Ejemplos Desarrollados
|
|
|
- Gloria Nieves Sevilla Soriano
- hace 9 años
- Vistas:
Transcripción
1 Universidad de Santiago de Chile Departamento de Ingeniería Mecánica Mecánica de Medios Continuos Eugenio Rivera Mancilla Ejemplos Desarrollados 1. Una placa rectangular homogénea, de masa m, cuyas aristas son a y como se muestra en la figura 1. Determine el tensor de inercia respecto del punto O. Solución Figura 1: Esquema del prolema El tensor de inercia posee nueve componentes que se pueden calcular mediante las expresiones: Momentos de Inercia I ii = (x j + x k )dm i, j, k ciclicos Productos de Inercia I ij = (x i x j )dm = I ji i j Cálculo de los Momentos de Inercia. Figura : ariación en el eje Y Recordemos en esta parte que si suponemos una placa homogénea de densidad constante, entonces m = ρ, además si añadimos en el volumen = xyz que la coordenada z de la placa es despreciale, la masa de la placa será m = ρa = ρ = m a. a) Para calcular I xx = (y + z )dm = y dm, notemos que el diferencial de masa (al fijar x y variar y) es: m dm = ρd = ρdy }{{} = a dy = m a dy densidad placa y m Luego I xx = dy = I xx = m a a a a y dy = m a a y dy = ma 1
2 ) Análogamente I yy = (x + z )dm es I yy = x x m dm = dx = I yy = m x dx = m x dx = m 1 c) El cálculo del momento de inercia I zz = (x + y )dm, es un poco más complicado, ya que, la integral (en éste caso) pasa a ser una integral dole. El diferencial de masa es dm = ρd = ρda = dm = ρdxdy. Entonces I zz = (x + y )dm = ρ A(x + y )dxdy = m (x + y )dxdy a A Esta última integral se desarrolla de la siguiente forma: I zz = m a (x + y )dxdy = 4m a a a a (x + y )dxdy = m 1 (a + ). Cálculo de los Productos de Inercia. En este ejemplo se puede deducir de la simetría que todos los productos de inercia son cero. De esta forma I xy = I yz = I xz = Finalmente el tensor de inercia es: [I] = m 1 a a + Ejercicio: Una placa rectangular homogénea, de masa m, cuyas aristas son a y como se muestra en la figura 1. Determine el tensor de inercia respecto del punto Q.. Muestre que el Tensor de inercia de una placa triangular contenida en el plano XY respecto al punto O, como se muestra, esta dado por [I] = m a 3 a a a 3 + Solución Figura 3: Esquema del prolema Como la placa homogénea de densidad constante, entonces m = ρ, además si añadimos en el volumen = xyz que la coordenada z de la placa es despreciale, la masa de la placa será m = ρ a = ρ = m. a Cálculo de los Momentos de Inercia.
3 a) Respecto al eje OX, I xx = (y + z )dm = y dm, donde dm = ρd = ρda. La integral a resolver es una integral dole: I xx = ρ y dm = m ax y dydx = ma A a 6. ) En forma análoga calculamos I yy = (x + z )dm: I yy = ρ x dm = m ax x dydx = m A a. c) Ahora calculemos I zz = (x + y )dm. I zz = (x + y )dm = m ax (x + y )dydx = m ( a + 3 ) A a 6 Cálculo de los Productos de Inercia. a) I xy = I yx = xy dm = m xy da = m ax xy dydx = m a A a 4 a ) I yz = I zy = yz dm = m yz dydz =, ya que dz =. a A c) I xz = I zx = xz dm = m xz dxdz =, ya que dz =. a A 3. Considere tres puntos A, B, C de coordenadas (a,, ), (,, ) y (,, c) referidos a los ejes ortogonales X Y Z. El volumen del tetraedro T de vertices O, A, B y C es homogéneo y de densidad ρ. a) Determine los elementos de la matriz de inercia. ) En la hipótesis a = = c. determine los momentos principales y los ejes principales de inercia. Solución Figura 4: Esquema del prolema Para calcular las componentes del Tensor de Inercia del tetraedro, se dee traajar con nociones de cálculo en varias variales, como lo es, encontrar los limites de integración de una integral multiple - en este caso una integral triple - el tema de los limites de integración pasa por calcular la ecuación de una recta y la ecuación de un plano. Para practicar un poco más calculemos primero el volumen del tetraedro - ejemplo de integración que dee ser ase para el cálculo de los momentos y productos de inercia - así que manos a la ora. El volumen se otiene calculando la integral triple = d = dxdydz
4 Limites de integración: Figura 5: ariación para limites de integración ariación en X: Si escogemos la variación tradicional tendremos: < x < a. ariación en Y: Si escogemos la variación de curvas ( en este caso lineal) tendremos: < y < a x +. ariación en Z: Si escogemos la variación superficial (en este caso entre planos): La ecuación de un plano se otiene mediante la expresión N ( p p ) =, donde N es un vector normal (perpendicular) al plano, p es un punto conocido del plano y p un punto genérico (x, y, z) contenido en el plano. Para otener el vector normal consideremos los vectores pertenecientes al plano que son definidos por los puntos P (a,, ), P 1 (,, ) y P (,, c) de la siguiente forma: u 1 = P 1 P = ( a,, ) y u = P P = ( a,, c). Si realizamos el producto cruz entre ellos tendremos N = u 1 u = (c, ac, a). Con esto la ecuación del plano es N v = (c, ac, a) [(x, y, z) (a,, )] = x a + y + z c = 1 Despejando z tendremos z = c ( 1 x a y ), esto nos indica que la variación en Z es : < z < c ( 1 x a y ). Finalmente = a c (1 x a y ) dzdydx = ac 6 En éste prolema las integrales de los momentos y productos de inercia son integrales triples donde dm = ρd = ρdzdydx. Cálculo de los Momentos de Inercia. a) I xx = (y + z )dm = ρ (y + z )d = ρ a c (1 x a y ) (y + z )dzdydx Desarrollando la integral se otiene I xx = ρac 6 ( + c ) ) En forma análoga a I yy = (x + z )dm = ρ (x + z c (1 x a y ) )d = ρ (x + z )dzdydx I yy = ρac 6 (a + c )
5 c) En forma análoga I zz = (x + y )dm = ρ I zz = ρac 6 (a + ) Cálculo de los Productos de Inercia. a) I xy = I yx = xy dm = ρ I xy = I yx = ρac 1 a ) I yz = I zy = yz dm = ρ I yz = I zy = ρac 1 c c) I xz = I zx = xy dm = ρ I xz = I zx = ρac 1 ac Finalmente el tensor de inercia es: [I] = ρac 6 (x + y )d = ρ xy d = ρ yz d = ρ xz d = ρ a a a a + c a ca a a + c c ca c a + c(1 x a y ) (x + y )dzdydx c (1 x a y ) xy dzdydx c (1 x a y ) yz dzdydx c (1 x a y ) xz dzdydx La segunda parte de este ejercicio: Con la hipótesis a = = c. determine los momentos principales y los ejes principales de inercia. El tensor de inercia queda [I] = ρa3 6 a a a a a a a a a Cálculo del determinante ρa 5 1 det 4 λ λ λ = det Usando operaciones elementales columna: 4 λ 1 1 det 1 4 λ 1 C C 1 C = det λ C 3 (4 λ)c1+c 3 4 λ 5 λ (4 λ) 1 = det λ 5 + λ 1 De esto último tenemos la condición = ρa λ λ λ 4 λ 5 λ λ λ = det (λ 5) (λ ) = = 5 λ (4 λ) λ 5 + λ = Los valores propios son λ 1 = 5, λ = 5, λ 3 =
6 Así los momentos principales de inercia son I 1 = ρa5 1 λ 1 = ρa5 4, I = ρa5 1 λ = ρa5 4, I 3 = ρa5 1 λ 3 = ρa5 6 [I ] = ρa5 1 Cálculo de las direcciones principales de inercia. 5 5 Se dee encontrar las soluciones no triviales del sistema: (4 λ i )n 1 n n 3 = n 1 + (4 λ i )n n 3 = n 1 n + (4 λ i )n 3 = Es importante aquí recordar la condición adicional de los cosenos directores para el sistema, que es: n 1 + n + n 3 = 1 Para λ 1 = λ = 5 el sistema se reduce a n 1 n n 3 = Como tenemos dos ecuaciones y tres incógnitas, es mejor estudiar el sistema para el valor propio siguiente. Para λ 3 = el sistema a estudiar es n 1 n n 3 = (1) n 1 + n n 3 = () n 1 n + n 3 = (3) De la ecuación (1) despejando n 1 se otiene n 1 = n + n 3, reemplazando este resultado en () y (3), se tendrá la condición n = n 3. Entonces de concluye que n 1 = n = n 3, usando la condición n 1 + n + n 3 = 1. n 1 + n 1 + n 1 = 1 3n 1 = 1 n 1 = ± 1 3 n 1 = n = n 3 = ± 1 3 Una dirección principal queda definida por ( ˆn = ± 1, ± 1, ± 1 ) Las otras dos direcciones principales, pueden ser cualquier par de vectores perpendiculares entre sí y a la vez perpendiculares a ˆn, como por ejemplo: ( 1, 1, ) y ( 1, 1, )
7 4. Dado el tensor [I] = a) Los valores principales. ) Calcule las direcciones principales.. Determine: c) Otenga la matriz de transformación y verifique que I = a ip a jp I ij, esto es I = AIA T. d) Si I representa el tensor de inercia de un sistema en un eje de coordenadas Ox 1 x x 3. Determine el momento de inercia respecto de eje definido por el vector v = 1î + 4ĵ ˆk. 5. Usando notación indicial verifique las identidades siguientes Donde = A ( B C) = B( A C) C( A B) ( F (r)) = ( F (r)) F (r)
Contenido 1. Integrales Dobles 2. Integrales Triples
Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................
Herramientas digitales de auto-aprendizaje para Matemáticas
real de con Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura real de con Índice real de con real de con.
Ecuaciones de la recta en el espacio
Ecuaciones de la recta en el espacio Ecuación vectorial de la recta Sea P(x 1, y 1 ) es un punto de la recta r y uu su vector director, el vector PPXX tiene igual dirección que uu, luego es igual a uu
Ejercicios Resueltos de Cálculo III.
Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como
Problemas métricos. 1. Problemas afines y problemas métricos
. Problemas afines y problemas métricos Al trabajar en el espacio (o análogamente en el plano) se nos pueden presentar dos tipos de problemas con los elementos habituales (puntos, rectas y planos): Problemas
TEMA 6 Ejercicios / 3
TEMA 6 Ejercicios / 1 TEMA 6: RECTAS Y PLANOS EN EL ESPACIO 1. Ecuaciones de los planos cartesianos en forma vectorial, paramétrica e implícita. Ecuaciones del plano XY: Punto del plano P 0, 0, 0 Vectores
1 Funciones de Varias Variables
EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,
3.1 El espacio afín R n
3. Geometría analítica 3.1 El espacio afín R n Consideremos el conjunto R n, formado por las listas ordenadas (x 1,...,x n ) de números reales. Convengamos en llamar puntos a los elementos de R n. Pero
Mecánica de Fluidos. Análisis Diferencial
Mecánica de Fluidos Análisis Diferencial Análisis Diferencial: Descripción y caracterización del flujo en función de la descripción de una partícula genérica del flujo. 1. Introducción 2. Movimiento de
CAMPOS: CIRCULACIÓN Y FLUJO
AMPO: IRULAIÓN Y FLUJO Dado el vector a ( x + y) i ˆ + xy ˆ j calcular su circulación a lo largo de la recta y x+ desde el punto A (, ) al B (, 2). olución: I.T.I. 99, 5, I.T.T. 2 En la trayectoria que
ALGEBRA. Escuela Politécnica Superior de Málaga
ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.
a) La ecuación del plano que pasa por el punto ( 1, 1, 0 ). (3 puntos) b) La ecuación del plano que es paralelo a la recta r.
PROBLEMAS DE SELECTIVIDAD. BLOQUE GEOMETRÍA 1. En el espacio se dan las rectas Obtener a) El valor de para el que las rectas r y s están contenidas en un plano. (4 puntos) b) La ecuación del plano que
sea paralela al plano
x = 1+2t 1. [ANDA] [EXT-A] Considera los puntos A(1,1,2) y B(1,-1,-2) y la recta dada por y = t. z = 1 a) Halla la ecuación general del plano que que contiene a r y es paralelo a la recta que pasa por
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales ALBERTO VIGNERON TENORIO Dpto. de Matemáticas Universidad de Cádiz Índice general 1. Sistemas de ecuaciones lineales 1 1.1. Sistemas de ecuaciones lineales. Definiciones..........
PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.
PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia
Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )
Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder
IES Fco Ayala de Granada Modelos del 2010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A
Opción A Ejercicio opción A, modelo de año 200 [2 5 puntos] Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función a maximizar A (/2)(x)(y)
Capítulo 1 Vectores. 26 Problemas de selección - página 13 (soluciones en la página 99)
Capítulo 1 Vectores 26 Problemas de selección - página 13 (soluciones en la página 99) 21 Problemas de desarrollo - página 22 (soluciones en la página 100) 11 1.A PROBLEMAS DE SELECCIÓN Sección 1.A Problemas
ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República
ALN Repaso matrices In. Co. Facultad de Ingeniería Universidad de la República Definiciones básicas - Vectores Definiciones básicas - Vectores Construcciones Producto interno: ( x, y n i x y i i ' α Producto
Guía n 0: Herramientas de Física y Matemáticas
Guía n 0: Herramientas de Física y Matemáticas Problema Dadas dos partículas en el espacio ubicadas en los puntos de coordenadas p = (0,5, 2) y p 2 = (2,3,). Hallar el vector posición de la partícula respecto
Algebra Lineal Xa: Álgebra Vectorial en R3
Algebra Lineal Xa: Álgebra Vectorial en R3 José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: [email protected]
CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n.
April 15, 2009 En este capítulo D denota un subconjunto abierto de R n. 1. Introducción Definición 1.1. Dada una aplicación f : D R, definimos la derivada parcial segunda de f como D ij f = 2 f = ( ) x
Vectores en el espacio
Vectores en el espacio Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas
Hoja de Prácticas tema 2: Derivación de Funciones de Varias Variables. (d) z = arctan(xy) (e) z = arcsin(x+y) (f) z = x y. x 2 +y 2 +z 2, ω xx =
Cálculo II EPS (Grado TICS) Curso 2012-2013 Hoja de Prácticas tema 2: Derivación de Funciones de Varias Variables 1. Hallar las derivadas parciales primera y segunda de las siguientes funciones: (a) z
Teoría Tema 9 Ecuaciones de la recta en el espacio tridimensional
página 1/11 Teoría Tema 9 Ecuaciones de la recta en el espacio tridimensional Índice de contenido Ecuación vectorial, paramétrica y continua de la recta...2 Ecuación general o implícita de la recta...5
Geometría de masas: Cálculos del tensor de Inercia
Departamento: Física Aplicada Mecánica acional (ngeniería ndustrial) Curso 007-08 eometría de masas: Cálculos del tensor de nercia Tensor de inercia de una varilla delgada. Calculo del tensor de inercia
1. Breve resumen de optimización sin restricciones en varias variables.
MATEMÁTICAS EMPRESARIALES G.A.D.E. CURSO 202/203 Práctica 2: Aplicaciones a la Optimización. En esta práctica se introducen las herramientas que nos ofrece el programa Mathematica para optimizar funciones
Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1)
Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : Se pide: v = x yē x + x tē y (3.1) a. A qué tipo de formalismo corresponde este análisis del escurrimiento, lagrangeano o eulereano?
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
Funciones de varias variables
Funciones de varias variables Derivadas parciales. El concepto de función derivable no se puede extender de una forma sencilla para funciones de varias variables. Aquí se emplea el concepto de diferencial
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x
Tema 2.- Formas Cuadráticas.
Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas
ejerciciosyexamenes.com GEOMETRIA
GEOMETRIA 1.- Dado el vector AB= (2,-1,3) y el punto B(3,1,2) halla las coordenadas del punto A. Sol: A =(1,2,-1) 2.- Comprobar si los vectores AB y CD son equipolentes, siendo A(1,2,-1), B(0,3,1), C(1,1,1)
1. Sea f una función definida en I = [1, 2] [1, 4] del siguiente modo: (x + y) 2, x y 2x, 0, en el resto.
La integral múltiple Problemas resueltos. Sea f una función definida en I [, ] [, 4] del siguiente modo: { (x + y), x y x, f(x, y), en el resto. Indique, mediante un dibujo, la porción A del rectángulo
CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B
ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS CÁLCULO II VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B b) A B + C c) 4A 3B d) 4(A + B) 5C e) 1 2 (A B) + 1 4 C 2. Sean
Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás
Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 213 Capítulo 11 Año 21 11.1. Modelo 21 - Opción A Problema 11.1.1 3 puntos Dada la función: fx
Análisis II - Primer Parcial Coloquio- Tema 1
.5. Coloquio 1/08/03. Análisis II - Primer Parcial Coloquio- Tema 1 1. Hallar a de manera que sea máximo el flujo de campo F (x,y,z)= (x,y,z) a través del borde ( con tapas!) del cilindro elíptico descripto
Teoría Tema 6 Ecuaciones de la recta
página 1/14 Teoría Tema 6 Ecuaciones de la recta Índice de contenido Base canónica en dos dimensiones como sistema referencial...2 Ecuación vectorial de la recta...4 Ecuación paramétrica de la recta...6
ANALISIS MATEMATICO II Grupo Ciencias 2015
ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos A. Vectores Hasta el 9 de marzo. Sean v = (0,, ) y w = (,, 4) dos vectores de IR 3. (a) Obtener el coseno
IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 opción A, modelo 3 Septiembre
IES Fco Ayala de Granada Septiembre de 015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 3 Septiembre 015 ax + b [ 5 puntos] Halla los valores a, b y c sabiendo que
Problemas de Geometría Analítica del Espacio
1) Dados los vectores u(4, 4, 8), v( 2,, 5), w(3, 5, 8) y a(22,, 11). Hallar los valores de x, y, z que verifican la combinación lineal a = x u + y v + z w. 2) Dados los vectores a( 5, 19, n) y b( h, 3,
ALGEBRA Y GEOMETRÍA I DPTO. DE MATEMÁTICA ESCUELA DE FORMACIÓN BÁSICA F.C.E.I.A U.N.R
ALGEBRA Y GEOMETRÍA I DPTO. DE MATEMÁTICA ESCUELA DE FORMACIÓN BÁSICA F.C.E.I.A U.N.R SUPERFICIES ING. RICARDO F. SAGRISTÁ -2006- SUPERFICIES.- 1.- Ecuaciones de superficies. Ya hemos estudiado la superficie
Un Orbital Atómico 2px - Forma 1. Un Orbital Atómico 2px - Forma 2. Un Orbital Atómico 2px - Nodos 1. Un Orbital Atómico 2p x consta de:
Un Orbital Atómico 2px - Forma 1 Un Orbital Atómico 2p x consta de: Un lóbulo con signo positivo y otro con signo negativo Cuatro lóbulos sobre el plano XY Dos lóbulos con signo positivo y otros dos con
Ecuación de la Recta en el Espacio
PreUnAB Clase # 21 Octubre 2014 Definición Un sistema de coordenadas rectangulares en el espacio está determinado por tres planos mutuamente perpendiculares, Los ejes generalmente son identificados por
Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales
Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna [email protected] 2016 Licencia Creative Commons 4.0 Internacional J.
REPRESENTACIÓN DEL ESTADO TENSIONAL DE UN SÓLIDO. CÍRCULOS DE MOHR
REPRESENTACIÓN DEL ESTADO TENSIONAL DE UN SÓLIDO. CÍRCULOS DE MOHR Los círculos de Mohr son un método para representar gráficamente el estado tensional que padece un punto de un sólido en un instante determinado.
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
4 Integrales de línea y de superficie
a t e a PROBLEMA DE ÁLULO II t i c a s 1 o Ings. Industrial y de Telecomunicación URO 2009 2010 4 Integrales de línea y de superficie 4.1 Integrales sobre curvas y campos conservativos. Problema 4.1 Integra
Tema 5: Sistemas de ecuaciones lineales.
TEORÍA DE ÁLGEBRA: Tema 5 DIPLOMATURA DE ESTADÍSTICA 1 Tema 5: Sistemas de ecuaciones lineales 1 Definiciones generales Definición 11 Una ecuación lineal con n incognitas es una expresión del tipo a 1
Desarrollo de Taylor y extremos en varias variables
resumen01 1 Desarrollo de Taylor y extremos en varias variables El polinomio de Taylor en varias variables Recordemos que para una función f de una variable, el polinomio de Taylor de orden n en a viene
AMPLIACIÓN DE CÁLCULO
AMPLIACIÓN DE CÁLCULO Problemas propuestos Departamento de Matemáticas del Área Industrial Programa de Ampliación de Cálculo. Curso 2014/15 1. Cálculo de integrales múltiples Integrales dobles en rectángulos;
LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3
Definición LA CIRCUNFERENCIA Se llama circunferencia a la sección cónica generada al cortar un cono recto con un plano perpendicular al eje del cono. La circunferencia es el lugar geométrico de todos los
IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Sobrantes de 011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 del 011 [ 5 puntos] Queremos hacer junto a la carretera un cercado rectangular
Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes
Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción
Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y),
Problema. Calcula las derivadas parciales de las siguientes funciones: (a) f(x, y) = x + y cos(xy), (b) f(x, y) = x x + y, (c) f(x, y) = log x + y x y, (d) f(x, y) = arctan x + y x y, (e) f(x, y) = cos(3x)
Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática.
Álgebra Geometría Analítica Prof. Gisela Saslavsk Vectores en R en R 3. Rectas planos en el espacio Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática..
CINEMATICA DE MAQUINAS
CINEMATICA DE MAQUINAS 4.1.- CAMPO DE VELOCIDADES EN EL MOVIMIENTO GENERAL DE UN SISTEMA INDEFORMABLE 4.2.- ACELERACION DE UN PUNTO EN EL MOVIMIENTO GENERAL DE UN SISTEMA INDEFORMABLE 4.3.- EJE INSTANTANEO
1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado:
CAPÍTULO. GEOMETRÍA AFÍN.. Problemas. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: a) A(,, ), v = (,, ) ; b) A(0,
Depto. de Matemáticas Guía Teórico-Practico Unidad : Secciones Cónicas Tema: Ecuación de la circunferencia Nombre: Curso:
Depto. de Matemáticas Guía Teórico-Practico Unidad : Secciones Cónicas Tema: Ecuación de la circunferencia Nombre: Curso: CIRCUNFERENCIA Una circunferencia es el lugar geométrico de los puntos del plano
CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA
CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA Este documento enuncia de forma más detallada la formulación matemática que permite el estudio de campos eléctricos debido a distribuciones
GEOMETRÍA EN EL ESPACIO.
GEOMETRÍA EN EL ESPACIO. Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas
ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250)
Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico Departamento de Matemática Aplicada ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Semestre 1-2011 Mayo 2011 Álgebra Lineal y Geometría
Álgebra Lineal VII: Independencia Lineal.
Álgebra Lineal VII: Independencia Lineal José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email: jrico@salamancaugtomx
Modelización por medio de sistemas
SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable
Algebra Lineal XXVI: La Regla de Cramer.
Algebra Lineal XXVI: La Regla de Cramer José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamancaugtomx
Espacios vectoriales reales.
Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre
GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π
GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a
Tema 8. Geometría de la Circunferencia
Tema 8. Geometría de la Circunferencia 1. Definición la circunferencia. Ecuación de la circunferencia 1.1 Ecuación de la circunferencia centrada en el origen 1. Ecuación de la circunferencia con centro
Áreas entre curvas. Ejercicios resueltos
Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio
Matrices 1 (Problemas). c
º Bachillerato Matrices 1 (Problemas) 1.- Efectúa las siguientes operaciones con matrices: a) 1 4 5 6 + b) 5 7 9 11 1 1 1 1 1 1 c). 4 d) 6. 1 6 1 18 1 g) 0 0 0 0 a 0 b 0. 0 b 0 0 0 c c 0 0.- Siendo A =
Repaso de Vectores. Autor: Dra. Estela González. flecha. La longitud de la línea indica la magnitud del vector, y su
Autor: Dra. Estela González Algunas cantidades físicas como tiempo, temperatura, masa, densidad y carga eléctrica se pueden describir plenamente con un número y una unidad, pero otras cantidades (también
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0.. Ecuaciones diferenciales de primer orden. Traectorias ortogonales. Muchas aplicaciones problemas de la ciencia, la ingeniería la economía se formulan en términos
2. [2014] [EXT-B] Determinar los valores de los parámetros a y b para los que tiene inversa la matriz A =
MasMatescom [204] [EXT-A] Estudiar, para los distintos valores del parámetro m, el siguiente sistema de ecuaciones Resolverlo cuando m = 3 mx-y+3z = 0 x+y+7z = 0 2x-my+4z = 0 2 [204] [EXT-B] Determinar
IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A
IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 2011 específico1 [2'5 puntos] Un alambre de 100 m de longitud se divide
La transformada de Laplace como aplicación en la resistencia de materiales
Docencia La transformada de Laplace como aplicación en la resistencia de materiales Agustín Pacheco Cárdenas y Javier Alejandro Gómez Sánchez Facultad de Ingeniería, UAQ; Depto. Ciencias Básicas, ITQ Facultad
JUNIO Bloque A
Selectividad Junio 009 JUNIO 009 Bloque A 1.- Estudia el siguiente sistema en función del parámetro a. Resuélvelo siempre que sea posible, dejando las soluciones en función de parámetros si fuera necesario.
Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.
Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma
La Distancia de un Punto a una Recta y de un Punto a un Plano, y un Teorema de Pitágoras en Tres Dimensiones
58 Sociedad de Matemática de Chile La Distancia de un Punto a una Recta y de un Punto a un Plano, y un Teorema de Pitágoras en Tres Dimensiones Miguel Bustamantes 1 - Alejandro Necochea 2 El propósito
Problemas de exámenes de Aplicaciones Lineales y Matrices
1 Problemas de exámenes de Aplicaciones Lineales y Matrices 1. Consideramos f End(R n ), que tiene matriz A respecto la base canónica. Cuál de las siguientes afirmaciones es incorrecta? a) Si v es un vector
Apéndice sobre ecuaciones diferenciales lineales
Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.
1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2)
1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2) 2. Halla la ecuación de la recta r, sabiendo que es paralela a y=2x-3 y pasa por el punto (1,3). 3. Halla la ecuación de la recta
Matriz asociada a una transformación lineal respecto a un par de bases
Matriz asociada a una transformación lineal respecto a un par de bases Objetivos Definir la matriz asociada a una transformación lineal respecto a un par de bases y estudiar la representación matricial
Ix ʹ = 8 mb 2, I. c) El momento de inercia respecto de un eje perpendicular al plano de la figura y que pase por una de las masas (eje z ʹ ) será:
CALCULO DE MOMENTOS DE INECIA Se unen cuatro partículas de masa m mediante varillas sin masa, formando un rectángulo de lados a b. El sistema gira alrededor de un eje en el plano de la figura que pasa
Capítulo 8: Vectores
Capítulo 8: Vectores 1. Lección 30. Operaciones con vectores 1.1. Vectores El concepto de vector aparece en Física para describir magnitudes, tales como la fuerza que actúa sobre un punto, en las que no
TEMA 8.- NORMAS DE MATRICES Y
Álgebra II: Tema 8. TEMA 8.- NORMAS DE MATRICES Y NúMERO DE CONDICIóN Índice. Introducción 2. Norma vectorial y norma matricial. 2 2.. Norma matricial inducida por normas vectoriales......... 4 2.2. Algunos
1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva:
1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: a) x = senθ, y = cosθ, 0 θ π t b), t x = e y = e + 1 c) x = senθ, y =
Tema 3: Sistemas de ecuaciones lineales
Tema 3: Sistemas de ecuaciones lineales 1. Introducción Los sistemas de ecuaciones resuelven problemas relacionados con situaciones de la vida cotidiana que tiene que ver con las Ciencias Sociales. Nos
c) Hallar los planos del haz que cumplen que el ángulo que forman con el eje OY tiene por seno el valor
1. [ANDA] [JUN-A] De un paralelogramo ABCD conocemos tres vértices consecutivos A(,-1,0), B(-,1,0) y C(0,1,). a) Calcula la ecuación de la recta que pasa por el centro del paralelogramo y es perpendicular
Introducción. Flujo Eléctrico.
Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una
I. T. Telecomunicaciones Universidad de Alcalá Soluciones a los ejercicios propuestos Tema 1
I. T. Telecomunicaciones Universidad de Alcalá Soluciones a los ejercicios propuestos 28-9-Tema 1 Departamento de Física 1) Dado el campo vectorial F = y i+x j, calcule su circulación desde (2,1, 1) hasta
MECÁNICA DE FLUIDOS I GUÍA DE EJERCICIOS TEMA 4 SOLUCIÓN
Ejercicio 1 Un campo de velocidades viene dado por MECÁNICA DE FUIDOS I GUÍA DE EJERCICIOS TEMA 4 SOUCIÓN V = 4txi 2t 2 yj + 4xzk Es el flujo estacionario o no estacionario? Es bidimensional o tridimensional?
TEMA 0: Herramientas matemáticas
1 TEMA 0: Herramientas matemáticas Tema 0: Herramientas matemáticas 1. Campos escalares y vectoriales 2. Gradiente 3. Divergencia 4. Rotacional 5. Teoremas de Gauss y de Stokes 5. Representación gráfica
EL PROBLEMA DE LA TANGENTE
EL PROBLEMA DE LA TANGENTE El problema de definir la tangente a una curva y f (x) en un punto P ( x, y ) ha llevado al concepto de la derivada de una función en un punto P ( x, y ). Todos sabemos dibujar
SISTEMAS DE ECUACIONES LINEALES. Método de reducción o de Gauss. 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González.
SISTEMAS DE ECUACIONES LINEALES Método de reducción o de Gauss 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González. SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS.
Tema 2 Datos multivariantes
Aurea Grané Máster en Estadística Universidade Pedagógica 1 Aurea Grané Máster en Estadística Universidade Pedagógica 2 Tema 2 Datos multivariantes 1 Matrices de datos 2 Datos multivariantes 2 Medias,
