos de los cuales o todos ellos pueden coincidir entre si. Dada una sucesión x, x,...,
1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO
1 1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos
Grupos y Subgrupos El concepto de grupo Sea G un conjunto no vacío y sea G G G
Capítulo 1 Grupos y Subgrupos 001. El concepto de grupo Sea G un conjunto no vacío y sea G G G una operación interna en G para la cual denotaremos a la imagen de un par (x, y) mediante xy. Supongamos que
ETSI de Topografía, Geodesia y Cartografía
Prueba de Evaluación Continua Grupo A 9-04-14 ESPACIOS VECTORIALES-DIAGONALIZACIÓN (parte sin DERIVE) 1. a) Definir sistema ligado de vectores de un espacio vectorial V. b) Demostrar que si un sistema
Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )
Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder
4. " $#%&' (#) para todo $#* (desigualdad triangular).
10 Capítulo 2 Espacios Métricos 21 Distancias y espacios métricos Definición 211 (Distancia) Dado un conjunto, una distancia es una aplicación que a cada par le asocia un número real y que cumple los siguientes
Funciones de Clase C 1
Capítulo 7 Funciones de Clase C 1 Vamos a considerar ahora la extensión a varias variables del concepto de función de clase C 1. Cada vez que establezcamos una propiedad de las funciones diferenciables,
Índice Proposiciones y Conectores Lógicos Tablas de Verdad Lógica de Predicados Inducción
Curso 0: Matemáticas y sus Aplicaciones Tema 5. Lógica y Formalismo Matemático Leandro Marín Dpto. de Matemática Aplicada Universidad de Murcia 2012 1 Proposiciones y Conectores Lógicos 2 Tablas de Verdad
Lenguajes, Gramáticas y Autómatas Conceptos
Lenguajes, Gramáticas y Autómatas Conceptos Departamento de Informática e Ingeniería de Sistemas C.P.S. Universidad de Zaragoza Última revisión: Febrero. 2004 11/02/2004 1 Índice Alfabetos, palabras y
1. RANGO DE UNA MATRIZ
. RANGO DE UNA MATRIZ El rango de una matriz es el mayor de los órdenes de los menores no nulos que podemos encontrar en la matriz. Por tanto, el rango no puede ser mayor al número de filas o de columnas.
Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos
Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los
Herramientas digitales de auto-aprendizaje para Matemáticas
real de con Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura real de con Índice real de con real de con.
R no es enumerable. Por contradicción, supongamos que existe una biyección f : N! R. diagonalización de Cantor. Para cada i 2 N:
R no es enumerable Por contradicción, supongamos que existe una biyección f : N! R. I Vamos a obtener una contradicción usando el método de diagonalización de Cantor. Para cada i 2 N: f (i) = n i.d i,0
NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN 1.2. OPERACIONES CON COMPLEJOS
NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN La ecuación x + 1 0 no tiene solución en el cuerpo de los números reales R ya que no existe un número real x tal que x 1. Necesitamos un conjunto que contenga a R, que
como el número real que resulta del producto matricial y se nota por:
Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,
1 Aplicaciones lineales
UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Aplicaciones lineales y diagonalización. El objetivo principal de este tema será la obtención de una matriz diagonal
Reglas de derivación. 4.1. Sumas, productos y cocientes. Tema 4
Tema 4 Reglas de derivación Aclarado el concepto de derivada, pasamos a desarrollar las reglas básicas para el cálculo de derivadas o, lo que viene a ser lo mismo, a analizar la estabilidad de las funciones
Demostraciones a Teoremas de Límites
Demostraciones a Teoremas de Límites Programa de Bachillerato.Universidad de Chile. Otoño, 009 En esta sección solo daremos los fundamentos teóricos que nos permiten resolver los problemas que se nos plantean,
Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes
Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción
Reglas de l Hôpital Teorema del Valor Medio Generalizado. Tema 7
Tema 7 Reglas de l Hôpital Estudiamos en este tema el método práctico más efectivo para calcular ites de funciones en los que se presenta una indeterminación del tipo [0/0], o [ / ]. Este método se atribuye
Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular.
Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular. 1. Definiciones previas 1.1. Wronskiano Diremos que el Wronskiano de un conjunto
Diagonalización de matrices.
Diagonalización de matrices. 1. Diagonalización de matrices. Definición 1.1 Sea A una matriz cuadrada,, decimos que es un autovalor de A si existe un vector no nulo tal que En esta situación decimos que
Teoría Tema 9 Ecuaciones del plano
página 1/11 Teoría Tema 9 Ecuaciones del plano Índice de contenido Determinación lineal de un plano. Ecuación vectorial y paramétrica...2 Ecuación general o implícita del plano...6 Ecuación segmentaria
Números reales Conceptos básicos Algunas propiedades
Números reales Conceptos básicos Algunas propiedades En álgebra es esencial manejar símbolos con objeto de transformar o reducir expresiones algebraicas y resolver ecuaciones algebraicas. Debido a que
1. Sucesiones y redes.
1. Sucesiones y redes. PRACTICO 7. REDES. Se ha visto que el concepto de sucesión no permite caracterizar algunas nociones topológicas, salvo en espacios métricos. Esto empieza con algunas definiciones
Lenguajes Regulares. Antonio Falcó. - p. 1
Lenguajes Regulares Antonio Falcó - p. 1 Cadenas o palabras I Una cadena o palabra es una sucesión finita de símbolos. cadena {c, a, d, e, n}. 10001 {0, 1} El conjunto de símbolos que empleamos para construir
Tema 1: Matrices y Determinantes
Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz
En general, un conjunto A se define seleccionando los elementos de un cierto conjunto U de referencia que cumplen una determinada propiedad.
nidad 3: Conjuntos 3.1 Introducción Georg Cantor [1845-1918] formuló de manera individual la teoría de conjuntos a finales del siglo XIX y principios del XX. Su objetivo era el de formalizar las matemáticas
1 Números reales. Funciones y continuidad.
1 Números reales. Funciones y continuidad. En este tema nos centraremos en el estudio de la continuidad de funciones reales, es decir, funciones de variable real y valor real. Por ello es esencial en primer
Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.
Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x
1 Relaciones de orden
1 Relaciones de orden Sea R una relación binaria en un conjunto A. Si R satisface las propiedades reflexiva, antisimétrica y transitiva se dice que R es una relación de orden. En este caso si a y b son
UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS
UNIVERSIDAD DON BOSCO - DEPARTAMENTO DE CIENCIAS BÁSICAS UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS ÁLGEBRA LINEAL - GUIÓN DE CLASE - SEMANA 10 y 11 - CICLO 01-2015 Estudiante: Grupo: 1. Estructuras Algebraicas
1 Curvas planas. Solución de los ejercicios propuestos.
1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)
1.2 Si a y b son enteros impares, entonces a + b es par. 1.4 Si el producto de enteros a y b es par, entonces alguno de ellos es par.
Sesión 1 Demostraciones Demostración directa 1.1 Si n es un número entero impar, entonces n 2 es impar. 1.2 Si a y b son enteros impares, entonces a + b es par. Demostración indirecta 1.3 Si n 2 es par,
TEMA 4: Sistemas de ecuaciones lineales II
TEM 4: Sistemas de ecuaciones lineales II ) Teorema de Rouché-Frobenius. ) Sistemas de Cramer: regla de Cramer. 3) Sistemas homogeneos. 4) Eliminación de parámetros. 5) Métodos de factorización. 5) Métodos
f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).
TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:
